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The theory of Hopf algebras is closely connected with various applications, in
particular to algebraic and formal groups. Although the first occurrence of
Hopf algebras was in algebraic topology, they are now found in areas as
remote as combinatorics and analysis. Their structure has been studied i1n great
detail and many of their properties are well understood. We are interested in
a systematic treatment of Hopf algebras with the techniques of forms and
descent.

The first three sections of this paper give a survey of the present state of
the theory of forms of Hopf algebras and of Hopf Galois theory, especially for
separable extensions. It includes many illustrating examples some of which
cannot be found in detail in the literature. The last two sections are devoted to
some new or partial results on the same field. There we formulate some of the
open questions which should be interesting objects for further study. We
assume throughout most of the paper that % is a base field and do not touch
upon the recent beautiful results of Hopf Galois theory for rings of integers in
algebraic number fields as developed in [C1].

I. Hopf algebra forms

As a first example of the occurrence of a Hopf algebra let us consider the units
functor. In the sequel let k be a commutative, associative ring with unit. Later
on it will be a field, in particular the field of rationals or reals. Let k-.o/lg denote
the category of commutative k-algebras and %rp the category of groups. Then
there is an important functor

U: k-ALlg— %rp,
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the units functor, which associates with each k-algebra its group of invertible
elements or wunits. This functor is representable by the k-algebra
k[x, x '] = kZ, the group ring of the infinite cyclic group Z, ie.

U(A) = k-alg(k[x, x ], A).

The multiplication of the units group U x U — U induces a commutative
diagram
UAxUA) - U(A
| !
k-#lg(k[x, x 'I®k[x, x '], A) — k-Alg(k[x, x™'], A)

with vertical arrows iscmorphisms. By the Yoneda Lemma the bottom
horizontal arrow induces a comultiplication on the representing k-algebra

A k[x, x™ '] = k[x, x7'] 1L k[x, x7'] = k[x, x "] ®k[x, x7*],

defined by 4(x) = x® x. Observe that the tensor product of commutative
algebras is the coproduct in k-#/lg. Also the inverse inv: U — U and the
neutral element {} - U define corresponding maps on the representing
algebra. All in all we obtain the structure of a Hopf algebra on the algebra
k[x, x~1].

DEerFINITION. A k-algebra H together with k-algebra homomorphisms
A H--H®H, o: H>H, ¢ H-k

is called a Hopf algebra if H together with 4 and ¢ is a coalgebra and if
o satisfies the following commutative diagrams:

H>S k S H
sl 1r
H®H 21029, g H

Here the map V: H® H — H denotes the multiplication V(a® b): = ab of the
algebra H and n: k — H is defined by n(a): = a'1g, the canonical map from
k into H.

The map 4: H - H® H is called the diagonal or comultiplication on H. It
is awkward to write the images as tensors in the usual way, especially if
composites of such maps occur. The following simplified notation has been
introduced by Sweedler. For a linear map f: A > B®C we defin¢
Y ag,® a,: = f(a) or in the special case of a Hopf algebra (H, A, ¢) we write
Y ha),® bz = A(h). The advantage of this notation is that it can be extended
to bilinear maps along the following example. If g: B x C — D is a bilinear map
with induced map §: B®C — D on the tensor product, then we can define
Y 9(awy, acy: = §(f(a)) and thus use the “components” a(g, and g, as if they
were well-defined ordinary -elements, which can be used as arguments in
bilinear maps.
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Similar to the Hopf algebra k{x, x 1] each commutative (as an algebra)
Hopf algebra H represents a functor

H: k-stlg—%rp, H(A): =k-oLlg(H. A),
where the multiplication on H is given by the commutative diagram

H(A4)x H(4) - H(4)
! !
k-oZlgH® H, A) — k-lg(H, A)

So the group ring kZ has been seen to be a Hopf algebra with the diagonal
A(g) = g® g for g in Z. This holds not only for the group Z. Every group ring
kG is a Hopf algebra with the same comultiplication, even for noncommutative
groups G. The noncommutative group rings, however, do not any more
represent group-valued functors on k-</lg. They are special instances of formal
groups.

Another concrete example of a group-valued functor is

C: k-olg — %rp,
the circle group, defined by C(A): = {(a, b)e A x A|a’*+b* = 1}. The group
structure is given by (a, b)*(c, d): = (ac—bd, ad + bc). The representing Hopf
algebra is the “trigonometric algebra” H = k[c, s]/(c2 +s%—1). The diagonal is
defined by
A)=c®c—5s@®s, As)=c@®s+s®c.

The most interesting observation is this. Let 4 be a commutative k-algebra

with 2 invertible and containing i = J/ —1. Then the assignment

U(A)sa— (1(a+a'1), i,(a—a_ l))e C(A)
2 2i

defines a functorial isomorphism of groups. If 27!, iek then U and C are
isomorphic group-valued functors, hence they have isomorphic representing
Hopf algebras
k(x, x '] = k[c, s]/c*+s*—1).

If i ¢ k then the two group-valued functors are not isomorphic, neither are their
representing Hopf algebras k[x, x '] and k[c, s]/(c*+s>—1).

If kK is a field of characteristic # 2 and i¢k, then U and C are
nonisomorphic but they induce isomorphic functors' Ul and Cly, if restricted
to the k(i)-algebras. Let K = k(i) and let A be a K-algebra. Then we have

K-Alg(K@k[x, x™ 1], A) = k-Llg(k[x, x ], A)
= Ul (A) = Cl(A)

= k-stlg(klc, s]/c + 52— 1), A)
~ K-olg(K ® k[c, s1/(c* +s*—1), A),
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hence K ® k[x, x™ '] =~ K®k[c, s]/(c* +s*—1) as K-Hopf algebras, where the
tensor product is always taken over the base ring k. Observe that a cancellation
property cannot be expected in this case.

In particular, the Q-Hopf algebras Q[x, x '] and Q[c, sjAc? +s*—1)
and the R-Hopf algebras R[x, x~'] and R[c¢, s]/(c’ +s*>—1) are not isomor-
phic, but the C-Hopf algebras C[x, x™ '] = C[c, s5)/(c* +s*—1) are. This is an
example for the next definition.

DErINITION. Let G and G’ be group-valued functors on k-o7lg. Let K be
a faithfully flat commutative k-algebra. If the restrictions to K-o/lg are
isomorphic group-valued functors: G|, = G'|;. then G and G’ are called
K-forms of each other as groups.

Let H and H' be Hopf algebras over the commutative ring k. Let K be
a faithfully flat commutative k-algebra. If K@ H =~ K ® H' as K-Hopf algebras,
then H and H' are called K-forms of each other as Hopf algebras.

We say that G and G' resp. H and H' are forms of each other if there exists
a faithfully flat k-algebra K such that they are K-forms of each other.

So for G and G’ to be K-forms of each other we need an isomorphism of
set-valued functors a: G|, — G'|; such that

Gl x Gl =2 G'lg x Gk

l l
Gly = Gl

commutes.

There may be many different Hopf algebras H’ which are forms for H with
respect to some faithfully flat extension K. In particular, the richness of Hopf
algebras over Q should be higher than over C. Granted there may be Hopf
algebras defined over C, which do not come about by a base ring extension
from Q, but e.g. semisimple cocommutative Hopf algebras over C are always
defined over Q. This is a consequence of a more general structure theorem of
Milnor, Moore and Cartier on cocommutative Hopf algebras over algebraical-
ly closed fields. Our interests are in this richness of Hopf algebras over “small”
fields. One can show for example that over the field R of reals the circle functor
C is the only nontrivial form of the units functor U.

There is a description of K-forms for quite general algebraic structures
given by the theory of faithfully flat descent. We apply it to the case of Hopf
algebras. Let H -be a Hopf algebra over k. The automorphism group of this
Hopf algebra will be denoted by k-#opf-Aut(H). After a base ring extension by
k- K we get a Hopf algebra K®H over K with automorphism group
K-#opf-Aut(K ® H). Every change of the base ring extension, ie. every
homomorphism of commutative k-algebras K — L induces a group homomor-
phism K- #opf-Aut(K ® H) —» L-#opf/-Aut(L® H). Thus we have a functor
Aut(H): k-o/lg > %rp defined by Aut(H)(K): = K-Hopf-Aut(K ® H). Every
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group-valued functor on the category k-.«/lg of commutative k-algebras has an
associated Amitsur cohomology H"(K/k, Aut(H)). It is not necessary to know
the precise definition of these cohomology groups to apply the following
theorem.

THEOREM 1.1. Let H be a k-Hopf algebra. Then there is a bijection between

the set of (isomorphism classes of) K-forms of H and the Amitsur cohomology
group H(K/k, Aut(H)).

Proofs of this may be found in various forms in [G], [H], or [KO].
Actually, this theorem holds in greater generality and the proof is quite
teChnical and involved.

In view of this theorem the main problem of calculating forms is to
determine the set of Hopf algebra automorphisms of a Hopf algebra. In fact, we
do not have to calculate the cohomology group, since by a twofold application
of this theorem — going from certain forms to the cohomology group and then
from the same cohomology group back to some other forms —we will eliminate
the explicit computation of the cohomology.

In the case of group rings kG of finitely generated groups G the
automorphism group k-#opf-Aut(kG) can be calculated, in particular for
cyclic groups C, of order n. We assume that the automorphism group F of G is
finite. Then one can show that k- #opf-Aut(kG) is isomorphic to the automor-
phism group %al-Aut(Ef) of the trivial F-Galois extension Ef of k. This Galois
extension can be described by the ring Ef = (kF)*, the dual space of the group
ring kF, on which F acts by automorphisms in such a way that the ring
extension (kF)*/k is an F-Galois extension in the sense of [CHR. Actually. this
leads to a functortal iIsomorphism Aut(kG) = %al-Aut(E*), so that the Amitsur
cohomology groups of these two group functors also coincide.

We formulate one of the most interesting consequences of these con-
siderations.

THEOREM 1.2 [HP]. Let k be a commutative ring with 2 not u zero divisor in
k and Pic, (k) = 0, the two-torsion of the Picard group. Then

(a) the Hopf algebra forms of kZ are
H = Kk[c, s]/(s* —asc —bc? +u),
(b) the Hopf algebra forms of kC, are
H = k[c, s]/(s* —asc—bc* +u, (c+ 1) (c—2), (c+ 1) (s—a)),
(c) the Hopf algebra forms of kC, are

H = k[c, s]/(s* —asc—bc* +u, clac—25)),
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(d) the Hopf algebra forms of kC, are

H = k[c, s)/(s* —asc—bc* +u, (c—=2)(c— D) (c+ 1) (c+2),
(c—1)(c+ 1) (sc— 2a)).

In all cases a, b, uek satisfy a>+4b = u and u is a unit in k. The Hopf
algebra structure in all cases is defined by

A(c) = u Y (@*+2b)c®c~alc@®s5+5@c)+2c®s),
A(s) = u_1(—abc®c+2b(c®s+s®c)+a.s®s),

gc)=2, e(s)=a, dgl)=c, a(s)=ac—s.

We give an indication of the way how this result is obtained. In all cases of
the theorem the group F is the cyclic group with two elements. The theory of
C,-Galois extensions (= quadratic Galois extensions) is well known. Actually,
every quadratic Galois extension of k is a form of the trivial quadratic Galois
extension (kC,)* = k x k of k as will be seen below. Since the automorphism
groups Aut(kG) = %al-Aut(k x k) coincide, the first Amitsur cohomology
groups describing the forms coincide, too. So there is a bijective correspon-
dence between the forms of the group rings in the theorem and the quadratic
Galois extensions of k [see Thm. 4.1]. This correspondence was used to
explicitly calculate the forms given in the theorem.

II. Hopf Galois extensions

- A different class of “forms” is obtained if one considers the following
cancellation problem.

DEFINITION. Let G: k-s#lg — %rp be a group-valued functor. Then the
multiplication of G on itself G x G —» G makes G a G-set-valued functor. Here
we define the functor GxG by (G xG)(K): = G(K)x G(K), so that the
multiplication of each group G(K) defines a functorial homomorphism
G x G — G, briefly the multiplication on G, and the G-set structure is defined
“componentwise”.

Let X: k-o/lg —» et be another functor which is also a G-set-valued
functor by X x G — X. Let K be a faithfully flat commutative ring extension of
k. If the restrictions G|, and X |, to K-o/lg are isomorphic as G|-set-valued
functors, then G and X are called K-forms of each other as G-set-valued
functors.

So for G and X to be K-forms of each other we need an isomorphism of
set-valued functors a: G|y — X|g such that
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Glex Gl 2L X | x Glg

l l
Glg =& Xl

commutes.

A Hopf-algebraic description of this is somewhat more complicated. The
notions of a G-set and of forms of a G-set translated to the representing objects
of the representable functors G and X give the following definition.

DerFINITION. Let H* be a commutative Hopf algebra and let A be
a commutative algebra. A is called an H*-comodule algebra if there is an
algebra map y: A > A® H* such that the diagrams

A 5> AQH* AS AQ H*
4 Li®a and id] he:
AQH* X5 AQ H*® H* A<= A®k

commute.

Let H* be a commutative Hopf algebra and let A be a commutative
H*-comodule algebra. Let K be a faithfully flat commutative ring extension of
k.If K®@ H* ~ K® A as K® H*-comodule algebras, then A is called a K-form
of H*.

Closely connected with K-forms of G-set-valued functors is the notion of
a principal homogeneous space.

DerFINITION. If G is a group and X is a set, then a G-set X is called
homogeneous if for each pair x, ye X there exists a ge G such that xg = y.
A G-set X is principal homogeneous if X is homogeneous and xg = x for any
xeX implies g = e.

It is easy to verify that a G-set X is principal homogeneous iff the map
¢ X xGa(x, g)—(x, xg)e X x X 1s bijective. This holds also in the case
X =0.If X # O then X and G are isomorphic as G-sets. These statements are
easily rephrased in terms of functors.

The map ¢: X x G — X x X which is defined for any G-set-valued functor
X induces the algebra homomorphism ¥: AQA3S@1) 514 @ty
€ A® H* on the representing objects. ¢ is an isomorphism iff ¢ is.

PROPOSITION 2.1. Let G be a representable group-valued functor and let X be
a representable G-set-valued functor on k-s/1g. Let the representing algebra A of
X be faithfully flat. Then G and X are K-forms of each other as G-sets for some
faithfully flat commutative k-algebra K iff X is a principal homogeneous space
over G.

Proof. We first remark the following. Let X and Y be representable
functors, let f: X — Y be a natural transformation, and let K be faithfully flat.

6 — Banach Center (. 26, cz. |
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Assume that f|,: X|; = Y|, is an isomorphism. Then fis an isomorphism. This
is due to the fact that the corresponding statement holds for the representing
algebras.
Now let there be a natural isomorphism of G|g-set-valued functors
a: Glg — Xl Then since (X x Y)|; = X|g x Y|, the following diagram com-
mutes:
(G x G)|x (G x G)lk

'lei laxa
(X x G~ (X x X)|x

Since G| is a principal homogeneous space over G|, “componentwise”, the top
morphism is an isomorphism. So are the two vertical arrows. Thus the bottom
arrow is an isomorphism. By the above argument ¢: X xG —- X x X is an
isomorphism.

Conversely, if ¢: X x G —» X x X is an isomorphism, then in particular the
induced k-algebra homomorphism y: AQ A3s@t— st @ty AR H* of
the representing algebras is an isomorphism. (Here we use the Sweedler
notation in context with a bilinear map.) This is even an isomorphism of
A-algebras. So we get for any A-algebra B

G|,(B) = k-lg(H*, B) = A-#lg(A ® H*, B)
~ A-oLlg(A® A, B) = k-/1g(A, B) = X |,(B).
It is now easy to verify that this is an isomorphism of G| ,-set-valued functors.

The translation of the notion of principal homogeneous spaces into the
language of Hopf algebras has a most interesting variation. Let A be an
H*-comodule algebra. Assume now that H* is finitely generated and projective
as a k-module and that A is faithfully flat. The dual H: = Hom,(H*, k) 1s
a finitely generated projective cocommutative Hopf algebra which acts on 4 by
h't =Y t h(tue). Then the following holds:

THEOREM AND DEFINITION 2.2. Under the above assumption the following
are equivalent:

(@) A is a Hopf Galois extension of k with Hopf algebra H (or simply
H-Galois).
(b) ¥: ARA35®tr>) sty ®tmeA® H* is an isomorphism.

(c) There is a faithfully flat extension K of k with K A =~ K@ H* as
K ® H*-comodule algebras.

(d) &: H® A3h®s—(t— ) s(h-t))e End,(A4) is an isomorphism and A is
finitely generated faithful projective as a k-module.
(e) k is the fix ring
AH:= {se A|VheH: h's=¢(h)s}

of A under the action of H and the rings A® and A% H are Morita equivalent.
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Proof. (a) A Hopf Galois extension is defined to be one of the equivalent
conditions (b}e). (b) implies (c) with K = A. The equivalence of (b) and (c} is
the preceding proposition. The equivalence between (b) and (d) is a simple
calculation with dual bases for H and H* and use of faithful flatness. (e) is
essentially a translation of (d) in terms of Morita equivalences. Detailed proofs
of this can be found in [P].

There are various different generalizations of Galois extensions. Noncom-
mutative algebras with Hopf algebras acting on them have been investigated.
Commutative algebras with finite groups acting on them have been studied in
[CHR]. The definition used here has been introduced in [CS] and is also
described in [S1]. Special instances of Galois extensions are included in this
general concept.

Let k be a field and H = kG the group (Hopf) algebra of a finite group. Let
K be a field extension of k which is H-Galois. Then G acts by automorphisms on
K. Furthermore, we have k = {se K|VgeG: g(s) = s} = K% Since [K: k]
= |G| we deduce that K is a “classical” Galois extension of k with Galois group
G. Conversely, if K is a “classical” Galois extension of k with Galois group
G then by Dedekind’s lemma and (d) of the above theorem K is Hopf Galois
with Hopf algebra H = kG.

Jacobson’s extension [J] of Galois theory to purely inseparable field
extensions can be incorporated into the general framework of Hopf Galois
theory in the following way. Jacobson uses restricted Lie algebras acting by
derivations on purely inseparable field extensions of exponent one. The
restricted universal enveloping algebras of the restricted Lie algebras are Hopf
algebras and the action extends to a Hopf Galois action on the same extension.
Details and an extension to a larger class of purely inseparable field extensions
can be found e.g. in [S2] and [W].

The question arises which parts of the “classical” Galois theory can be
transferred to Hopf Galois theory. The definition of a Hopf subalgebra H' = H
causes some problems on the coalgebra side. If we always assume, however,
that H" is a direct summand of H as a k-module, these problems can be
resolved. The fundamental theorem of Galois theory can be extended to

THEOREM 2.3 [CS]. Let K be Hopf Galois with Hopf algebra H. For H’'
a Hopf subalgebra of H let

Fix(H'): = {xe K|Vhe H': h-x = e(h)x}.

Then
Fix: {H' < H|H' Hopf subalgebra} - {L|k = LS K subalgebra}

is injective and inclusion-reversing.

We say that the fundamental theorem of Galois theory holds in its strong
form if the map Fix is bijective. This, however, is not the case in general, as we



84 B. PAREIGIS

will see below. There is another deviation from the “classical” Galois theory.
The Hopf algebra acting on a Galois extension K of k is not uniquely
determined. Examples have been known for inseparable field extensions.

III. Separable field extensions

We give an example of a separable field extension which is not Galois in the
classical sense, but which is Hopf Galois with two different Hopf algebras. Let
K = Q(\“/i) and k = Q. It is well known that this is not a “classical” Galois
extension. Let

H = Q[c, s]/(c*+s*—1, cs)

with the coalgebra structure as given in part I. Abbreviate w: =§‘ﬁ. Then the
operation of H on K is given by

1 w w? w?
¢ 1 0 —w? 0
0 ) 0 w?

If K = k(\“/i) were a classical Galois extension for example over the base field
Q(i) then the Galois group is cyclic with generator e. Here the generator e has
been replaced by the two operators ¢ and s which operate k-linearly and
according to the rules

c(xy) = c(x)c(y)—s(x)s(y),  s(xy) = s(x)e(y)+c(x)s(y).
Similarities with the trigonometric equalities are intended. If one extends the

base field from Q to Q(i) then (Q()® Q(\“ﬁ)): Q(i) becomes a classical Galois
extension and the Hopf algebra H is extended to the group ring QC,. By
further extending the base field to Q(, \“ﬁ) the ring extension
Q(i, ﬁ)@Q({‘/ﬁ) becomes isomorphic to the dual of the extended group
algebra (Q(, \“ﬁ)C4)*. This isomorphism is compatible with the comodule

algebra structure. So we see that the original H*-comodule algebra K is a form
of the trivial H*-comodule algebra H*.

One can show that there is a second Hopf algebra over Q and an action
on K = Q(ﬁ) such that the setup is a Hopf Galois extension. The Hopf
algebra is

H = Q[c, s]/(s* —2c?+2, cs)
with the action
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The maps ¢ and s are k-linear and satisfy the multiplicative relations

c(xy) = c(x)e()—35(x)s(y),  s(xy) = e(x)s(y) +s(x)c(y).

To see that this gives a Hopf Galois extension one has to extend the base field

to Q(/ —2) and then proceed as above.

This is an example of a k-algebra which is a Hopf Galois extension wnth
two different Hopf algebras. We will see below that this happens very often.
Even the “classical” Galois extensions often have more than one Hopf algebra
for which they are Hopf Galois. On the other hand, there are separable ficld
extensions which are not Hopf Galois at all. The separable field extensions
which are Hopf Galois can be classified by the following theorem.

To formulate the theorem we fix the following notation. Let K be a finite
separable field extension of k. Assume

K = normal closure of K overk,
G = Aut(K/k),

G' = Aut(K/K),

S =G/G" (left cosets),

B = Perm(S) (group of permutations of S).

THEOREM 3.1 [GP]. Under the assumptions made above the following are
equivalent:

(a) There is a Hopf k-algebra H such that K/k is H-Galois.
(b) There is a regular subgroup N = B such that the subgroup G < B
normalizes N.

The examples given above are of a rather special type which we call

“almost classical” Hopf Galois extensions. They are characterized by the
following

THEOREM 3.2 [GP]. The following conditions are equivalent:

(a) There exists a Galois extension E/k such that EQ K is a field con-
taining K.

(b) There exists a Galois extension E/k such that EQ K = K.

(¢) G' has a normal complement N in G.

(d) There exists a regular subgroup N < B normalized by G and contained
in G.

The last condition of this theorem shows that we are indeed talking about
Hopf Galois extensions. These extensions are particularly well behaved because
they satisfy the fundamental theorem of Galois theory in its strong form.

TueoreM 3.3 [GP]. If K/k is almost classically Galois, then there is a Hopf
algebra H such that K/k is H-Galois and the map Fix is bijective.
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The ambiguity of the Hopf algebra acting on a Hopf Galois extension is
exposed in the following

THEOREM 3.4 [GP]. Any classical Galois extension K/k can be endowed with
an H-Galois structure such that the following variant of the fundamental theorem
holds: There is a canonical bijection between Hopf subalgebras of H and normal
intermediate fields k < E < K.

One of the simplest examples of a classical Galois extension with this new
H-Galois structure 1s the following. Let { be a 3rd primitive root of unity and

let w: = \‘/i Then K = Q{w, () is a classical Galois extension of Q with Galois
group S,. It is also Hopf Galois with Hopf algebra

H =Qle, s, Qf{clc—1)c+1), 22 +st+1ts—2, cs, sc, ct, tc, s%, 12).
The action of H on K is described by the table

l w 4
c 1 0 ¢
s 0 w? 0
t 0 0 0

The action of the three generating elements ¢, s, t on K satisfies
c(xy) = c(x)e(y)+3s(x)t(y) + 3t (x)s(y),
s(xy) = c(x)s(y) +s(x)c(y)+ 3 () (y),
t(xy) = c(x)t(y) + t(x)c(y) +5(x)s(y).

We finish this section on separable field extensions which are Hopf Galois
by giving a family of examples of separable field extensions which are not Hopf
Galois: no field extension K over Q of degree 5 with automorphism group S
of K/k can be Hopf Galois [GP].

IV. Hopf algebra forms revisited

Many of the following results have been obtained in cooperation and
discussions with students and colleagues of mine. In particular, [ gratefully
acknowledge the cooperation of C. Greither, R. Haggenmiiller, and C.
Wenninger.

The techniques to prove Theorem 1.2 can be used to calculate more forms
of group rings. The advantage in the proof of Theorem 1.2 was that all
quadratic extensions of a commutative ring can be explicitly described if the
ring satisfies only minor conditions [Sm]. If 2 is not a zere divisor in k and if
Pic(,, (k) = O then all quadratic extensions of k are free and can be described
as K = k[x]/(x?—ax—b) where a*+4b =u is a unit 1n «. lhe nontrivial
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automorphism is f(x) = a—x. This information was translated into the
language of Hopf algebra forms using the following

THEOREM 4.1 [HP]. Let G be a finitely generated group with finite
automorphism group F = %rp-Aut(G). Then there is a bijection between
Gal(k, F), the set of isomorphism classes of F-Galois extensions of k, and
Hopf(kG), the set of Hopf algebra forms of kG. This bijection associates with each
F-Galois extension K of k the Hopf algebra

- H={}c,geKG|VfeF: Zf(cg)f(g)=2cgg}.
Furthermore, H is a K-form of kG by the isomorphism
' w: HOK = KG, wh®a)= ah.

On the other hand, it is not trivial to describe F-Galois extensions of
a field k. They are not just the classical Galois field extensions of k. The simple
example of the trivial F-Galois extension k¥ = k x ... x k is not a field. Actually,
F-Galois extensions are just Hopf Galois extensions with Hopf algebra
kF [CHR, Thm. 1.3]. Arbitrary commutative rings K are admitted as Galois
extensions. The action of the group F on the extension K by different elements
f.f" has to be “strongly distinct”, i.e. for every idempotent ee K there is an
xe K such that f(x)e # f'(x)e. This is the key to the following

_ THEOREM 4.2. Let F be a finite group and k a field. K/k is an F-Galois
extension if and only if

K=Lx...xL (ntimes)
where L/k is a U-Galois field extension with U = F a subgroup of index n.

Proof. Let K/k be an F-Galois extension. K is a commutative separable
k-algebra by [CHR., Thm. 1.3], hence is a product K= L, x...xL, of
separable field extensions L/k. The automorphisms in F map the primitive
idempotents to primitive idempotents and F operates transitively on the set of
primitive idempotents, since the sum of idempotents in an orbit is in the fixed
field. For any two idempotents e; and e, the automorphism f of F mapping ¢, to
e; also maps L; to L, Hence L, is isomorphic to a subfield of L; By symmetry
all the fields L; are mutually isomorphic. The stabilizer U < F of e, acts as
Galois group on L,/k since it acts strongly distinctly and |U| = [L: k]

Conversely, let U < G be a subgroup and let L:k be U-Galois. Let
g,,---»g, be a set of representatives for G/U ={g,U,..., g,U}. Let
K = Lx...x L with idempotents e,, ..., ¢,. Define the action 6: G — §, by
o(gli) =j if gg,U =g,U, the regular representation of G on G/U. We
define  g(le): = gohing9iDesmm- Observe that gg,U = g,,oU implies
Uy it = Yoandd; € U. Then the fix ring of K under the action of G is k, for let
> le,e K€ Then for all ge G we have Y u,;([)e i = X Le. For g: = gug; '
we get gg,U = g,U, hence o(g)(i) =i and u,; =g; ‘gug; 'g; = u, so that
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u(l) = I; for all ueU, hence [;ek. For g: = g,9;' we get gq,U = g,U, hence
olg)(i) =jand u,; = g; lgjg,-"g,- = id, so that [,e; = le;, hence I, = |, for all i, j.
This shows ) le, =AY e; = Aek. Obviously all elements of k remain fixed
under the action of G so that k = K¢ Furthermore, K is separable by
definition.

To show that G operates strongly distinctly it suffices to find for every
geG, g #id, and ¢;e K an xeK such that g(x)e;, # xe;. Assume first that
a(g)(i) # i. Choose x = ¢;. Then gle)e; = e,ne; =0 # e, =ee;. If a(g)(i) =i
then g 'gg,eU and u #id since g # id. Choose an le L with u(l) # ! and
x = le;. Then

g(x)e; = g(leje; = g 'gg.(Neu(De; # le; = lee, = xe,.
This concludes the proof.

Observe by the way that kC, has no nontrivial forms, since C, has trivial
automorphism group, so the corresponding Galois extension of a form must be
k itself. Already the next simplest cases after studying the forms of
kZ, kC,, kC,, and kC, cause unsatisfactory calculations. We discuss the case
of QC;.

The automorphism group of C, is C, which has exactly one nontrivial
subgroup C,. The C,-Galois extensions K of Q can be of the following forms:

1) K is a C,-Galois field extension of Q,

2) K = Lx L where Lis a quadratic field extension of Q,

J) K=2QxQxQxQ.

The problem is now to describe as explicitly as possible all C,- resp.
C,-Galois field extensions K of Q, to describe the action of C, on K and then
calculate the forms according to Theorem 4.1. Associated with a C,-Galois
field extension K is the following form of QC,:

H = Q[al/(a®—5pa® +(5(p* — 3q)— 10,/q(p> —4q))a).

Here K is the splitting field of x* + px? + g and . /q(p®> —4q) € k necessarily holds
if K is a C,-Galois field extension. The diagonal maps can be described by

A(a) = 7 (W +0°)(a®a)— (W’ +0°)(a@b+b@a)+(u+0v) (bR b)),

uv(u®—v?)
where

u:\/—p+\/pz—4q v=\/—P*\/P2—4q
2 ’ 2 '

The case of K = Lx L with quadratic extension L/Q is somewhat easier.
We get

H = Q[al/(a® +5p(a®*+pa)) with 4@ =u"'(1, —1)(a®a)
where L= Q(u) is the splitting field of x> —p.
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Finally, the case of K =2 QxQ xQ x Q leads to the trivial form QC,.

Another simple example is that of forms of Q(C, x C,). The automor-
phism group of C, x C, is the symmetric group S,. Now we have to study the
different cases of S,-Galois extensions:

1) K is an §,-Galois field extension of Q,
2) K~ Lx L where Lis a C,-Galois field extension of Q,
3) K= LxLxL where Lis a quadratic field extension of Q,

4) K=Z=QxQxQxQxQxQ.

In the first and second cases we get
H = Q[a]/(a(a® + ua+v))

where K is the splitting field of x*+ux + v irreducible. If D = —4u®—-27v? is
the discriminant then

A(a) = %[—2u(3va®a—u(a®c+c®a))

+3(4u?b ®b+9c@c+6ulb@c+c®b) 0 @@b+b®a)]

where
4 4u
b=-a*+—a+3,
v D)
4u 42
c= ——a’+2a>—~—a—4u.
v v

In the third case of K =~ Lx LxL we get

H = Q[al/(a*—1)(a*—u))
where L is the splitting field of x*—u and the diagonal is
1
u?—u
The case of K=2QxQxQxQxQxQ leads to the trivial form
Q(C, x Cy).

ProBLEMS. The generators of Hopf algebra forms and their diagonals are
rather arbitrary. It often turns out that either the diagonal or the ideal to be
factored out can be chosen to be relatively simple, but not both. Is there
a canonical choice of the generators of a Hopf algebra form? (') Is there a way

d(a) =

[ —u—1)a®a—-a*@a*+a’@a+a®a’].

() A complete answer to this question for the case of group rings has recently been given by
the author in Twisted group rings submitted to Comm. Algebra.
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to determine the minimal number of generators? Can one describe the “cyclic”
Hopf algebra forms? This seems to be of interest for the representation theory
of Hopf algebras, like cyclic groups are for the representation theory of groups.

Another problem area arises from the following considerations. Let kC,, be
the group algebra of a finite cyclic group and let k be a field with char(k) .t n.
Then the group algebra is semisimple by Maschke’s theorem. Let K be a field
extension of k or a commutative separable algebra. Then every K-form H of
kC, is again semisimple, since a nilpotent ideal of H would remain nilpotent in
K®H = KC, in both cases, but KC_ is still semisimple. There may be forms
which are even better in their representation properties as the example of part
I shows.

The Hopf algebra H = R[c, s}/(c*+5°—1, ¢cs) is a C-form of RC,. It is
easy to see that H=RxRxR xR as R-algebras. Thus H is absolutely
semisimple, i.e. all its simple modules are one-dimensional over the base field.
RC,, however, is not absolutely semisimple. It decomposes as RC,
~ RxRxC as an algebra, so it has a two-dimensional simple module.

So there is the problem of determining which group algebras have
absolutely semisimple forms, and of describing all those forms. If every
semisimple group algebra had an absolutely semisimple form this would mean
that one does not need to extend the base field of a group algebra kG to obtain
total splitting, but that the splitting can already be obtained over the base ring
for a suitable form H. Since we are not talking about algebra forms but about
Hopf algebra forms the possibility of tensoring H-modules over the base
field —an important technique for representation theory—is preserved.

THEOREM 4.3. If k is a field of characteristic not dividing n, then the Hopf
algebra kC, has a uniquely determined absolutely semisimple Hopf algebra form
k& = (kC,)*.

Proof. Any absolutely semisimple form of kC, has underlying algebra k'.
But k' is a Hopf algebra iff I is a finite group. After base field extension the
group structure of / remains unchanged, so there can be at most one group
structure on I and at most one Hopf algebra structure on k' so that k' is a form
of kC,. So an absolutely semisimple form of kC, is a Hopf algebra k¢ with
a uniquely determined commutative group G of order n. We show G = C, so
that k» becomes the absolutely semisimple form of kC,. It suffices to show this
over a field k containing an nth primitive root of unity. But then kC, splits
completely and the statement is well known.

This unique absolutely semisimple form of kC, is associated with an
F-Galois extension K of with F = Aut(C,). It turns out that k[x]/(¢,(x)) is an
F-Galois extension and is associated to k°~. ¢,(x) is the nth cyclotomic
polynomial. In general k[x]/{¢,(x)) will not be a field extension of k. According
to Theorem 4.2 and with some additional calculations one can see that

k[x]Npa(x)) = k(L) x ... x k(L,).
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PrOBLEMS. It would be interesting to know which group algebras over
Q have absolutely semisimple forms. The Hopf algebra QS, is itself absolutely
semisimple. There are also examples of groups G whose group algebras have no
absolutely semisimple forms.

V. Separable Hopf Galois extensions

ProBLEMS. In part II1 we have seen examples of separable field extensions
K/k which are Hopf Galois. All the examples were in fact “almost classically”
Galois. A 16-dimensional example of a Hopf Galois extension which is not
“almost classically” Galois is given in [GP]. M. Takeuchi has checked that all
Hopf Galois extensions of dimension less than 8 are “almost classically”
Galois. The obvious question is: are there proper Hopf Galois extensions of
dimension less than 16? Questions about the correspondence between “nor-
mal” Hopf subalgebras and Hopf Galois subfields have been addressed in [C2]
Many of those questions are still open. Childs also addresses the question of
the uniqueness of the Hopf algebra H w.r.t. which a separable field extension is
Hopf Galois. He obtains results for “classical” Galois field extensions. He
shows that the Hopf algebra H is never unique if G is cyclic of odd prime power
order. H is never unique for nonabelian G. This needs a different proof,
however, than given in [C2]. Childs also shows that H is unique if G is cyclic of
prime order, a result which we will extend below.

Assume that we have the same setup K/k, K'/k, G,G,S,Bas inlll In
[C2] the following result is shown.

PRrROPOSITION 5.1. G normalizes the reqular subgroup N of B iff G is
a subgroup of the holomorph Hol(N) = Nix Aut(N).

We extend Theorem 2 of [C2] as follows:

THEOREM 5.2. Let K/k be a separable field extension of degree [K k] =p
a prime. The following are equivalent:

(1) K/k is Hopf Galois.
(2) K/k is almost classically Galois.
(3) G is solvable.

If any (and all) of these conditions hold then the Hopf algebra H is unique for K/k
H-Galois.

Proof. If K/k is H-Galois then there is a regular subgroup N of §, such
that G < Hol(N) = Nix Aut(N), the holomorph of N. Since N = C, the
holomorph Hol(N) = Cx C,_,. hence G is solvable.

Let G be solvable. Since K = k{a) with a a zero of an irreducible
polynomial f of degree p, G is a subgroup of S, hence p||Gf and p? ¥ IG|. Below
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we show that for a solvable group G there is a chain of normal subgroups of
G ()

e<a..9G,<G,<9G,=G
with G,/G;,, = (Z/p,Z)'. Consider the sequence of subfields
k=kyck, c..ckuick,=K,

with k;,,/k, Galois with Galois group (Z/p,Z)' and k;,,/k normal. We get
aek, and a¢k,_,, otherwise K <k, _, since k,_,/k is normal. Then the
minimal polynomial f of a is irreducible over k,,_; by the last lemma. So all the
k-generating elements 1, a, ..., a? ! of K are linearly independent over k,, _,.
Thus K and k,_, are linearly disjoint and p, = p. Since p*>t[K:k] and
P=7pn=1{knkn ] we get kp-,®K =k,,_,K =k, =K. So by Theorem
3.2 the field extension K/k is almost classically Galois.

To see that the Hopl algebra H together with the Galois operation is
uniquely determined, observe that p||G| and G € Nix Aut(N) and N the only
Sylow p-subgroup of Hol(N) imply that the Sylow p-subgroup of G i1s N, which
is unique. Thus G = Nx A with a subgroup A = Aut(N). Consequently
N = G, < B is uniquely determined and so is H by Theorem 3.1.

To finish the proof of the theorem we prove the following lemmas.

LEMMA 5.3. Let G be finite solvable group. Then there is a sequence
e<1..<aG,<G,<wG, =G
with G;/G,4{ = (Z/p, L)%, p; prime and G;<1 G normal subgroups.

Proof: by induction. We only indicate how to construct G;,  from G,. Let
M < G, be a normal subgroup of prime index p;. Define G;.,: = (),e6 gMg~".
It has all the required properties.

LEMMA 5.4, Let K/k be a normal separable finite field extension. Let fe k[ x]
be separable and irreducible of degree p a prime. Then either f is irreducible over
K or f completely splits into linear factors.

Proof. Let a, ..., a, be the zeros of fin the algebraic closure and let G be
the automorphism group of K(a,, ..., a,)/k. G operates transitively on the
zeros, since fis irreducible. Let N be the fix group of K. Since K/k is normal,
N < G is a normal subgroup. N decomposes {a,, ..., a,} into orbits of equal
cardinality since G operates transitively and N is normal. So either N operates
transitively or trivially. Hence f is irreducible or splits completely.
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