TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 1 PWN POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

SOME REMARKS ON REPRESENTABLE EQUIVALENCES

GABRIELLA D'ESTE

Instituto di Matematica, Facoltà di Scienze, Università di Salerno, Salerno, Italy

We investigate the finite-dimensional modules over finite-dimensional algebras which induce an equivalence satisfying the hypotheses of Menini-Orsatti's Representation Theorem. These modules seem to be a small extension of tilting modules and a large extension of quasiprogenerators.

In a recent paper, Menini and Orsatti obtained a theorem ([4], Representation Theorem 3.1) between categories of modules which extends Fuller's theorem ([1], Theorem 1.1) to a more general situation. In fact, they proved ([4], Section 4) that any tilting module satisfies the hypotheses of their representation theorem, and that a tilting module satisfies the hypotheses of Fuller's theorem if and only if it is projective.

In this paper, we shall see that the equivalences considered in [4] may be induced by finitely generated modules which are neither tilting modules nor quasiprogenerators (the modules that induce the equivalences characterized by Fuller in [1]).

Before we do this, we recall some definitions and results, and we fix the notation used throughout the paper.

Let K be an algebraically closed field, and let A be a finite-dimensional K-algebra. Then a finite-dimensional left module $_AT$ is called a *tilting module* [5] if $_AT$ satisfies the following conditions:

- (i) proj.dim $_{A}T \leq 1$.
- (ii) $\text{Ext}_{A}^{1}(_{A}T,_{A}T) = 0.$
- (iii) There is an exact sequence $0 \to {}_{A}A \to T' \to T'' \to 0$, where T' and T'' are direct sums of summands of ${}_{A}T$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Let $_AT$ be a tilting module with endomorphism ring B, and let $D(T_B)$ denote the module $\operatorname{Hom}_K(T_B, K)$ equipped with its usual structure ([3], Proposition 3.5) of left B-module. Then, by tilting theory ([5], Theorem of Brenner-Butler), the functor $\operatorname{Hom}_A(_AM, -)$ defines an equivalence between the category of finite-dimensional A-modules generated by $_AM$ and the category of finite-dimensional B-modules cogenerated by $D(M_B)$.

Next, let A and B be two rings, let \mathcal{G} and \mathcal{D} be two full subcategories of A-Mod and B-Mod respectively, and assume that there is an equivalence

$$\mathscr{G} \xleftarrow{F}_{G} \mathscr{D}$$

with F and G additive functors. Then, according to [4], we say that a bimodule ${}_{A}M_{B}$ induces the equivalence (*) if F is naturally equivalent to $\operatorname{Hom}_{A}({}_{A}M, -)|_{\mathscr{G}}$ and G is naturally equivalent to $(M_{B} \otimes_{B} -)|_{\mathscr{G}}$.

We say that a module ${}_{A}M$ is a quasiprogenerator [1] if ${}_{A}M$ satisfies the following conditions:

- (a) $_{A}M$ is finitely generated.
- (b) _AM generates all its submodules.
- (c) ${}_{A}M$ is quasiprojective, i.e. if ${}_{A}X$ is a module and $f: {}_{A}M \to {}_{A}X$ is an epimorphism, then, for any morphism $g: {}_{A}M \to {}_{A}X$, there is an endomorphism h of ${}_{A}M$ making the following diagram commutative.

Suppose first that the equivalence (*) has the property that \mathscr{G} is closed under submodules, epimorphic images and direct sums, and that $\mathscr{D} = B\operatorname{-Mod}$. Then Fuller's theorem [1] proves that (*) is induced by a module ${}_{A}M$ with endomorphism ring B, and that ${}_{A}M$ is a quasiprogenerator.

Assume finally that the equivalence (*) has the following properties:

- (1) \mathscr{G} is closed under epimorphic images and direct sums.
- (2) \mathcal{D} contains _B and is closed under submodules.

Then Menini-Orsatti's theorem [4] guarantees that (*) is induced by a module ${}_{4}M$ with endomorphism ring B, and that the following facts hold:

- (1') \mathscr{G} is the category of A-modules generated by $_{A}M$.
- (2') \mathscr{D} is the category of *B*-modules cogenerated by $\operatorname{Hom}_A({}_AM, {}_AQ)$, where ${}_AQ$ is a fixed, but arbitrary, injective cogenerator of *A*-Mod.

In the following, for brevity we say that a module $_AM$ is a *-module if $_AM$ induces an equivalence (*) satisfying the hypotheses of the Representation

Theorem of [4], that is, conditions (1) and (2). We also say that a module ${}_{A}M$ is a *-decomposable module (resp. *-indecomposable module) if ${}_{A}M$ is a *-module and ${}_{A}M$ can (resp. cannot) be written as the direct sum of two *-modules, say ${}_{A}M'$ and ${}_{A}M''$, with the following properties: ${}_{A}M'$ and ${}_{A}M''$ are different from zero and, if ${}_{A}X$ is an indecomposable module generated by ${}_{A}M$, then either ${}_{A}X$ is generated by ${}_{A}M'$ and ${}_{A}M''$, ${}_{A}X) = 0$, or ${}_{A}X$ is generated by ${}_{A}M''$ and ${}_{A}M''$, ${}_{A}X) = 0$.

In this paper we point out some properties of finite-dimensional *-modules over finite-dimensional algebras. In this special situation, we find new *-modules which are not obtained from old *-modules in an obvious way. More precisely, in Section 1 we give an example of a *-indecomposable and sincere [5] module which is neither a tilting module nor a quasiprogenerator. We also note that, if we compare the two subclasses of tilting modules and quasiprogenerators inside the whole class of *-modules, then the unknown connection between tilting modules and *-modules seems to be stronger than the known connection between quasiprogenerators and *-modules. In fact, on the one hand, a first relationship between quasiprogenerators and *-modules follows from the results of [1] and [4] already mentioned. Even more, by ([4], Theorem 5.4), quasiprogenerators are exactly the *-modules satisfying two of the three properties (a), (b), (c) in the definition of quasiprogenerators, or equivalently the *-modules satisfying one of the properties (b), (c) in the same definition. On the other hand, *-modules do not arise as a natural generalization of the definition of tilting modules. In addition to this, tilting modules are not the *-modules satisfying two of the three properties (i), (ii), (iii) in the definition of tilting modules, and there exist *-modules which do not satisfy any of these properties.

However, surprisingly enough, there is a quite obvious, but extremely large, extension of the class of tilting modules over a finite-dimensional algebra A, namely the class of all modules ${}_{A}M$ with the property that ${}_{\bar{A}}M$ is a tilting module, where \bar{A} denotes the algebra $A/\mathrm{ann}_{A}M$. In Section 2 we give an example of a finite-dimensional algebra A with enough *-modules, i.e. admitting *-indecomposable and sincere modules which are neither tilting modules nor quasiprogenerators, such that any multiplicity-free [2] *-module ${}_{A}M$ satisfies the above property. Up to now, we do not know whether or not there exist a finite-dimensional algebra A and a *-module ${}_{A}M$ such that ${}_{A}M$ is not a "disguised" tilted module, that is, ${}_{\bar{A}}M$ is not a tilting module, where $\bar{A} = A/\mathrm{ann}_{A}M$.

Throughout the paper, the word module usually means left module and, if R is a ring, then we denote by R-Mod (resp. Mod-R) the category of all left modules $_RM$ (resp. right modules M_R). We always assume that K is an algebraically closed field, and we define the K-algebra given by a quiver according to [5]. We often identify indecomposable modules and their isomorphism classes. In particular, for brevity we say that there exist

n indecomposable modules with a given property if there exist exactly n isomorphism classes of indecomposable modules with that property. Finally, if R is a finite-dimensional algebra such that any indecomposable R-module is completely determined by its dimension vector [5], then in the Auslander-Reiten quiver $\Gamma(R)$ of R we always denote the indecomposables by their dimension vectors.

1

LEMMA 1. Let A be a finite-dimensional K-algebra, let $_AM$ be a finite-dimensional module and let $\bar{A} = A/\mathrm{ann}_AM$. If $_{\bar{A}}M$ is a tilting module, then $_AM$ is a *-module.

Proof. Since $\bar{A}M$ is a *-module [4], it suffices to note that the category $\{{}_{\bar{A}}X \in A\text{-Mod}\,|_{\bar{A}}X$ is generated by ${}_{\bar{A}}M\}$ is isomorphic to the category $\{\bar{A}X \in \bar{A}\text{-Mod}\,|_{\bar{A}}X$ is generated by $\bar{A}M\}$, and that the endomorphism ring of ${}_{\bar{A}}M$ is isomorphic to the endomorphism ring of $\bar{A}M$.

REMARK 2. There are a finite-dimensional algebra A and a *-indecomposable and sincere module $_{A}M$ which is neither a tilting module nor a quasiprogenerator.

Proof. Let A be the K-algebra given by the quiver $\bullet \leftarrow \bullet \leftarrow \bullet$, and let ${}_{A}M = \bigoplus_{i=1}^{3} M_{i}$, where the M_{i} 's are the indecomposables marked in $\Gamma(A)$

(see Fig. 1). Then ${}_{A}M$ is obviously a sincere module. Since ${}_{A}M$ is not faithful and ${}_{A}M$ does not generate the socle of M_{1} , it follows that ${}_{A}M$ is neither a tilting module nor a quasiprogenerator. We claim that ${}_{A}M$ is a *-module.

To see this, let \overline{A} be the algebra $A/\operatorname{ann}_A M$. Then \overline{A} is the K-algebra given by the quiver $\bullet \not = \bullet \not = \bullet$ with relation $\alpha\beta = 0$, and $\overline{A}M$ is a tilting module. Hence, by Lemma 1, $\overline{A}M$ is a *-module, as claimed. Since $\operatorname{Hom}_A(M_1, M_2) \neq 0$ and $\operatorname{Hom}_A(M_2, M_3) \neq 0$, the module $\overline{A}M$ is *-indecomposable, and the proof is complete. \blacksquare

The next statement shows that the fact that a tilting module is a *-module follows from all the three properties (i)-(iii) of the definition of tilting module, but none of these properties is necessarily satisfied by a *-module.

PROPOSITION 3. Let A be a finite-dimensional algebra and let $_AM$ be a finite-dimensional module. Then the following cases are possible:

(1) $_{A}M$ satisfies two of the three properties (i)–(iii) and $_{A}M$ is not a *-module.

(2) $_{A}M$ does not satisfy any (resp. satisfies exactly one or two) of the properties (i)—(iii) and $_{A}M$ is a *-module.

Proof. (1) It suffices to consider the following examples, where we always assume that B is the endomorphism ring of ${}_{A}M$.

EXAMPLE 1. Let A be the K-algebra given by the quiver $\bullet \leftarrow \bullet$, and let ${}_AM$ be the unique indecomposable nonsimple module. Then ${}_AM$ is projective, and so ${}_AM$ satisfies (i) and (ii). Since ${}_AM$ generates two indecomposables and $B \simeq K$, we conclude that ${}_AM$ is not a *-module. (The same conclusion follows from ([4], Theorem 5.4) and the remark that ${}_AM$ is a quasiprojective module which does not generate all its submodules.)

EXAMPLE 2. Let A be the K-algebra given by the quiver $\bullet \leftarrow \bullet \leftarrow \bullet$, and let ${}_{A}M = \bigoplus_{i=1}^{4} M_{i}$, where the M_{i} 's are the indecomposables marked in $\Gamma(A)$

(see Fig. 2). Then $_AM$ satisfies (i) and (iii), and B is isomorphic to the algebra of all 8×8 matrices with entries in K of the form

$$\begin{bmatrix} a & e & f & g \\ & a & e & & \\ & b & & h & \\ & & b & & h \\ & & & c & i \\ & & & d & \\ & & & d & \\ \end{bmatrix}$$

Consequently B is the K-algebra given by the quiver of Fig. 3 with relation

 $\alpha_1 \alpha_2 = \beta_1 \beta_2$, and—without loss of generality—we may assume that $D(M_B)$ is isomorphic to $\bigoplus_{i=1}^3 N_i$, where the N_i 's are the indecomposables marked in $\Gamma(B)$ (see Fig. 4). Hence $D(M_B)$ cogenerates seven indecomposable modules.

Since $_AM$ generates only five indecomposable modules, it follows that $_AM$ is not a *-module.

Example 3. Let A be the K-algebra given by the quiver of Fig. 5 with

Fig. 5

relations $\alpha \gamma = 0$ and $\beta \gamma = 0$ and let $_AM = \bigoplus_{i=1}^5 M_i$, where the M_i 's are the indecomposables marked in $\Gamma(A)$ (see Fig. 6). Then $_AM$ clearly satisfies (iii). Moreover, the shape of $\Gamma(A)$ and ([5], Assertion 5, p. 75) guarantee that $\operatorname{Ext}_A^1(_AM_i,_AM_i) = 0$ for i = 4, 5 and j = 1, 3. Since M_1, M_2, M_3 are projective

Fig. 6

and M_2 , M_4 , M_5 are injective, we have $\operatorname{Ext}_A^1({}_AM, {}_AM) = 0$, and so ${}_AM$ satisfies (ii). On the other hand, B is isomorphic to the algebra of all 9×9 matrices with entries in K of the form

$$\begin{bmatrix} a & f & & & & & & \\ & b & & g & & h & & \\ & b & & & & & \\ & & c & i & & l & \\ & & c & i & & l & \\ & & & d & & m & \\ & & & d & & \\ & & & d & & \\ & & & e \end{bmatrix}.$$

This implies that B is the K-algebra given by the quiver $\bullet \stackrel{\alpha_4}{\leftarrow} \bullet \stackrel{\alpha_3}{\leftarrow} \bullet \stackrel{\alpha_2}{\leftarrow} \bullet \stackrel{\alpha_1}{\leftarrow} \bullet$ with relations $\alpha_1 \alpha_2 \alpha_3 = 0$ and $\alpha_3 \alpha_4 = 0$, and that $D(M_B)$ is isomorphic to $\bigoplus_{i=1}^4 N_i$, where the N_i 's are the indecomposables marked in $\Gamma(B)$ (see Fig. 7). Therefore $D(M_B)$ cogenerates nine indecomposable

modules. Since $_AM$ generates only seven indecomposable modules, we conclude that $_AM$ is not a *-module.

(2) Also in this case, we give three examples.

EXAMPLE 1'. Let A be the algebra $K[x]/(x^2)$ and let ${}_AM$ denote the simple socle of ${}_AA$. Then ${}_AM$ is a quasiprogenerator, and so ${}_AM$ is a *-module. However, we clearly have proj.dim ${}_AM = \infty$ and $\operatorname{Ext}^1_A({}_AM, {}_AM) \neq 0$. Since ${}_AM$ is not faithful, it follows that ${}_AM$ does not satisfy any of the properties (i)—(iii).

EXAMPLE 2'. Let A and $_AM$ be as in the proof of Remark 2. Then $_AM$ is a *-module satisfying (i), but neither (ii) nor (iii).

EXAMPLE 3'. Let A, M_1 and M_2 be as in the proof of Remark 2, let ${}_{A}M = M_1 \oplus M_2$ and let $\overline{A} = A/\operatorname{ann}_A M$. Since ${}_{\overline{A}}M$ is a tilting module, we deduce from Lemma 1 that ${}_{A}M$ is a *-module. On the other hand, ${}_{A}M$ satisfies (i) and (ii), but not (iii).

The proof is finished.

2

The next result shows that, dealing with algebras of finite representation type, we cannot conclude that a module is a *-module by simply counting the number of some indecomposable modules.

REMARK 4. Let A be a finite-dimensional K-algebra, let $_AM$ be a multiplicity-free module with endomorphism ring B and assume that the following conditions hold: A and B are of finite representation type, and the number of indecomposable A-modules generated by $_AM$ is equal to the number of indecomposable B-modules cogenerated by $D(M_B)$. Then $_AM$ is not necessarily a *-module.

Proof. Let A be the K-algebra given by the quiver $\oint_1 A \oint_2 A \oint_3 A$ with relation $\alpha\beta = 0$, and let $AM = \bigoplus_{i=1}^3 M_i$, where the M_i 's are the indecomposables marked in $\Gamma(A)$ (see Fig. 8). Then AM generates four indecomposable modules,

and B is isomorphic to the algebra of all 5×5 matrices with entries in K of the form

$$\begin{bmatrix} a & d \\ & a \\ & b & e \\ & & b \\ & & c \end{bmatrix}.$$

Consequently B is isomorphic to A and $D(M_B)$ is isomorphic to $_BB$. Therefore $D(M_B)$ cogenerates four indecomposables. However, the B-modules

 $\operatorname{Hom}_A({}_AM_B, M_1)$ and $\operatorname{Hom}_A({}_AM_B, M_1/\operatorname{soc} M_1)$ are clearly isomorphic, and so ${}_4M$ cannot be a *-module.

The situation described in Remark 4 seems to occur only rarely, and the following remark shows that the preceding example is, in a sense, "minimal".

REMARK 5. The algebra given by the quiver $\oint_1^{\Phi} \oint_2^{\Phi} \oint_3^{\Phi} \oint_3^{\Phi}$ with relation $\alpha\beta = 0$ is a minimal algebra satisfying the hypotheses of Remark 4. Moreover, for this choice of A, the module considered in the proof is the unique A-module satisfying the requirements of the remark. In fact, for any i = 1, 2, 3, let S(i) denote the simple module corresponding to the vertex i, and let P(i) denote the projective cover of S(i). Next, let AM be a multiplicity-free A-module with endomorphism ring B. Then one of the following conditions hold:

- (1) $_{A}M$ is either a tilting module or a quasiprogenerator.
- (2) $_AM$ is a *-indecomposable module, but neither a tilting module nor a quasiprogenerator. In this case, we have either $_AM \simeq P(2) \oplus S(2)$ or $_AM \simeq P(3) \oplus S(3)$.
- (3) $_AM$ is a *-decomposable module, but not a quasiprogenerator. In this case, we have either $_AM \simeq P(2) \oplus S(2) \oplus S(3)$ or $_AM \simeq P(3) \oplus S(3) \oplus S(1)$.
- (4) $_AM$ is not a *-module. In this case, either $_AM$ is isomorphic to $P(2) \oplus P(3) \oplus S(3)$, i.e. $_AM$ is the module considered in the proof of Remark 4, or the number of indecomposable A-modules generated by $_AM$ is different from the number of indecomposable B-modules cogenerated by $D(M_B)$.

To see this, we may proceed as follows. Suppose first that $_AM$ is faithful. Then $_AM$ is the direct sum of n indecomposable summands with n=2, 3, 4, 5. If n=3, then either $_AM$ is a tilting module, or $_AM$ is isomorphic to $P(2) \oplus P(3) \oplus S(3)$. Hence either (1) or (4) holds. If n=2, 4, 5, then it is easy to check that the number of indecomposable modules generated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is different from the number of indecomposable modules cogenerated by $_AM$ is

Assume now that ${}_{A}M$ is not faithful, and that ${}_{A}M$ is not a quasi-progenerator. Then $\overline{A} = A/\operatorname{ann}_{A}M$ is the K-algebra given by one of the quivers

On the other hand, a multiplicity-free module over the algebra A' given by the quiver $\bullet \leftarrow \bullet$ is a *-module (resp. is not a *-module) if and only if it is either semisimple, or a projective tilting A'-module, or an injective tilting A'-module (resp. either an indecomposable nonsimple module, or the direct sum of three indecomposable modules). Consequently, if $_AM$ is a *-module, then $_{\bar{A}}M$ is an injective tilting module, and so either (2) or (3) holds. Finally, if $_AM$ is not a *-module, then one immediately verifies that (4) holds.

It is now easy to see that also the example considered in the proof of Remark 2 is "minimal".

COROLLARY 6. If A is the algebra given by the quiver $\bullet \leftarrow \bullet \leftarrow \bullet$, then:

- (i) A is a minimal algebra admitting a multiplicity-free *-indecomposable and sincere module which is neither a tilting module nor a quasiprogenerator.
 - (ii) A admits exactly one module as in (i).

Proof. We first note that A is a local algebra and that the algebra considered in Remark 5 is isomorphic to A/rad A, where rad A is the Jacobson radical of A. Hence conditions (1)–(4) in Remark 5 guarantee that any multiplicity-free *-indecomposable and sincere module over a proper factor algebra of A is either a tilting module or a quasiprogenerator. Thus (i) follows from the proof of Remark 2.

Next, let ${}_{A}M$ be a faithful and multiplicity-free module with endomorphism ring B, and assume that ${}_{A}M$ is not a tilting module. If ${}_{A}A$ is a direct summand—hence a proper direct summand—of ${}_{A}M$, then ${}_{A}M$ generates all its submodules, but ${}_{A}M$ is not quasiprojective. Therefore the conclusion that ${}_{A}M$ is not a *-module follows from ([4], Theorem 5.4). On the other hand, if ${}_{A}A$ is not a direct summand of ${}_{A}M$, then we may directly obtain the same conclusion in one of the following ways: either we find two nonisomorphic modules, say ${}_{A}X$ and ${}_{A}Y$, generated by ${}_{A}M$ such that $\operatorname{Hom}_{A}({}_{A}M_{B}, {}_{A}X)$ is isomorphic to $\operatorname{Hom}_{A}({}_{A}M_{B}, {}_{A}Y)$, or we verify that the number of indecomposable A-modules generated by ${}_{A}M$ is different from the number of indecomposable B-modules cogenerated by $D(M_{B})$. Hence (ii) holds, and the corollary is proved.

The proof of Corollary 6 also shows that the algebra A given by the quiver $\bullet \leftarrow \bullet \leftarrow \bullet$ has the following property: if ${}_AM$ is a multiplicity-free *-module and $\overline{A} = A/\operatorname{ann}_AM$, then ${}_{\overline{A}}M$ is a tilting module. As already observed in the introduction, we do not know any finite-dimensional algebra without this property.

References

- [1] K. R. Fuller, Density and equivalences, J. Algebra 29 (1974), 528-550.
- [2] D. Happel and C. M. Ringel, Construction of tilted algebras, in: Lecture Notes in Math. 903, Springer, 1981, 125-144.
- [3] N. Jacobson, Basic Algebra II, Freeman, San Francisco 1980.
- [4] C. Menini and A. Orsatti, Representable equivalences and applications, Rend. Sem. Mat. Univ. Padova 82 (1989), 203-231.
- [5] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer. 1984.