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We investigate the finite-dimensional modules over finite-dimensional algebras
which induce an equivalence satisfying the hypotheses of Menini-Orsatti’s
Representation Theorem. These modules seem to be a small extension of tilting
modules and a large extension of quasiprogenerators.

In a recent paper, Menini and Orsatti obtained a theorem ([4], Represen-
tation Theorem 3.1) between categories of modules which extends Fuller’s
theorem ([ 1], Theorem 1.1) to a more general situation. In fact, they proved
{[4], Section 4) that any tilting module satisfies the hypotheses of their
representation theorem, and that a tilting module satisfies the hypotheses of
Fuller’s theorem if and only if it is projective.

In this paper, we shall see that the equivalences considered in [4] may be
induced by finitely generated modules which are neither tilting modules nor
quasiprogenerators (the modules that induce the equivalences characterized by
Fuller in [1]).

Before we do this, we recall some definitions and results, and we fix the
notation used throughout the paper.

Let K be an algebraically closed field, and let A be a finite-dimensional
K-algebra. Then a finite-dimensional left module ,T is called a iilting module
[5] if ,T satisfies the following conditions:

(i) proj.dim ,T< 1.
(i) Exty(,T, ,7)=0.
(it1) There is an exact sequence 0 — , A>T - T" -0, where T" and T” are
direct sums of summands of ,T.

This paper is in [inal form and no version of it will be submitted [or publication elsewkhere.
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224 G IYESTE

Let ,T be a tilting module with endomorphism ring B, and let D(Ty)
denote the module Homg(Tg, K) equipped with its usual structure ([3],
Proposition 3.5) of left B-module. Then, by tilting theory ([5], Theorem of
Brenner--Butler), the functor Hom (,M, —) defines an equivalence between
the category of finite-dimensional A-modules generated by ,M and the
category of finite-dimensional B-modules cogenerated by D(My).

Next, let 4 and B be two rings, let 4 and % be two [ull subcategories of
A-Mod and B-Mod respectively, and assume that there is an equivalence

F
(%) ?;T—'Q

with F and G additive functors. Then, according to [4], we say that a bimodule
M induces the equivalence (*) if I' is naturally equivalent to Hom ,(,M, —)l,
and G is naturally equivalent to (Mg®z—)ls.

We say that a module M is a quasiprogenerator [1] if ;M satisfies the
following conditions:

(a) (M 1is finitely generated.

(b) .M generates all its submodules.

(c) 4M is quasiprojective, ie. if ,X is a module and f: ;M — X is an
epimorphisin, then, for any mosphism g: ;M — X, there is an endomorphism
h of ;M making the following diagram commutative.

Suppose first that the equivalence (x) has the property that ¢ is closed
under submodules, epimorphic images and direct sums, and that 2 = B-Mod.
Then Fuller's theorem [1] proves that () is induced by a module ;M with
endomorphism ring B, and that ,M 1s a quasiprogenerator.

Assume finally that the equivalence (*) has the following properties:

(1) ¢4 is closed under epimorphic images and direct sums.
(2) 2 contains B and is closed under submodules.

Then Menini-Orsatti’s theorem [4] guarantees that () is induced by a module
+M with endomorphism ring B, and that the following facts hold:

(I') % is the category of A-modules generated by ,M.
(2"} & 1s the category of B-modules cogenerated by Hom ,(,M, ,0Q), where
4Q 1s a fixed, but arbitrary, injective cogenerator of A-Mod.

In the following, for brevity we say that a module ,M is a x-module if ;M
induces an equivalence () satisfying the hypotheses of the Representation
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Theorem of [4], that is, conditions (1) and (2). We also say that a module ;M is
a s-decomposable module (resp. =-indecomposable module) if ;M is a *-module
and ,M can (resp. cannot) be written as the direct sum of two *-modules, say
4M" and ,M", with the following properties: ;M" and ,M" are different from
zero and, iIf ,X 1s an indecomposable module generated by ,M, then either X
is generated by ,M" and Hom ,(,M"”, ,X} =0, or ,X is generated by ,M"” and
Hom ,(,M', ,X)=0.

In this paper we point out some properties of finite-dimensional %-mod-
ules over finite-dimensional algebras. In this special situation, we find new
x-modules which are not obtained {rom old *-modules in an obvious way.
More precisely, in Section | we give an example of a *-indecomposable and
sincere [ 5] module which is neither a tilting module nor a quasiprogenerator.
We also note that, if we compare the two subclasses of tilting modules and
quasiprogenerators inside the whole class of *-modules, then the unknown
connection between tilting modules and *-modules seems to be stronger than
the known connection between quasiprogenerators and x-modules. In fact, on
the one hand, a first relationship between quasiprogenerators and *-modules
follows from the results of [1] and [4] already mentioned. Even more, by ([4],
Theorem 5.4}, quasiprogenerators are exactly the x-modules satisfying two of
the three properties (a), (b), (c) in the definition of quasiprogenerators, or
equivalently the x-modules satisfying one of the properties (b), (c) in the same
definition. On the other hand, x-modules do not arise as a natural generaliza-
tion of the definition of tilting modules. In addition to this, tilting modules are
not the *-modules satisfying two of the three properties (i), (ii), (iii) in the
definition of tilting modules, and there exist x-modules which do not satisfy any
of these properties.

However, surprisingly enough, there is a quite obvious, but extremely
large, extension of the class of tilting modules over a finite-dimensional algebra
A, namely the class of all modules ;M with the property that ;M is a tilting
module, where A denotes the algebra A/ann ;M. In Section 2 we give an
example of a finite-dimensional algebra A4 with enough x-modules, i.e.
admitting =-indecomposable and sincere modules which are neither tilting
modules nor quasiprogenerators, such that any multiplicity-free {2] *-module
4M satisfies the above property. Up to now, we do not know whether or not
there exist a finite-dimensional algebra A and a *-module M such that ;M is
not a “disguised” tilted module, that is, ;M is not a tilting module, where
A = A/ann M.

Throughout the paper, the word module usually means left module and, if
R is a ring, then we denote by R-Mod (resp. Mod-R) the category of all left
modules M (resp. right modules M;). We always assume that K is an
algebraically closed field, and we define the K-algebra given by a quiver
according to {5]. We often identify indecomposable modules and their
isomorphism classes. In particular, for brevity we say that there exist
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n indecomposable modules with a given property if there exist exactly
n isomorphism classes of indecomposable modules with that property. Finally,
if R 1s a finite-dimensional algebra such that any indecomposable R-module is
completely determined by its dimension vector {5], then in the Auslan-
der-Reiten quiver I'(R) of R we always denote the indecomposables by their
dimension vectors.

1

Lemma L. Let A be a finite-dimensional K-algebra, let ;M be a finite-
dimensional module and let A = A/ann M. If 3M is a tilting module, then M is
a »-modiule.

Proof. Since ;M is a »-module [4], it suffices to note that the category
{, XeA-Mod| X 1s generated by ,M} is isomorphic to the category
{2X € A-Mod| ;X is generated by ;M}, and that the endomorphism ring of ,M
is isomorphic to the endomorphism ring of ;M. =

REMARK 2. There are a finite-dimensional algebra A and a *-indecomposable
and sincere module M which is neither a tilting module nor a quasiprogenerator.

Proof. Let A be the K-algebra given by the quiver @ — @ — @, and let
M=@®) M, where the Ms are the indecomposables marked in I'(4)
11

N

100 001

Fig. |

(see Fig. 1). Then ,M is obviously a sincere module. Since ,M is not faithful
and ,M does not generate the socle of M, it follows that ,M is neither a tilting
module nor a quasiprogenerator. We claim that M is a *-module.

To see this, let 4 be the algebra A/ann ,M. Then A is the K-algebra given
by the quiver @ £ @ & @ with relation aff =0, and ;M is a tilting module.
Hence, by Lemma 1, ;M is a x-module, as claimed. Since Hom (M, M,) # 0
and Hom ,(M,, M,) # 0, the module ,M is x-indecomposable, and the proof is
complete. =

The next statement shows that the fact that a tilting module 1s a *-module
follows from all the three properties (i}-(iii) of the definition of tilting module,
but none of these properties is necessarily satisfied by a *-module.

ProroSITION 3. Let A be a finite-dimensional algebra and let M be
a finite-dimensional module. Then the following cases are possible:

(1) M satisfies two of the three properties (i}iil) and ;M is not a »-module.
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(2) 4M does not satisfy any (resp. satisfies exactly one or two) of the
properties (1)) and ,M is a =-module.

Proof. (1) 1t suffices to consider the following examples, where we always
assume that B is the endomorphism ring of M.

ExaMPLE 1. Let 4 be the K-algebra given by the quiver @ « @, and let ;M
be the unique indecomposable nonsimple module. Then ,M 1s projective, and
so M satisfies (1) and (n). Since ,M generates two indecomposables and
B ~ K, we conclude that ;M is not a *-module. (The same conclusion follows
from ([4], Theorem 5.4) and the remark that ,M is a quasiprojective module
which does not generate all its submodules.)

ExAMPLE 2. Let A4 be the K-algebra given by the quiver @ — @ < @, and let
M =@/ M, where the Ms are the indecomposables marked in I'(4)

M,

PNV N

100 009

Fig. 2

(see Fig. 2). Then ,M satisfies (i) and (iii), and B is isomorphic to the algebra of
all 8 x8 matrices. with entries in K pf the form

a e 9
a €
b h
b h
b
c 1
d
- d_

Consequently B is the K-algebra given by the quiver of Fig. 3 with relation

N
S A

Fig. 3
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a,4, = B, f,, and —without loss of generality —we may assume that D(M) is

isomorphic to @;‘zl N;, where the N/s are the indecomposables marked in
I'(B) (see Fig. 4). Hence D(M) cogenerates seven indecomposable modules.

Fig. 4

Since ,M generates only five indecomposable modules, it follows that ,M is
not a *-module.

ExaMPLE 3. Let A be the K-algebra given by the quiver of Fig. 5 with

Fig. 5

relations ay = 0 and fiy =0 and let ,M = @’_ M,, where the M/’s are the
indecomposables marked in I'(A4) (see Fig. 6). Then M clearly satisfies (iii).
Moreover, the shape of I'(4) and ([5], Assertion S5, p. 75) guarantee that
Exti(,M;, M) =0fori=4,5andj=1,3.Since M,, M,, M, are projective

/'42 M:

AN
N

Fig. 6
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and M,, M,, M are injective, we have Ext}(,M, ;M) =0, and so ,M satisfies
(ii). On the other hand, B is isomorphic to the algebra of all 9 x 9 matrices with
entries in K of the form

a f |
b g h
b
c i {
¢ i
d m
d
d
L e -

This implies that B is the K-algebra given by the quiver
o i @i o2 9 e with relations a,a,a, =0 and oo, =0, and that
D(M ) is isomorphic to (—B?zl N,, where the N/s are the indecomposables
marked in I'(B) (see Fig. 7). Therefore D(M g) cogenerates nine indecomposable

M
. N3
10000 01 ooo\ /00100\ 00010 /00001
01100 00110 0001
\ N2 / \ N, /

modules. Since M generates only seven indecomposable modules, we conclude
that ,M is not a %-module.

(2) Also in this case, we give three examples.

ExampLE I'. Let A4 be the algebra K[x]/(x?) and let \M denote the simple
socle of ,A4. Then ,M is a quasiprogenerator, and so ,M is a *-module.
However, we clearly have proj.dim ;M = oo and Ext}(,M, ;M) # 0. Since ;M
is not faithful, it follows that ,M does not satis{y any of the properties {(i}(iii).
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ExaMPLE 2'. Let 4 and M be as in the proof of Remark 2. Then (M is
a x-module satisfying (i), but neither (ii) nor (iii).

ExampLe 3. Let A, M, and M, be as in the proof of Remark 2, let
M=M @M, and let 4= A/ann M. Since ;M is a tilting module, we
deduce from Lemma 1 that (M is a *-module. On the other hand, ,M satisfies
(1) and (i1), but not (1ii).

The proof is finished. =

2

The next result shows that, dealing with algebras of finite representation type,
we cannot conclude that a module is a *-module by simply counting the
number of some indecomposable modules.

REMARK 4. Let A be a finite-dimensional K-algebra, let ;M be a multi-
plicity-free module with endomorphism ring B and assume that the following
conditions hold: A and B are of finite representation type, and the number of
indecomposable A-modules generated by M is equal to the number of indecom-
posable B-modules cogenerated by D(My). Then ,M is not necessarily a
*-module.

Proof. Let A be the K-algebra given by the quiver ° £ * & H with relation

af =0, and let M = @f‘=1M,-, where the M/s are the indecomposables
marked in I'(A) (see Fig. 8). Then ,M generates four indecomposable modules,

100/ \O‘IO/ \@

Fig. 8

and B is isomorphic to the algebra of all 5 x 5 matrices with entries in K of the
form

Consequently B is isomorphic to A and D(M ) is isomorphic to ;B. Therefore
D(Mg) cogenerates four indecomposables. However, the B-modules
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Hom ,(,Mp, M,) and Hom ,(,M g, M,/socM,) are clearly isomorphic, and so
M cannot be a *-module. m

The situation described in Remark 4 seems to occur only rarely, and the
following remark shows that the preceding example is, in a sense, “minimal”.

ReMARK 5. The algebra given by the quiver @ & e & e with relation aff =0
1

is a minimal algebra satisfying the hypotheses of Remark 4. Moreover, for this
choice of A, the module considered in the proof is the unique A-module
satisfying the requirements of the remark. In fact, for any i =1, 2, 3, let S(i)
denote the simple module corresponding to the vertex i, and let P(i) denote the
projective cover of S(i). Next, let ,M be a multiplicity-free A-module with
endomorphism ring B. Then one of the following conditions hold:

(1) 4M is either a tilting module or a quasiprogenerator.

(2) 4M is a =-indecomposable module, but neither a tilting module nor
a quasiprogenerator. In this case, we have either M ~ P(2)®S(2) or
M~ P(3)®S(3).

(3) 4M is a x-decomposable module, but not a quasiprogenerator. In this
case, we have either \M ~ P(2)®S(2)®S(3) or ;M =~ P(3)®S(3)®S(1).

(4) 4M is not a *-module. In this case, either ;M 1s isomorphic to
PQ)®P(3)®S(3),i.e. ;.M is the module considered in the proof of Remark 4, or
the number of indecomposable 4-modules generated by ,M is different from
the number of indecomposable B-modules cogenerated by D(My).

To see this, we may proceed as follows. Suppose first that ,M is faithful.
Then ,M is the direct sum of n indecomposable summands with n = 2, 3, 4, 5.
If n=3, then either ;M is a tilting module, or ,M is isomorphic to
P(2)®P(3)@S(3). Hence either (1) or (4) holds. If n = 2, 4, 5, then it is easy to
check that the number of indecomposable modules generated by M is
different from the number of indecomposable modules cogenerated by D(My).
Thus in all these cases M satisfies (4).

Assume now that ,M is not faithful, and that ,M is not a quasi-
progenerator. Then 4 = A/ann ,M is the K-algebra given by one of the quivers

e+—@0® O o+ @® ®

On the other hand, a multiplicity-free module over the algebra A’ given by the
quiver @ «— o is a *-module (resp. is not a *-module) if and only if it is either
semisimple, or a projective tilting A’-module, or an injective tilting A’-module
(resp. either an indecomposable nonsimple module, or the direct sum of three
indecomposable modules). Consequently, if ;M is a *-module, then M is an
injective tilting module, and so either (2) or (3) holds. Finally, if ,M is not
a x-module, then one immediately verifies that (4) holds.
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It is now easy to see that also the example considered in the proof of
Remark 2 is “minimal”.

COROLLARY 6. If A is the algebra given by the quiver @ «— @ «— @, then:

(i) A is a minimal algebra admitting a multiplicity-free %-indecomposable
and sincere module which is neither a tilting module nor a quasiprogenerator,
(i) A admits exactly one module as in (i).

Proof. We first note that A4 i1s a local algebra and that the algebra
considered in Remark 5 is isomorphic to 4/rad A, where rad 4 is the Jacobson
radical of 4. Hence conditions (1}-(4) in Remark S guarantee that any
multiplicity-free *+-indecomposable and sincere module over a proper factor
algebra of A is either a tilting module or a quasiprogenerator. Thus (i) follows
from the proof of Remark 2.

Next, let ,M be a faithful and multiplicity-free module with endomor-
phism ring B, and assume that ,M is not a tilting module. If ,A4 is a direct
summand — hence a proper direct summand —of ,M, then M generates all its
submodules, but ,M is not quasiprojective. Therefore the conclusion that (M
is not a *-module follows from ([4], Theorem 5.4). On the other hand, if ;A4 is
not a direct summand of ,M, then we may directly obtain the same conclusion
in one of the following ways: either we find two nonisomorphic modules, say
«X and .Y, generated by ,M such that Hom,(,Mg, ,X) is isomorphic to
Hom ,(,Mg, ,Y), or we verify that the number of indecomposable A-modules
generated by ,M is different from the number of indecomposable B-modules
cogenerated by D(M). Hence (ii) holds, and the corollary is proved. =

The proof of Corollary 6 also shows that the algebra 4 given by the quiver
e — o — o has the following property: if ,M is a multiplicity-free *-module and
A = A/ann M, then M is a tilting module. As already observed in the
introduction, we do not know any finite-dimensional algebra without this

property.
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