1. Introduction..................................................................................................................................... 5 1.1. Main Theorem 1.1................................................................................................................. 8 1.2. Main Theorem 1.2................................................................................................................. 9 2. Radon transform.................................................................................................................................... 10 2.1. Definition of the Radon transform..................................................................................... 10 2.2. Basic notations and formulae............................................................................................. 16 3. $𝕃^p$-$𝕃^q$ time decay estimates for the Cauchy problem..................... 18 3.1. Matrix of fundamental solutions for linear hyperbolic thermoelasticity....................... 18 3.2. $𝕃^p$-$𝕃^q$ time decay estimates for linear hyperbolic thermoelasticity............................................................................................................................. 25 3.3. Fundamental solution to the linear hyperbolic heat equation...................................... 31 3.4. $𝕃^p$-$𝕃^q$ time decay estimates for the linear hyperbolic heat equation................................................................................................................................. 35 4. Local existence of solutions................................................................................................................ 39 4.1. Local existence of solutions to the initial value problem for nonlinear hyperbolic thermoelasticity............................................................................................................................. 39 4.2. Local existence of solutions to the initial value problem for the nonlinear hyperbolic heat equation............................................................................................................. 41 5. High energy estimates......................................................................................................................... 42 5.1. High energy estimates for the nonlinear hyperbolic thermoelasticity........................ 42 5.2. High energy estimates for the nonlinear hyperbolic heat equation............................. 45 6. Global solutions in nonlinear hyperbolic thermoelasticity theory................................................. 46 6.1. Proof of main Theorem 1.1.................................................................................................. 46 6.2. Proof of main Theorem 1.2.................................................................................................. 50 7. General remarks.................................................................................................................................... 52 References..................................................................................................................................... 54
Institute of Mathematics and Operations Research, Military University of Technology, Kaliskiego 2, 01-482 Warszawa, Poland
Bibliografia
[1] C. C. Ackerman and R. A. Guyer, Temperature pulses in dielectric solids, Ann. Phys. 50 (1968), 128-185.
[2] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[3] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
[4] L. Bers, F. John and M. Schechter, Partial Differential Equations, Interscience, New York, 1969.
[5] D. E. Carlson, Linear thermoelasticity, Handbuch der Physik, VIa/2 (1972), 297-346.
[6] G. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83-101.
[7] D. S. Chandrasekharaiah, Wave propagation in thermoelastic half-space, Indian J. Pure Appl. Math. 12 (1981), 226-241.
[8] C. Chen und W. von Wahl, Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung, J. Reine Angew. Math. 337 (1982), 77-112.
[9] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282.
[10] P. G. Ciarlet, Three-Dimensional Elasticity, Elsevier, North-Holland, New York, 1988.
[11] R. Courant, Partial Differential Equations, Academic Press, New York, 1962.
[12] R. Courant, Partial Differential Equations, Springer, Berlin, 1968.
[13] R. Courant and D. Hilbert, Methods of Mathematical Physics II, Wiley, New York, 1989.
[14] C. M. Dafermos, On the existence and asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational. Mech. Anal. 4 (1968), 241-271.
[15] C. M. Dafermos and W. J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems, Applications to elastodynamics, ibid. 87 (1985), 267-292.
[16] Do Duc Hung and J. Gawinecki, Global existence of solution to the initial value problem for nonlinear hyperbolic heat equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. 39 (1991), 21-29.
[17] G. F. D. Duff, The Cauchy problem for elastic waves in an anisotropic medium, Philos. Trans. Roy. Soc. London Ser. A 252 (1960), 249-273.
[18] Yu. V. Egorov, Linear Differential Equations of Principal Type, Nauka, Moscow, 1984 (in Russian).
[19] A. C. Eringen, Continuum Physics, Academic Press, New York, 1975.
[20] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[21] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392.
[22] J. Gawinecki, Existence, uniqueness and regularity of the first boundary-initial value problem for the hyperbolic equations system of the thermal stresses theory for temperature- rate-dependent solids, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 35 (1987), 411-419.
[23] J. Gawinecki, The Cauchy problem for the linear hyperbolic equations system of the theory of thermoelasticity of the temperature-rate-dependent solids, ibid. 35 (1987), 421-433.
[24] J. Gawinecki, Matrix of fundamental solutions for the system of hyperbolic thermoelasticity with two relaxation times and solution of the Cauchy problem, ibid. 36 (1988), 449-466.
[25] J. Gawinecki, Existence, uniqueness and regularity of the first boundary-initial value problem for thermal stresses equations of classical and generalized thermomechanics, J. Tech. Phys. 24 (1983), 467-479.
[26] J. Gawinecki, Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equations of linear thermo-microelasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 34 (1986), 447-460.
[27] J. Gawinecki, The Faedo-Galerkin method in thermal stresses theory, Comment. Math. 27 (1987), 83-107.
[28] J. Gawinecki, $\mathbb{L}^p-\mathbb{L}^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity, Ann. Polon. Math. 54 (1991), 135-145.
[29] J. Gawinecki, Global solution to the Cauchy problem in non-linear hyperbolic thermoelasticity, Math. Methods Appl. Sci. 15 (1992), 223-237.
[30] J. Gawinecki, On the thermoelastic potential in three-dimensional hyperbolic thermoelasticity theory, in: Potential Theory, M. Kishi (ed.), de Gruyter, Berlin, 1991, 194-199.
[31] J. Gawinecki, On the potential in the thermodiffusion in solid body, in: Proc. ICPT91, Kluwer Acad. Publ., 1994, 221-234.
[32] J. Gawinecki and D. D. Hung, Matrix of fundamental solutions for the system of dynamic equations of classical three-dimensional thermoelasticity theory, Demonstratio Math. 23 (1990), 633-647.
[33] J. Gawinecki, T. Kowalski and K. Litewska, Existence and uniqueness of the solution of the mixed boundary-initial value problem in linear thermoelasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 30 (1982), 173-178.
[34] J. Gawinecki and A. Piskorek, On the initial-value problem in geometrically nonlinear elasticity, ibid. 39 (1991), 1-9.
[35] J. Gawinecki, A. Piskorek and D. D. Hung, The initial-value problem in nonlinear hyperelasticity, ibid. 39 (1991), 17-26.
[36] J. Gawinecki and K. Sierpiński, Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equations of thermodiffusion in a solid body, ibid. 30 (1982), 163-171.
[37] J. Gawinecki and K. Sierpiński, Mixed boundary-initial value problem for the equations of thermodiffusion in solid body, Arch. Mech. 38 (1986), 251-269.
[38] J. Gawinecki and K. Sierpiński, The initial-boundary value problem of thermodiffusion in solid body with mixed boundary condition for displacement and stresses, Comment. Math. 26 (1986), 17-26.
[39] J. Gawinecki and P. Wagner, On the fundamental matrix of the system describing linear thermodiffusion in the theory of thermal stresses, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 39 (1991) 609-615.
[40] A. E. Green and K. E. Lindsay, Thermoelasticity, J. Elasticity 2 (1972), 1-7.
[41] M. E. Gurtin, The linear theory of elasticity, Handbuch der Physik, VIa/2 (1972), 1-295.
[42] S. Helgason, The Radon Transform, Birkhäuser, Boston, 1980.
[43] L. Hörmander, The Analysis of Linear Patrial Differential Operators, Vol. 2, Differential Operators with Constant Coefficients, Springer, Berlin, 1983 (Russian edition, Mir, Moscow, 1986).
[44] W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math. 47 (1989), 631-644.
[45] J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), 273-294.
[46] J. Ignaczak, Thermoelasticity with finite wave speeds, in: Thermal Stresses in Severe Environments, D. P. H. Hasselman and R. A. Heller (eds.), Plenum Press, 1980, 15-30.
[47] M. Ikehata and G. Nakamura, Decaying and nondecaying properties of the local energy of an elastic wave outside an obstacle, Japan J. Appl. Math. 6 (1989), 83-95.
[48] H. Iwashita, $𝕃_q$-$𝕃_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $𝕃_q$ space, Math. Ann. 285 (1989), 265-288.
[49] H. Iwashita and Y. Shibata, On the analyticity of spectral functions for some exterior boundary value problems, Glasnik Mat. 23 (1988), 291-313.
[50] H. E. Jackson and C. T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF, Phys. Rev. B-3 (1971), 1428-1439.
[51] J. Janke, F. Emde und F. Lösch, Tafeln höherer Funktionen, Teubner, Stuttgart, 1960.
[52] M. Jakubowska, One-dimensional initial-boundary value problem for a semi-space in thermoelasticity with two relaxation times, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 33 (1985), 205-216.
[53] S. Jiang, Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity, SFB 256, Preprint 138, Universität Bonn, 1990.
[54] S. Jiang, Global existence of smooth solutions in one-dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh 115A (1990), 257-274.
[55] S. Jiang and R. Racke, On some quasilinear hyperbolic-parabolic initial boundary value problems, Math. Methods Appl. Sci. 12 (1990), 315-339.
[56] F. John, Plane Waves and Spherical Means, Applied to Partial Differential Equations, Interscience, New York, 1955.
[57] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math. 27 (1974), 377-405.
[58] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-268.
[59] F. John, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 29-51.
[60] F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, ibid. 41 (1988), 615-666.
[61] F. John, Finite amplitude waves in a homogeneous isoytopic elastic solid, ibid. 30 (1977), 421-446.
[62] F. John, Formation of singularities in elastic waves, in: Trends and Applications of Pure Mathematics to Mechanics, Proc. Palaiseau 1983, P. G. Ciarlet and M. Roseau (eds.), Lecture Notes in Phys. 195, Springer, 1984, 194-210.
[63] F. John, Blow-up of radial solutions of $u_tt = c^2(u_t)Δu$ in the three space dimensions, Math. Appl. Comp. 4 (1985), 3-18.
[64] F. John, Partial Differential Equations, Appl. Math. Sci. 1, Springer, New York, 1986.
[65] F. John, Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data, Comm. Pure Appl. Math. 40 (1987), 79-109.
[66] F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, ibid. 37 (1984), 443-455.
[67] S. Kaliski, Wave equations of thermoelasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 13 (1965), 253-260.
[68] S. Kaliski and W. Nowacki, Integral theorems for the wave-type heat conductivity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 17 (1969), 305-314.
[69] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo 17 (1970), 241-258.
[70] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic system, Arch. Rational Mech. Anal. 58 (1975), 181-205.
[71] T. Kato, Abstract differential equations and nonlinear mixed problems, Lezioni Fermiane, Accad. Naz. D. Lincei, Scuola Norm. Sup. Pisa, 1985.
[72] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Thesis, Kyoto University, 1983.
[73] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43-101.
[74] S. Klainerman, Long-time behaviour of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal. 78 (1982), 73-98.
[75] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332.
[76] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, ibid. 38 (1985), 631-641.
[77] S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Lecture Notes in Appl. Math. 23, Springer, 1986, 293-326.
[78] S. Klainerman and A. Majda, Singular limits of qusilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481-524.
[79] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, ibid. 36 (1983), 133-141.
[80] T. Kowalski und A. Piskorek, Existenz der Lösung einer Anfangrandwertaufgabe in der linearen Thermoelastizitätsheorie, Z. Angew. Math. Mech. 61 (1981), 250-252.
[81] M. Krzyżański, Partial Differential Equations of Second Order, PWN, Warszawa, 1962 (in Polish).
[82] V. D. Kupradze, Three-Dimensional Problems of Mathematical Theory of Elasticity and Thermoelasticity, Nauka, Moscow, 1976 (in Russian).
[83] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Reg. Conf. Appl. Math., Philadelphia, 1973.
[84] R. Leis, Initial Boundary Value Problems in Mathematical Physics, B. G. Teubner-Verlag, Stuttgart, Wiley, Chichester, 1986.
[85] R. Leis, Lectures on Initial-Boundary Value Problems in Mathematical Physics, B. G. Teubner and Wiley, Stuttgart-New York 1985 - Vorlesungsreihe SFB 72 No 18 und 22, Univ. Bonn, 1984.
[86] O. Liess, Global existence for the nonlinear equations of crystal optics, in: Journées Équations aux Dérivées Partielles (Saint Jean de Monts 1989), Exp. V, École Polytech. Palaiseau, 1989.
[87] O. Liess, Decay estimates for the solutions of the system of crystal optics, Asymptotic Anal. 4 (1991), 61-95.
[88] J. L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968.
[89] H. W. Lord and Y. Shulman, Generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1968), 299-309.
[90] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci. 53, Springer, New York, 1984.
[91] H. Marcinkowska, Introduction to the Theory of Partial Differential Equations, PWN, Warszawa, 1972 (in Polish).
[92] J. E. Marsden and T. J. Hughes, Topics in mathematical foundation of elasticity, in: Nonlinear Analysis and Mechanics: Herriot-Watt Symposium, Vol. II, R. J. Knops (ed.), Pitman, London, 1978, 30-285.
[93] G. F. Miller and J. P. Musgrave, On the propagation of elastic waves in aeolotropic media, III. Media of cubic symmetry, Proc. Roy. Soc. London Ser. A 236 (1956), 352-366.
[94] C. S. Morawetz, J. Ralston and W. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977), 447-508.
[95] M. P. Morse and H. Ferhbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
[96] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 265-315 and 499-535.
[97] T. Mukoyama, On the Cauchy problem for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces, Tsukuba J. Math. 13 (1989), 363-386.
[98] I. Müller, The coldness as universal function in thermoelastic bodies, Arch. Rational Mech. Anal. 41 (1971), 319-332.
[99] W. Nowacki, Dynamical Problems of Thermoelasticity, PWN, Warszawa, 1966 (in Polish).
[100] W. Nowacki, Dynamical problem of thermodiffusion in solids I, II, III, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 22 (1974), 55-64, 205-211, 257-266.
[101] N. Ortner and P. Wagner, Some new fundamental solutions, Math. Methods Appl. Sci. 12 (1990), 439-461.
[102] H. Pecher, $𝕃^p$-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen, I, Math. Z. 150 (1976), 159-183.
[103] H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions, Math. Z. 198 (1988), 277-289.
[104] H. Pecher, Global smooth solutions to a class of semilinear wave equations with strong nonlinearities, Manuscripta Math. 69 (1990), 71-92.
[105] A. Piskorek, Über die Lösung einer nichtlinearen Anfangswertaufgabe in der Thermoelastizitätstheorie, in: Function Theoretic Methods for Partial Differential Equations, Lecture Notes in Math. 561, Springer, Berlin, 1976, 371-376.
[106] A. Piskorek, Radon-transformation und hyperbolische Differentialgleichungen der mathematischen Physik, in: Methoden und Verfahren der Mathematischen Physik, Band 10, Bibliographisches Institut AG, Mannheim, 1973, 85-97.
[107] A. Piskorek, On the Radon transform and fundamental solution for hyperbolic differential operators with constant coefficients, Preprint No. 18, IM PAN, Warszawa, 1971.
[108] A. Piskorek, Fourier and Laplace Transforms and Applications, Warsaw University, Warszawa, 1991.
[109] A. Piskorek, Integral Equations, WNT, Warszawa, 1980 (in Polish).
[110] J. S. Podstrigač and J. M. Koljano, Generalized Thermomechanics, Kiev, 1976 (in Russian).
[111] G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal. 9 (1985), 399-418.
[112] G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Differential Equations 87 (1990), 70-83.
[113] R. Racke, On the Cauchy problem in nonlinear 3-d-thermoelasticity, Math. Z. 203 (1990), 649-682.
[114] R. Racke, Anfangswertproblem bei nichtlinearen Evolutionsgleichungen, SFB 256 Vorlesungsreihe 13, Universität Bonn, 1990.
[115] R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 116 (1991), 1-34.
[116] R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, SFB 256 Preprint 182, Universität Bonn, 1991.
[117] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. I-IV, Academic Press, New York, 1972.
[118] J. Schauder, Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math. 24 (1935), 213-246.
[119] L. Schwartz, Théorie des distributions, 2 vols., Hermann, Paris, 1966.
[120] L. Schwartz, Méthodes mathématiques pour les sciences physiques, Hermann, Paris, 1965.
[121] L. Schwartz, Analyse mathématique, Hermann, Paris, 1967.
[122] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (1982), 409-425.
[123] Y. Shibata, On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain, Funkcial. Ekvac. 25 (1982), 303-345.
[124] Y. Shibata, On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. Math. 7 (1983), 1-68.
[125] Y. Shibata, Neumann problem for one-dimensional nonlinear thermoelasticity, SFB 256 Preprint 145, Universität Bonn, 1990.
[126] Y. Shibata, On a local existence theorem for some quasilinear hyperbolic-parabolic coupled systems with Neumann type boundary condition, manuscript, 1989.
[127] Y. Shibata and Y. Tsutsumi, Global existence theorem of nonlinear wave equations in the exterior domain, in: Recent Topics in Nonlinear PDE, M. Mimura and T. Nishida (eds.), North-Holland Math. Stud. 98; Lecture Notes in Numer. Appl. Anal. 6 (1983), 155-195.
[128] Y. Shibata and Y. Tsutsumi, On a global existence theorem of Neumann problem for some quasi-linear hyperbolic equations, in: Recent Topics in Nonlinear PDE II, K. Masuda and M. Mimura (eds.), North-Holland Math. Stud. 128; Lecture Notes in Numer. Appl. Anal. 8 (1985), 175-228.
[129] Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z. 191 (1986), 165-199.
[130] Y. Shibata and Y. Tsutsumi, Local existence of solution for the initial boundary value problem of fully nonlinear wave equation, Nonlinear Anal. 11 (1987), 335-365.
[131] T. Shibata and S. Zheng, On some nonlinear hyperbolic systems with damping boundary conditions, ibid., to appear.
[132] M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133.
[133] I. N. Sneddon, The propagation of thermal stresses in thin metallic rods, Proc. Roy. Soc. Edinburgh 65 (1959), 121-142.
[134] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, 3rd ed., Nauka, Moscow, 1988 (in Russian).
[135] A. Sommerfeld, Vorlesung über Theoretische Physik, Mechanik der Deformierten Medien, B. II, Leipzig, Geest und Portig, 1949.
[136] M. Stoth, Globale klassische Lösungen der quasilinearen Elastizitätsgleichungen für kubisch elastische Medien im $ℝ^2$, SFB 256 Preprint 157, Universität Bonn, 1991.
[137] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 101-113.
[138] E. S. Suhubi, Thermoelastic solids, in: Continuum Physics, A. C. Eringen (ed.), Academic Press, New York, 1975.
[139] Z. Szmydt, Fourier Transform and Linear Differential Equations, PWN, Warszawa, 1972 (in Polish).
[140] B. Taylor, H. J. Marris and C. Elbaum, Phonon focusing in solids, Phys. Rev. Lett. 23 (1969), 416-419.
[141] M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981.
[142] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag Wiss., Berlin, 1978.
[143] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, Basel, 1983.
[144] B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1989.
[145] C. C. Wang and C. Truesdell, Introduction to Rational Elasticity, Noordhoff, Leiden, 1973.
[146] V. Vladimirov, V. Mikhailov, M. Chabounine, Kh. Karimov, Y. Sidorov and A. Vacharine, Recueil de Problèmes d'Equations de Physique Mathématique, Mir, Moscow, 1976.
[147] R. Wojnar, Uniqueness of the displacement-heat flux problem in thermoelasticity with two relaxation times, Bull. Polish Acad. Sci. Tech. 33 (1980), 217-228.
[148] K. Yosida, Functional Analysis, Springer, 1965.
[149] S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic coupled systems, Sci. Sinica Ser. A 30 (1987), 1133-1149.