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1. Introduction

In [1], the authors consider a problem of buckling of a viscoelastic rod which
in the case of linear viscoelastic constitutive relation has the following form.
We look for solutions u of the system:

(1 a5, 1) = B [ Bt =)y, 9)ds + P@)sinu(x, 1) = O,
@ 00 = =0,

(3) _I[Sin(u(x, 0)dx = 0,

4) O u(x,0) =0,

where u is the angle between the tangent to the rod and the x axis, and P(t) is
the load.

This problem has been suggested by M. E. Gurtin (see [2]). A numerical
approach to this problem is given in [3]. Here we present a rather simple
treatment of this problem and an elementary proof of some results given in [1].

2. The existence of a bifurcation point

Concerning the existence of a bifurcation point of the problem (1)-(4), we can
formulate the following theorem:

THEOREM 1. If there is an ¢ > 0 such that |P(t) < A,—¢ for te[0,T],
then every solution of the problem satisfies mou =20, so that u(t) =k(t)n
where k(t) is an arbitrary function (m, is a projector to the space
H:={p, =cosnnx,n=1,2, ..., xe[0,1]}). Moreover, if 1e(0, T) is a bifur-
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cation point for the problem (1)H4) then P(z) is a nonzero eigenvalue of the
following Neumann problem:

—(Pxx=/l(p1 XE(Oal):

5
G) 9.00) = 0, (1) = 0;
ie. there is an n> 1 such that P(t) = 1, = n’n* (see Fig. 1).

Ayl possible bifurcation point

ke
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Fig. 1 t

Proof of Theorem 1. Bifurcation can occur when the linearized problem
has at least one nontrivial solution (see, for example, [4]). So we get from (1)
the linearized equation

(6) U (x, )+ P(u(x,t) = B, j‘ﬁ(t—s)uxx(x,t)ds.
0

Because of the regularity of the right-hand side of (6), we may write for all
te[0,T] and x€(0,1) '

0 B9+ PG5 BoBle— 9 s =

It is easy to see that (7) is possible iff Vie[0,¢], Vxe[0,1] and Vse[0,t]
0

(@) E [tsa(x, 5)+ P(s}u(x, s)] = o Bt — $)ite(x, )

holds. But since the right hand side of (8) depends on ¢, this can be valid iff
Vxe[0,1] and Vse[0,¢]

9 g[um(x,s)+ P(s)u(x,s)] = ¢
s

and

(10) BoBt —$)te,(x,s) = ¢

where ¢ # c(t) # ¢(s). From (10) 1t follows that ¢ = 0 and u(x,s) = k{s) where
k(s) is an arbitrary function such that limk(s) = O.

520
From (9) we get
(11) U (X, 5) + P(s)ulx,s) = K.
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But in view of (4), K =0; and using (2) we can see that if P(s)# 1,
n=1,2,..., (11) has only the trivial solution. When P(s)=21,, n=1,2, ...,
a nontrivial solution can exist but this question cannot be answered by means
of the linearized equation.

Remark. This proof can also be adapted to the case of nonlinear
viscoelastic constitutive relation, with 8 = f(u,t —s) and with u,, replaced by
Lu in (1), L denoting a linear elliptic operator.

3. The problem of bifurcated solutions

The problem of bifurcation of solution of (1}-(4) was solved in [1]. The method
of solution is the Lyapunov-Schmidt decomposition (see, for example, [5]).
After performing this decomposition, by differentiating the equations with
respect to ¢ one gets several nonlinear ordinary differential equation depending
on parameters. Here we propose another way of solution to this problem.
Having obtained the Lyapunov-Schmidt decomposition, by integrating the
problem we can transform it to a nonlinear algebraic equation depending on
parameters. The bifurcated solutions are obtained by solving this algebraic
equation, The advantage of this approach lies in the simplicity of solution of
algebraic equation. Moreover, this approach gives tool for treating problems of
this kind in more space variables.
We [irst prove two lemmas.

LemMA 1. If f(s) is an integrable function then

!

(©)de}ds = — [(t—9)f(s)ds.
0

0

I(r) =

Oty

3

Proof. Let ¢(s) = [f(&)dé. Then

0

{

10 = [ 1p()ds = [ (5f () = s0(s)o — [ s (5)ds
0 0 0

!

=t(t)—{ s (s)ds = [ (t—s)f(s)ds.
0

o]

LEMMA 2. There exist nonzero functions f(t,s) such that Vi >0
{
(12) [f(t,5)ds = 0.
0
Proof. It is easy to verify that the [unctions

. 1
(13) jm.m.k(ts 5)= S'"—Esntk # 0
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where (n+ 1o =m+1, n+k =m, n, m > 0 satisfy (12) (there also exist other
functions satisfying (12)).
In the sequel we assume that

P( )ec([0,T), >0,
(14) Pty< i, te[0,t,), Ply)=4;, 0<ty<T,
P(t) = il—l—pl(t—tu)—i-Q(t)(t—to)z, fe[to, T],

where Q( - )e C([ty.T)) and p €eR.
We may suppose without loss of generality that t, = 0.
We look for solutions of (1)~(4) of the form

(15) u(t) =al)+b@)p,+w) = alt)+o(t), te[0,t,),
where a(t)eR, b(t)eR,

1 1
weW: = {w;weH®(0,1), [wdx =0 and [we, dx = 0}.
0 0

With notation and definitions as above, the main part of the bifurcation
equation for the problem (1)-(4) is as follows (see [1]):

(16) —p, t-b(t)—llﬂoj'b(s)ds+llub3(t) =0,
0

1
where 1 = ¢ {eidx.
0

THEOREM 2. If p, > —%A, B, (see Fig. 1) then t = O is a bifurcation point and
the bifurcated branch u( - ) in (15) given by

. 2 1/2
b(1) = (3P1;H/13-1ﬂ0) t1/z(1 +O(t1/2))‘
1

Proof. To {ind the real solutions h(t) of (16) we integrate (16) over [0,¢]
and, using Lemma 1, we get

(17) i{ —psh(s)— 2, Bo(t—s)b(s)+ A, ub>(s)}ds = 0.
0

Write
F (b)(s,t) = —p,sb(s)— A, Bo(t —5)b(s)+ A, ub(s).
According to Lemma 2 we have two possibilities: either

(18) Vizsz0 F(O)ts)=0
or
(19) Vizs20  FO)t,s) =19,
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where f(t,s) 1s some nonzero function, e.g. one of functions given in (13).
Assume (18). Separating the variables ¢ and s in F (b)(s,t) and using (15)
and (4), we get the equation

(20) Ks(i fo—py)+ Ay pbi(s) = 0,
where b,(s) = Kb(s) and K is a constant. From (20} and (16) we get
3p,+22, B\ 2
b — + 1 1F0 172
45 -( 34 ) >

and it is easy to see from (21) that b,(s) is real if p, > —%4,8,.

To solve (19) we can use the same technique as in the 'case of equation (18).
After separating the variables s and t and using (13), we get two equations:
Vizsz20

(22) —pysb(s)— 4, Bosb(s)+ A, ub? (s} — Ks™ = 0
and
(23) Ay By rb(s)+§s"r" = 0.

It is easy to see that (23) has a solution only if k = 1 and n = 1/2 and that (21) is
this solution. Applying the Cardano formula, we can write explicitly the
solution of (22). In particular, when m = 3/2, we obtain (21).

Since (12) has not only solution of form (13), we cannot claim that (16) has
no other solution that (21). So this question remains open.
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