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1. Intuitive background. Statement of the problem

A large number of practical questions lead to the following problem:

(P1) Given a set X and a real-valued function F on it, find a point in X
at which the function F achieves its maximum,

which should be solved under some more or less awkward restrictions
concerning the set X, the function F and, in consequence, methods which
can be used.

The set X should be considered as an abstract space. Usually there
are no practical objections to extending it to a measurable space (X, B, u)
but there is no natural way of endowing it with a metric. Consider two
simple examples. In the first we deal with a chemical process and the
problem consists in finding the temperature and velocity for conducting
the process at which it yields the maximal efficiency (it does not matter
for us what this means). Although the couple (¢, v) = (temperature, vel-
ocity) can be considered as a point in R? there is no real sense in measur-
ing a distance between two such points. On the other hand, there are
no objections to recognizing e.g. the interval (20 < ¢ < 40, 100 < v < 200)
as twice as large as the interval (20 <t < 30, 100 < v < 200), and thus
the extension of the set of feasible values of parameters to the Lebesgue
measurable space is quite natural. In the second example a number of
machine tools and a number of jobs to be done are given and the problem
consists in finding an assignment of each job to a machine such that
all jobs will be finished as soon as possible (e.g. so-called optimal sequencing
problem). Now X is a finite set of all feasible assignments and it is quite
natural to consider (X, B, u), B being the family of all subsets of X and u
being the counting measure (i.e., u(S) for SeB is equal to the number
of elements in the set §).

The difficulty concerning the function F is that in many practical
situation it is not known except that its values at every point z¢ X can
be “‘observed”. Usually the observation consists in performing some real
experiments so that the observed value of the function is subjected to
a random error of measurements. In such circumstances a more adequate
statement of the problem might be:

(P2) Qiven a measurable space (X,B, u) and a family {Y,, ze X} of
real-valued random variables, find a point in X at which the function F(x)
= EY_ attains its maximum.
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Later on we shall give a more precise statement of the problem but
for the time being we content ourselves with the above one.

The methods used for the solution of our problem have of course to
avail themselves only of the above information on X and F. It seems
that only methods of the following structure are acceptable: choose
a point ;¢ X as the first approximation to the solution of the problem;
suppose that the points z,,,,...,, have been constructed and the
values of the random variables Y., Y, ,..., ¥, recorded; construct
the (n-+1)-th approximation z,,, to the solution, using no other infor-
mation on F than that contained in (x,, ¥, ,#,, ¥,,, ..., 2,, Y, ) It
%, essentially depends on some of Y., Y, ..., ¥ (or on all of them),
we obtain a discrete-time X-valued random process (z,,n =1,2,...),
and the problem would be solved if we knew how to construct z, so as to
obtain a process which would converge in some sense to the desired points
in X. ‘

There are two ramifications in the short history of the problem. One
of them began with the well-known paper by J. Kiefer and J. Wolfowitz
[10], in which the stochastic approximation method invented by H. Rob-
bins and S. Monro [15] had been adapted to the problem of seeking the
maximum. Originally X = R', ¥, were random variables with uniformly
bounded variances and F was a regular function. The process x, con-
verges in the sense that E(x, — #)*—0, # being a unique point of the (local)
maximum of F. Later on convergence with probability one was proved
and all results were extended to the more general case X = R™, m being
a finite integer. A number of investigations deal with the problem of
limit distribution of z, (see e.g. the review in Wasan [18]). with the speed
of almost sure convergence (e.g. Heyde [7], Major [11]) and with the
processes with improved speed of convergence in mean (e.g. Fabian [4],
Zielinski [21]). An idea of extending stochastic approximation methods
to the problems of seeking global extrema is presented in Waisbord and
Youdin [16], [17]. An up-to-date review of the theory is given e.g. in
Fabian [4] and Wasan [18].

The second branch in the development of our problem is connected
with so-called randomized methods (or Monte Carlo methods) of seeking
maxima. An early paper by Brooks [1] initiated an experimental approach
to the problem and this developed into widespread random :search
methods of solution of some kind of engineering problems (e.g. Ras-
trigin [14]). A more sophisticated and strictly mathematical approach
is given e.g. in Driml and Han¥ [3], Kharlamov [9], Zieliniski [20] or in
more recent papers by Karma-iov [9] and Perekrest [13]. In the above
approach X is usually an abstract set, the values of F are observed
without any error (i.e., Var Y,= 0 in our terminology) and the points
Zy, Ty, ... are assumed to be random elements. A distinguishing feature
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of these methods is that the sequence of random elements x, converges
in a sense to the element (or to the set of elements) at which F
achieves its global maximum in X, i.e., to such z that ¥ (z) > F(x)
for all ze X.

Our aim is to elaborate global stochastic approximation processes in
which the above two ramifications would be combined. We shall consider
problem (P2), X being an abstract space as in random search problems
and {Y,, ze X} being a family of non-degenerate random variables as
in stochastic approximation. The function F is only assumed to be B-
measurable and essentially bounded. It can hardly be expected that
very strong results will be obtained under such weak assumptions;
on the other hand we do not want to pose over-restrictive conditions
which might make the results practically useless.

The results are: 1° a general theorem on convergence in distribution
of global stochastic approximation processes (Theorem 1); 20 if Y, are
unbounded random variables, the limit distribution is in a sense concen-
trated ‘‘near’” the higher values of F (Theorems 2 and 3); 3° if Y, are
essentially bounded random variables, the process converges to the solution
(to the global maximum) with probability one (Theorem 4). Besides, we
shall give (Theorem 5) a pure Monte Carlo construction of the sequence
of independent and identically distributed random variables whose dis-
tribution is concentrated (in the sense given in Theorem 3) at higher
values of the function F.

2. General structure of global stochastic approximation processes

Let (X, B, p) be a measurable space and (2, U, P) a probability space.
Let {Y,_, xe X} be a family of real-valued random variables (r.v.’s) such
that for every xz¢ X the expectation K'Y, exists and

G being a continuous distribution function. The function EY, will be
denoted by F(z) and we will assume throughout the paper that

1o F is not essentially constant;

20 B, = esssupF'(x) is finite;

30 X, ={reX: F(x) = F,} is a non-empty set, although u(X,)
= 0 is allowed. '

The set X, will be referred to as the optimal set. The problem consists
in finding a point from X,.

Consider two sequences (&,,» =1,2,...) and (X,,n=1,2,...)
of X-valued random elements. To be in contact with applications we shall



8 Global stochastic approximation

refer to £, as a random point at which the n-th experiment consisting
in the observation of the value of the function F is to be performed and
to Y, as the outcome of the experiment at the point z. The r.v.’s Y, are
sometimes called error random variables and the distribution of £, is called
the experimental design. The r.v. X, will be the n-th approximation to
the solution.

Let %, be the sub-o-field of A generated by (X, &, ¥, X,, ...,
X1 $ncpy Ye,_,» X,) and let U, be the sub-o-field generated by (X, &, ¥,
Xoy ooy Xpyy Ecry anq’ X,, £,). We will consider our problem under

n
the following notation and assumptions:

(Al) P,(8) = P{X,e 8}, SeB, is an initial distribution of the process
(X,,m =1,2,...). It will be shown that the investigated properties of
the process do not depend on P,, and so it can be chosen optionally.

(A2) The conditional expectation E[¢(§,)|U,], ¢ being a B-measurable
function (we write P{&, ¢ S|%U,} instead of E[¢(&,) A,] if ¢ is the indicator
function of 8), is evidently an %,-measurable function, and so it depends
on we &2 only through (X, &, ¥, X,,..., Xy, &9y ¥, , X;). We shall
assume even more, namely that it depends on o only through X,. It is
assumed that

P{§,e 81X, = 2} =Q(8),

Q.(8) being a function on X x®B which for every ze X is a probability
measure on ‘B and for every Se¢B is a measurable function on X.

(A3) The conditional expectations E[y,(¥Yx )IU,] and Ely,(¥Yx,
Y. )% ], v, and y, being Borel functions, are assumed to depend on we 2

*n

only through X, and (X,, £,), respectively; and
(a) for every xe X the conditional expectation E[ Yy |2,] considered
as a function on X coincides with EY :

E[Yan Xn = m] = F(m)°

Consequently, the left-hand term will be denoted shortly by EY ;
(b) for every ze X the conditional probability P{Yy <y| U,} con-
sidered as a function on X coincides with P{Y, < y}:

P{Yx, <yl X, =2} =G(y—F()).

Consequently, the left-hand term will be denoted shortly by P{Y, < y};
(c) the r.v.’s Yx and Y. are conditionally (given X,, &,) indepen-
dent, i.e., for every z, te X and every y, ¥’ ¢ R' we have
P{Y, <y, Yx, <yl & =4 X, =a}
= P{YE,,<y| §n = t}P{YXng y'| X, = a}.
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We shall use the short notation:
P{Y, <y, Y.<y} =P{X;<y}-P{Y,<y};
(d) the function
rz,t) =P{Y, > Yy | & =1, X, =ua},

or shortly r(z,t) = P{Y,> Y,}, is a function which does not depend on
n and is measurable with respect to the o-field generated by B xB. As
the function r(x,?) we choose a variant of the conditional probability
P{Y,> Y,} which is a non-increasing function with respect to F(x)
for given ¢ and a non-decreasing funection with respect to #(t) for given
z, 1.e., for every ¢

r(®y,t) < r(x,,t) whenever F(x,) > F(x,)
and for every z
r(z,t,) = r(x,t) whenever F(t,) > F(i,).
(A4) The sequence (X,,n =1,2,...) is defined recursively
& i Y, > Yy,
X

n

@) K otherwise.
Later we shall consider sequences X, defined in a more sophisticated way
and the above definition will become a special case. ‘

The process (X,,n =1,2,...) will be called the global stochastic
approximation (g.s.a.) process. The practical realization of this process may
be described in the following way:

1° choose a point X, e X according to the distribution P, and observe
the r.v. Yy at that point (“perform an appropriate experiment at the
point X, and record its outcome as Yx ”);

20 suppose that the points X,, X,,..., X, are already selected.
Sample the r.v. £, according to the distribution @ x, and observe the r.v.
Y. .Put X,,,=¢&,if ¥, > Yy and X, ,, = X, otherwise.

We shall show that for some experimental designs (X,,n =1, 2,...)
is a reasonable process of approximation of the global maximum of F,
viz. that X, approaches in a sense the set X,.

Note that under the above assumptions (X,,n =1,2,...) is a dis-
crete-time X-valued Markov chain with the initial probability distri-
bution P; and the stationary transition probability function

(2) Pz, 8) = R(x) Is(®)+ [r(@,1)Q,(dr),
S
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where Ig(x) is the indicator function of the set S, B(z) is the B-measurable
function defined as

3) R(@) = [ [1—r(o, 1)]Q.(d)

and the integral sign without limits means, as usual, integration over the
whole space. This assertion results from the following argumentation.

Suppose X, =& and ¢S, S¢B. The event {X, ,¢8} occurs iff
either ¥, < Yy (&, arbitrary) or {,¢8 and Y, > Yy . Thus

P{X, e8| X, =0} =P{Y, < Yx,&<XX, =)+
+P{Y, > Yy, £,68| X, = a}
= fP{yfng Yy | & =t, X, =a}P{f,cdt| X, =2} +

+ [P{Y, > Yy | & =1, X, = a}P{{,cdt] X, = a},
S

and now by (A2), (A3, d) and (3)

P{X,.,c8| X, =a} = R(@)+ [r(x,)Q.(dt).
IS
If X, =« and z¢ S, the first term on the right-hand side of the
above equality disappears. The probabilities P{X, e8| X, =2} do
not depend on » and we can denote them by P(z, S). So we obtain for-
mula (2).

3. The fundamental theorem on convergence in distribution
Let P,(x, 8) = P(x, 8) and
P,u(@, 8) = [P,(a, dy)P(y, 8).

We shall see that under rather general assumptions there exists
a limit distribution of P,(x, §) as n—>oco which ia a sense is concentrated
at the optimal set X,. We begin with a definition.

- DEFINITION 1. A family of distributions {@,, z< X} on (X, B) uniformly
dominates & measure u on (X, B) if for every A B there exists a positive
constant a4 such that @,(A4) > a,u(A) for all zeX.

Note that if ¢, =@, then the uniform dominance of the family
{Q., e X} is equivalent to the usual dominance of @ with respect to u:
Q > u, ie., the absolute continuity of x4 with respect to Q: u < Q.

THEOREM 1. If the family of distributions {Q,, x < X} uniformly dominates
the measure u, then the sequence of distributions (Pn(w, J,n =1,2,...)
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converges uniformly (with respect to B) to a limit distribution P(-). The
Uimit distribution P(-) does not depend on the initial value of x.

Proof. The proof is based on the method given in Doob [2].

We begin with the statement of two facts (a) and (b) below; then
the assertion of the theorem will be a simple consequence.

1. Let m® = inf P,(x,8) and M{® = sup P,(»,8). Because of

reX zeX

my = ingfefP(w, dy)P,_,(y, 8) > [ P(z, dy)ym§" = m@?
TE

and similarly M < MTY, we have
(a) mP<m@P <...< MY < MY,
2. For given x, y< X consider the following function on B
¥z, (8) = P(z, §) —P(y, 8).

The function v, , is a countably additive set function; thus there exists
a set A* such that for every S¢B, § « A* we have vy, ,(8) > 0 and for
every measurable subset S of 47 = X— A" we have y,,(8) < 0. Obviously
Yoy(AT)+ v, ,(A7) = 0. We shall show that

(b) there exists a number €€ (0, 1) such that Yo y(AT) <1—e

According to (A3, b) we have P{Y, <y} =G(y—F(x)), F(z) being
the expectation of ¥, and G a continuous function. It is obvious that
there exist positive constants é and d, such that for every ze X

P{Y,>F(z)+6}>6, and P{Y,<F(z)—3 >,.

Consider the set Cy; = {zeX: F(x) > F,— 8}. From the definition of F,
as esssupF it follows that x(C,) > 0. The distribution ¢, dominates u;
hence Q,(C,) > 0. ‘

For z¢e X —C; and te C; we have F(x) < F(t). The intersection of the
events {Y,> F(t)} and {Y, < F(z)} implies the event {¥,> Y,} and
by (A3, d)

r(z,t) = P{Y,> Y} > P{Y,> F(t), Y, < F()}
=P{Y,> F(1)} - P{Y, < F(x)},

so that r(x,t) = 65. Similarly, if zeC,; and te C;, then F(x)— < F(1).
The intersection of the events {¥, > F(i)+ 6} and {Y, < F(x)—4} implies
the event {¥,> Y,}; thus, as above, r(z,t) > 6. So the last inequality
bholds for all ze¢ X and te Cs.



12 Global stochastic approximation

By these results we have

P(z,47) = R@)Li-(2)+ [ 7(z, )@, (dt)

i

> [r(@, 00> [ r(z, )@ (dt) > 8Q, (4" NC,).
A~ A"'ﬁC&
Similarly we can obtain P(y, A*) > 61Q,(4*NC,). Now
'/’w,y(A+) = P(x, A+) —P(y, A") =1—P(=, A~)—P(y, A™)

< 1—01[Q.(A7 N0y +Q, (A1 NCy)].

By the uniform dominance of {Q,, z< X}

Q:(A7NCy) +Q, (AT NCs) = au(Cy),

where a = min(a,-,.c,) ¢4+~c,), S0 that wu, (A4¥)<1—¢ with ¢ =
6}au(Cs) > 0. On the other hand, y,,(A%) is positive, which implies
e < 1. The fact (b) is proved.

For the difference M —m{® we have

MP —m@ = sup [P, (1, 8)[P(=, dt)—P(y, dt)]
x,v
= sup [ P,_,(t, 8)yp,,(dt)
z,y

<sup( [ MGy, @)+ [ mE Dy, (d0)
L

T,y A+

= Supy,, (AT [ME) —mEY]
z,y

< (1 —e) MG~ —mEV].
Thus we have
MY —m@P < (1 —e* 1,

It follows that the sequences m{® and M, n = 1,2, ..., have a common
limit, say P(S), and

|Po(z, 8) —P(8)] < M§ —m§ < (1—e)* .

The function P is a non-negative function on B such that P(¥X) = 1. It is
countably additive as the limit of a uniformly convergent sequence of
countably additive functions. So P is a probability distribution on
(%,B). =

Note that, because of the equality P,,(z,8) = [P,(z, dy)P(y, S)
and the convergence just proved, we have P(§) = f P(dy)P(y, 8), so
that P is an invariant probability measure for the transition probability
function P(x, 8).
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4. Absolute continuity of the limit distribution

4.1. Introductory remarks. If we want the process (X,,n =1,2,...)
to be a reasonable process of global stochastic approximation, the limit
distribution P should be in a sense concentrated “near” the optimal set X,.
The properties of P obviously depend on the distributions Q.. From the
point of view of applications it is rather difficult to impose any strong
conditions on these distributions, so that eventually we shall confine
ourselves to the case @, = @, @ being the uniform distribution on (X, B, u),
i.e., Q(8) = u(8)/u(X) provided u(X) < + oo. Under this assumption Q < g,
so that we start with considering absolute continuity of the measures P,,.
It will be shown that under some conditions the limit distribution P is
also absolutely continuous and properties of its density justify con-
sidering the process (X,,n =1,2,...) as a process of an approximation
of the global maximum of F on X, i.e., as a g.s.a. process. The results
are formulated in Theorem 2, preceded by two auxiliary lemmas. Since
according to Theorem 1. the limit distribution does not depend on the
initial value of the process we shall assume P, to be an absolutely conti-
nuous distribution (in Lemmas 1 and 2) or even the uniform distribution
(in Theorem 2).

4.2. General case. Define P,(8) =P{X,e¢8}. Then P,(S) =
fP,_,(dx)P(z, 8) = [P,(dz)P,_,(z, S). As a resultof Theorem 1 we have

IP,(8)—P8)<(1—e)"" n=1,2,...

for every 8 < B. We shall prove some properties of the limit distribution P,
characterizing them by the properties of the density 7 of P. Let p, denote
the density of P,. All the densities are taken with respect to the measure u.

DEFINITION 2. R.v.’s {¥Y,, < X} are said to be unbounded it P{Y_ > a}
> 0 for g-almost all z¢ X and for every real number a. In terms of the func-
tion G (cf. (A3, b)) this is equivalent to G(a) < 1 for each a.

LEMMA L. IfP, < uand Q, < uforall ve X, then P, €< u,mn =1,2,...
The densities p, satisfy the following equations
(4) Pasn(8) = R(8)Pa(8)+ [ 7(2, 8)¢,(8) pa(@) n(da),
q.(8) being the densities of Q., xe X.

Proof. P, is assumed to be absolutely continuous. Suppose P, € u.
We have

Po(8) = [ Py(da)P(z, 8)

= [R@)p@uldn)+ [ [r(@,1)p,(@) ¢, (t)p(de)p(d),
S teS zeX

so that P, ., <€ u and p,,, is given by (4). m
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4.3. Uniform experimental design.

LEMMA 2. Assume that (1) @, =Q < u and P, < u; (ii) @ > u; (iii)
the densities p, and q of P, and @, respectively, are u-almost everywhere
bounded; (iv) the r.v.’s {Y,, xe X} are unbounded; (v) inf F(z) > — oco.

_ zeX
Then the limit distribution P 18 absolutely continuous and its density P is

a solution of the integral equation

q _ .
(5) ) = [ 1_3() ) B@yu(da)

satisfying [PB(s)u(ds) = 1. The limit density P is positive whenever q is
positive.

Proof. The limit distribution P exists by hypothesis (11) and Theorem
1. First of all we will show that

(6) p<rz,t)<1—f and f<R(x) <_l—ﬁ

for u-almost all @, te X, § being a positive number less than }.
For any real a we have

r(w,t) = P{Y,> Y.} > P{Y,>a> Y}

By (A3, ¢) the right-hand term is equal to P{Y,> a}-P{Y, < a}. By
(A3, b) the distribution function G is continuous and by assumption
(iv) the r.v.’s Y, are unbounded, so that for u-almost all  and { we have

P{Y,> a}-P{Y,< a} = [1—G(a—F(1))|G(a—F(z))
> [1~G(a—infF)]G(a—F,),

-and this is greater than a positive f. It is clear that taking a large enough
we can get f < 4, which will be assumed. Thus r(x, t) > g > 0 for u-almost
all z, te X and, by symmetry, 1 —7r(z,t) =1~P{Y,> Y} =P{Y,> Y} +
+P{Y,=Y}>P{Y,> X} =r(t,x) > p> 0. This gives the first part
of (6); the second part follows from the definition of R(x).

According to Lemma 1 we have

(7) Pura(8) = R(8)p,(8) + [7(@, $)q(s)p, (@) u(da),
and now by (6)
(8) Pas1(8) < (1—B) [Pals) +q(s)]

< (1—B)ypa(s)+g(s) ) (1 —pY

i=1

1-p ' n
-[1—@1-=p8)"],

(L—8)"p1(s)+q(s)
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so that, by hypothesis (iii), p,,,(s) is bounded g-almost everywhere.
Letting n—oco0 in (7), we obtain

B(s) = R(s)P(s)+ [ (2, )q(s) P(@) u(da),

and this is equation (5).
By (8) we obtain

]__
p(s) = limp,(s) < —ﬁ—éq(S)

n—o0

and

Absolute continuity of @ implies that of P.

The equality [(s)u(ds) = 1 follows from the fact that P is absolutely
continuous and P(¥X) = 1 (cf. Theorem 1). ‘
To prove the last assertion of the lemma we use once again (6) and (7):

p

pn+1(3)>ﬂ[pn(s)+q( ]>ﬁ“p1(8)+q(8) —5

(1—8");

hence p(s) = lim p,(s) = —‘B—q(s) [ |
n—»00 1-— ﬂ
THEOREM 2. If P, and Q are uniform distributions on (X,B, u), then
there exist variants of densities p,, » = 1,2, ..., such that every p, is constant
on sets {we X: F(x) = const} and is a non-decreasing function with respect
to F, i.e., p,(®,) = p,(Ts) whenever F(x,)> F(x,). If, furthermore, the

ro.’s {Y,,xeX} are unbounded and inf F(z) > —oo, then there exists
zeX

a variant P(s) of the limit density such that B(s) is constant whenever ¥ (x)
= const and is a non-decreasing function with respect to F. - -

Proof. By hypothesis, the "distributions ¢ and P; are uniform on
(X,B, u), so that their denisties are constant u-almost everywhere and
equal to 1/u(X). Let ¢ and p, be variants of these densities such that
q¢(z) = p,(x) = 1/u(X) for all ze X. Define p, by formula (4)

1
Po(s) = ———[ (s )+— r(z 8)#("160)]-
‘ @ w®J ,
Thus the density p, is uniquely defined. The functions r(z,s) and R(s)
are constant on sets {s: F(s) = const} and non-decreasing with respect
to I, hence p, has the same properties.

By induction (cf. formula (4)) we obtain the assertion for all Pns
n=1,2,...
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By Theorem 1, the limit distribution P exists and by Lemma 2 its
density is equal wu-almost everywhere to lim p,(s); defining 7(s) as

n-—»o00

equal to this limit for all se¢ X, we obtain the Theorem. m

Theorem 2 reveals a feature of the limit distribution which justifies
considering the process (X,,n» = 1,2,...) as a process of an approximation
to the global maximum of 7. An obvious consequence of this theorem
may be formulated as follows. Let f be a real number belonging to F(X)
and C; = {zreX: F(x)> Fy—f}. Let A, BeB be such sets that 4 < C,,
B cX—0,and u(A) = u(B). Then P(A) > P(B).

To see that the assumption that ¢ is the uniform distribution on
(X,8B, u) is essential, consider the following simple numerical example.
Let X ={1,2,3}, F(z) =« and the r.v.’s {¥,, e X} b> such that for
7(z,1) defined in (A3, d) we have r(1,2) =1-—7(2,1) = 0.7; 7(1, 3)
=1—7r(3,1) =0.9; r(2,3) =1—-7(3,2) =0.7 and obviously »(1,1)
=7(2,2) =r(3,3) = 0.5. Suppose that @({1}) = 0.7; Q@({2}) = 0.2 and
Q({3}) = 0.1. According to (3) R(z) =1— Nr(x,1)Q(t), so that R(1)

' ¢

= 0.42; R(2) = 0.62 and E(3) = 0.82. By formula (2) P(z, y) = r(z, ¥)Q (y)
if # vy and P(z, ) = R(x)+r(x, 2)Q(z). Hence we obtain the following
transition probability matrix {P(z, y)}:

[ 0.77 0.14 0.09

0.21 0.72 0.07
0.07 0.06 0.87

Now for the limit distribution P we have P({1}) = i, P({2}) = 4%
and P({3}) = ;5 instead of P({1}) < P({2}) < P({3}), as stated by
Theorem 2. The assumption of Theorem 2, however, can be weakened;
the conclusion remains true if the densities p, and ¢ are constant when-
ever F(x) = const and are non-decreasing functions of ¥'; this property,
however, does not seem to have a great practical value, while in many
practical cases the construction of the uniform distribution does not
present any difficulties. '

4.4. Improvement by randomization. It is interesting to note that
a limit distribution which is better concentrated at the optimal set X,
(in the sense given below) can be obtained by a randomization of the
process given by formula (1).

Let (U,,» =1,2,...) be a sequence of independent r.v.’s distributed
uniformly (with respect to the Lebesgue measure) on the interval [0, 1].
We shall assume that the r.v.’s U,, &,, and Y, are conditionally (given
X1, Yx,_|) independent. Let w: R' —[0,1—a] for some a<(0,1] be
a Lebesgue-measurable non-decreasing function. Modify the process
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(X,,m =1,2,...) as follows:
X, if {U,<w(¥y)} or

(9) Xop = {Un>w(Yy,) and Y, < Yg },
¢, otherwise.

By argumehts similar to those in Chapter 2 we conclude that the sequence
(X,,n =1,2,...) forms a Markov chain with transition probabilities

(10) Py,(z,8)= [P(z, 8] ¥, = y)dP(¥, < y),
where

(11)
[w<y>+[1—w<y>J(R(m)+ [r@,0Q() it ze8,
S

Plx, 8| Y, =1y) =
lﬂ—w@ﬂfﬂ@ann otherwise.
S

Denote E[w(Y,)|{ = «] shortly by E,(x). The transition probability
function (10) can be written in the form

Py(#, 8) = (R(2) +[1 — R(2)] B, () I5(a) + [L — By ()] [r(2, )Q(dt).
S

Put
R,(z) = R(z)+ [1—R(x)]E,(z),

Tw(®,1) = [1 —Ey(x)]r(z, t).
This gives

P,(z, 8) = Ry(@)Ig(a)+ [ry(z, 1)Q(dt),
S

which is similar to (2) considered previously, with R,, and 7, instead of R
and r. Thus, under the assumptions of Theorems 1 and 2, the randomized
process (9) converges in distribution, the limit distribution P, does not
depend on the initial value of the process, and we can choose such a variant
P, of its density‘which is constant whenever ¥ (x) = const and is a non-
decreasing function of ¥. This results from the following arguments.

The crucial points in the proofs were those concerning the function
r(x,t). In the proof of Theorem 1 we established that y, ,(4*)<1—=¢
for all x, ye X, using the estimation r(z,?) > 67 in a suitable set. Now
ro(®, 1) = [1—E,(2)]r(x,t); by the hypothesis w: R' - [0,1—a] we
have ¥, ,(x) <1—a, and an analogous estimation holds. In Lemma 2 we
used the facts that g <r(z,t)<1—p and < R(z) <1—p8 for some
Be(0,1); now by 0 E, (o) <1— @ ave B’ <r,(r,t)<1—p" and

2 — Dissertationes Mathematicae CXLII
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B’ < R,(x) <1—p" with a suitable B’. To prove the monotonicity of Dy
and consequently that of the limit density P, we used the monotonicity of
r(z,s) and R(s) with respect to F(s). Now r,(x,s) = [1—E,(z)]r(z, s)
as a function of F(s) behaves like r(x, 8). To see that R(s) is a non-
decreasing function of F(s) consider s, and s, such that F(s,) > F(s,);
then
By(8,) — By(82)
= [R(8;) —R(s;)]'[1 — E,,(8;)1+[E,(81) — E,(s2)][1 — R(8;)] = 0.
The density P, of the limit distribution satisfies the equation

g(s)r(w, s)
1—E(s)

while in the former case (non-randomized, i.e., for w = 0) we had

q(s)r(x, 8)_
p(s) = fl R() p(dzx).

To establish a correspondence between p and 7, consider the recurrence
formula (7):

[1—Ey(8)1Pw(8) = o~ [ — By (2)] Pu (@) u(d),

Pusa(8) = B(8)p,(8)+ [ 7(x, 8)g(5)p,.(2) u(dw).

This now takes on the following forin:
Pria(8)=[R(8) + (1L — R(s)) By (8)| pp(s +q (8) [[1 — Bo(@) 17 (2, 8)py (@) 1 (da).

An augmentation of the rlght-hand 81de by adding the term (p;_i_,(s)—
—p,(8)) Ey(8), which tends to zero as n —oc, does not affect the limit
distribution P,(s) = lim p,(s), but then we have
[1—Ey(8)1Pnsa(9) |
= R(8)[1— By, (3)12n(8) +4(8) [ [1— By()17 (2, 5) pp(@) (),

which is the same as (7) with [1 —E,(s)]p,(s) instead of p,(s). Let C
be a constant such that C[[1—E,,(s)]1p;(s)u(ds) = 1; then Cf[1—E,(s)]"
py(8)u(ds) =1 for all » =1,2,... and in consequence Cf[1—E,(s)]
‘Pp(8)u(ds) = 1. Under the conditions of Theorems 1 and 2 the limit
distribution does not depend on the initial distribution, and it follows
that

p(s) = C[1—E,(s)]Pu(s),

u-almost everywhere. Because of 1 —E, (z) > a> 0 the sets on which
P(s) = 0 and P, (s) = 0 might differ at most by a u-null-set. On the set
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where 7(s) and P,(s) are positive we have

p(s)
Pu(8)

(12) =C[1—E,(s)]-

The densities p(s) and P,(s) are non-decreasing functions of F. If the func-
tion w is not constant u-almost everywhere (remember that F is not
essentially constant by the general hypothesis formulated in Chapter 2),
then F,(s) is not essentially constant. Then 1 — E,(s) is a non-increasing
function of F and by (12) so is p(s)/P,(s). It follows that there exists a con-
stant fe F(X) such that p,(s) > p(s) 1f and only if F(s) > f. We shall
formulate all these results as the following theorem concerning the
randomized process (9).

THEOREM 3. Assume that (i) P, and Q are uniform distribulion on
(X, B, p); (ii) the error r.v.’s {Y,, xe X} are unbounded; (iii) inf F > — oo;
(iv) w: R'—=[0,1—a], ae(0,1), is a non-decreasing function. Then there
exists a limit distribution P,(8) = lim P{X,8}, X, being given by (9).

n—o0o

The limit distribution P, is absolutely continuous and there exwists such
a variant B, of its density which is constant on sets {x: F (z) = const} and non-
decreasing with respect to F(x). If the function w is not constant, then there
exists a constant fe F(X) such that p,(s) > D(s) ¢ff F(s)>f, p(s) being
a limit density in the process (9) with w = 0, i.e., in the process (1) m

The last theorem explains the sense in which the randomized g.s.a
process (X,,n =1,2,...) given by (9) is better than the original process
(1). This can be pointed out as follows. There exists a constant f
such that if A «cC, ={reX: F(x) > F,—f}, BcX—-C;, (A,B<B) and
#(4) = u(B), then P,(A4)> P(A) > P(B) > P,(B).

Further on we shall consider only the latter case of the randomized
process (9), as a more general one.

The following case is interesting. Let {Y_, v« X} be random vari-
ables concentrated at F(x): P{Y, = F(x)} = 1. Then obviously E,(z)
= w (F(z)). Assume r(z,?) = 1; then R(x) =0 and

P(z, 8) = w(F(2))Is(x)+ [1—w (F(2))] Q(8)

This is the case where at every point xe X the value F(z) of the function
I can be observed without any error. Such processes have been considered
by Kharlamov [9].

4.5. Problem of optimal experimental design. Let P, and I—’2 be limit
distributions in two different g.s.a. processes. Following Kharlamov [9]
and Perekrest [19], we shall call the former process better than the latter if

(13) [ F(x)P\(do) > [ F(a)P,(da).
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Similarly we will use “worse”, “not better” or “not worse” if, respectively,
<, < or > holds. Intuitively, we can expect that a better process will
give a better solution (in the limit) to our problem.

* The problem arises whether in a given class of g.s.a. processes there
exists the best process, i.e., a process with a limit distribution, say P,,
such that [F(x)P,(dx)> [F(x)P(dw), P being the limit distribution
of any other process in the class under consideration. We shall discuss
the problem for the class of randomized g.s.a. processes -given by formula
(9) with w: R'—>[0,1—a], ae(0,1] and @ assumed to be the uniform
distribution on (X, B, x) — this is just the case of Theorem 3. We shall
show that for every function w there exists a function » belonging to the
above class and such that

(14) [ F(x)P,(dz) > [ F(2)P,(dx)

provided the function F is not essentially constant on ¥; P, and P, are
the limit distributions in processes with » and w, respectively. Hence it
follows that there is no optimal element in the discusseed class of processes.

_ Suppose that w is not constant and put @ = sup w(¥(=z)). Take
a number be(a,1) and define zeX

b
Then we have E,(z) = FE"’(:U)' By Theorem 3 the limit distributions

P, and P, are absolutely continuous with respect to u; denote their den-
sities by 7, and 7,,, respectively. By arguments similar to those used for
establishing formula (12) we have

b
cw[l _Ew(w)]ﬁw(w) = Cy [1 - TEw(w)] ﬁv(w”

u-almost-everywhere, ¢, and c, being appropriate constants. This yields

b
Bo() ¢ - @ le®

(15) ﬁu(m) Cw l_Ew(m)

The densities 7, and 7, are non-decreasing functions of ' and f Pw(@) p(dr)
= f Po(2)u(dz) = 1. The function F,(z) is a non-decreasing function
with respect to F and takes on values exclusively from [0, a]. But then
the right-hand term of (15) forms a non-increasing (and not constant)
function of F. It follows that there exists a constant fe F(X) such that
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Po(®) > D,(x) if and only if F(x) > f. Now the obvious equation

[ Bo@) —Bu@]p(dn) = [ [Fu(@) —By(2)] p(da)
{F(z)>1} {F(x)<1}

gives

F () [By(@) — P (@) u(dz) > [ [By(a) — Pu(@)] 4 (de)
{F(z)>f} {F(z)>1}

= [ £ [Bul@) — By(@)] p(de)
F(@)<s}

> [ F(2)[Pu(@)— Do(2)] p(d),
{F(z)<f)
and this is another form of (14).

The non-existence of optimal experimental design in the discussed
class is of course due to the fact that o (in the definition of w) belongs
to the interval which is open from below, but this is essential in the proof
of the convergence Theorem 1 and seems to be irremovable. Suppose,
however, that we have proved the convergence of the randomized g.s.a.
process with w: R'—[0,1). Then by arguments similar to those above
we would be able to show that the process with v = (1 — a)w -+ « for a num-
ber ae (0, 1) is better than that with w and the optimal process still does
not exist. On the other hand, if we allowed the function w to take on
the value 1 for a finite value of the argument, then, because of the unbound-
ness of the error variables, the process could stop with positive probability
at any point ze X, which is a highly undesirable case. For these reasons
we will not examine the above extensions of the class of randomized g.s.a.
processes. Other classes of g.s.a. processes in the case of unbounded
error r.v.’s will not be discussed in the present paper.

5. Almost sure convergence to global maximum

When r.v.’s {¥,,zeX} are bounded the g.s.a. process converges
with probability 1 to the global maximum of F. The result is formulated
in Theorem 4 below, preceded by two definitions.

DEFINITION 3. R.v.’s {¥,, xeX) are said to be essentially bounded

from above p-almost everywhere if I = esssup l(x) < oo, where l(x)
(%£,8,4)

= esssup Y,.(w). We shall call the above r.v.’s shortly bounded.

< (2,9,P)

DEFINITION 4. The set X, = {xe X: F(x) > F,—e} will be called
the ¢-optimal set.



22 Global stochastic approximation

THEOREM 4. If (i) the r.v.’s {¥,, v« X} are bounded; (ii) the experimental
design Q@ dominates u; (iii) w: B'—(0,1) is a non-decreasing function;
then for every ¢ > 0 the process (X,,,n = 1,2, ...) defined by (9) converges
in the discrete topology to the e-optimal set X, with probability one.

Proof. Let £¢ > 0 be a given number. To prove the theorem it is
enough to show that with probability 1 there exists an integer N such
that Xye X, and Xy ¢ X%, for all k =1, 2, ...

Consider a new “two-dimensional” discrete-time Markov process
(XnyZn),mn =1,2,...), X,eX, Z,cR', such that

P{X,e8} = P,(8) for every SeSB,
P{Z, <z X, =2} =P{Y, <z}
and (X,,,,%Z,.,),n =1,2,... is defined as

(Xn: Zn) if {Un < w(Zn)} or
(16) (Xﬂ+l7 Z'n-l-l) = {Un > w(Zn) a‘nd Yé'n < Zn}7 .

(£ny Y)  otherwise,

where U,, &,, Y, are defined as before. It is easy to see that the coordi-
nates X,,n» =1, 2,..., form the process given by formula (9) and con-
sidered in the previous theorems. A

Define the following sets in the product-space X X R':

= {(x,?): e X, 2ze B, 2< ()},
E, ={w,2)eZ: l —e<<e<< 1},

It is obvious that u xXP-almost all points (X,, Z,) lie in the set =Z. The
e-optimal set X, can be obtained as the projection of =, on X.

Now the theorem will follow from the fact that with probability one
there exists an integer N such that (Xy, Zy)e &, and Z, is an “absorbing”
set, i.e.,

P{(Xn+17 Zn-}—l)e Eal Xn =, Zn = z} =1

whenever (x, 2)e Z,. The latter part of this statement is obvious by the
very definition (16) of the process. To prove the first part of the state-
ment consider the probability P{(X,,,,Z,,,) e Z.| X, = x,Z, =z} for
(z, 2)e £, where Z¢ denotes the set & — Z,. Under the hypothesis (x, 2)e
¢ = the event {(X,,,,Z,,,)¢ Z,} may occur if and only if U, > w(z),
ne X, and Y, > 2. The events {U, > w(2)} and {§,¢ X, and Y, > 2}
are conditionally (given (X,,Z,)) independent. For P{U, > w(z)} we
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have
P{U,>w(2)} =1—wE@)=1—w(l—e),"

which is positive. For the probability of the event {£,e X, and ¥, > 2}
we have

P{t,e %, and Y, >z} = [P{¥, >z[¢, = 2}Q(do)
«%g

fP{Y > 2}Q (dx) > fP{Y 1—e}Q(dw).

From the definition of the set X, we have u(X,) > 0, and because of the
dominance of @ we have Q(.X,) > 0 for any ¢ > 0.

Let xe.,X,. Then I(x)>1—¢/2. But I(z) = esssup¥,, so that
P{Y_,>1l(z)—e[2} > 0. It follows that P{Y,>1—¢} is positive for
ze ,X,, which in turn is a @-positive subset of X,. Thus the integral
e{P {Y,>1—€}@(dz) is positive. Denote the positive number [1 —w (I —¢)]:

fP{Yz/ I —&}Q(dz) by n; so we have proved that
P{(Xp41yZp)eE| X, =2,2, =2} 29> 0

for u xP-almost all (x, 2)e 5%

The event {(X,L,Z Ye J} may occur if and only if (X,, Z,)e E for
all k =1,2,...,n—1. Hence we have

P{(X,, Z)e B = [P{(Xyy Z,)c B\X,_, = @, Z,_,= 2} P(dw x d2)

=¢

<(1 _W)P{(Xn—u Zn—l)‘ E:},

and by iteration

P{X,, Z,)e B} < (1—n)".
Now

P{limsup[(X,, Z,)e 5]} = llmP { U [(X,, Z,)e 2]}

n=m

<lim ) P{(X,,Z,)e 53}

<lm }'(1—nr,

M0 p—m

so that P{limsup [(X,, Z,)¢ Z;]} = 0, which proves the theorem. m
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6. A Monte Carlo method

Hitherto we have been constructing convergent processes (X,
n =1,2,...) with limit distributions which are in a sense concentrated
at the set X,. An idea adapted from Monte Carlo methods enables us to
construct the process (X,,n =1,2,...) as a sequence of independent
identically distributed r.v.’s, the distribution P{X,e S}, SeB, being
in the sense of Theorems 2 and 3 concentrated “near” the higher values
of F.

Let @ be the uniform distribution on (X, B, u) andlet (V,, n=1,2,...)
be the sequence of independent identically distributed real-valued r.v.’s.
Consider the following construction: sample a point £, e X according to the
distribution ¢ and observe the r.v. Y, . Sample ther.v. V,. If V, < ¥, ,
put X, = £,; otherwise repeat the <amp11ng of £ and V,.

The above procedure is a generalization of the well-known rejection
technique suggested by J. von Neumann [12] in connection with random
number generators and used for calculation of the global maximum by
Jermakov [8] and independently by Zielinski [19]; the current general-
ization comnsists in the fact that F(x) is observed by the r.v. ¥, . An ap-
propriate result is given in Theorem 5 below.

THUEOREM 5. Suppose that (i) & is a r.v. with the distribution Q which s
uniform on (X,B, u); (i) {Y,,zeX} is a family of r.v.’s defined as in
(A3, a and b); (iii) the distribution function G of the r.v. Y, — F(x) is strictly
increasing in an interval containing zero; (iv) V is a real valued r.v. with
distribution function G, (v) = P{V < v} which is strictly increasing in an
interval (Fo— 08, Fo), 6> 0. Let Q, = {w: Y., (0)>= V(w)} and suppose
P(82,) > 0. Consider the probability space (£2,,U,, P,) constructed as the
truncation of (2, W, P). Then the distribution of the r.v. X = £|8Q, is absol-
utely continuous with respect to u and its mode coincides with the global
maximum of the function F.

Proof. Write P(£,) = A~". Then for 4¢%,
Po{XcA) = iP{éc A, ¥, > V)
=2 fP{Ye ViE = 2}Q(dw)
—).fQ(da: [PX,>TVIE =2,V =n0}d@p.
By (A3, b) we have P{Y,>V| £ =2,V =0} =1—-G(v—F(x)) and

hence

Py{Xed} =1 [Qdw) [[1—G(0—F(a))]dGy.
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By Q(dx) = u(dz)/u(X) it follows that P, € x4 and the density P, is pro-
portional u-almost everywhere to

C(z) = [[L—G (v —F(2))] dGy.

Let 6 be a positive number such that G is strictly increasing in the in-
terval (F,— 46, F, and G is strictly increasing in (—4, §). Denote
f[1—G(v—F,)]dG, by C,. To see that C(z) < C, whenever F(z) < F,
it is obviously sufficient to prove that C(z) < C, for x satisfying the in-
equality 0 < F,— F(x) < 8. Take an x satisfying this inequality. For
every ve (F,—d,F,) we have —d<v—F,<v—F(xr) <, and conse-
quently G(v—F,) < G(v—F(x)). Hence C(x)< C, which proves the
theorem. m

The theorem just proved enables us to construct the sequence of
r.v.’s X, distributed as X above. Then the problem of estimating-the global
maximum of F reduces to a purely statistical (although rather difficult)
problem of estimating the mode of the r.v. X by using the sequence
(X,,» =1,2,...)as a ra_dom sample.



References

[1] 8. H. Brooks, A discussion of random methods for seeking mazima, Opns. 6 (1958)
pp. 244-251.

[2] J. L. Doob, Stochastic processes, Wiley and Sons 1953.

[3] M. Driml and O. Han8, On a randomized oplimization procedure, Trans. 4- th
Praque Conf. on Information Theory, Statistical Decision Functions, Random
Processes, Prague 1967.

(4] V. Fabian, Stockastic approximation of minima with improved asymptotic speed,
Ann. Math. Statist. 38 (1967), pp. 191-200.

[6] — Stochastic approximation, In: Optimizing methods in statistics, Ed. J. S. Rus-
tagi. Academic Press, 1971.

[6] B. II. XapuaMoB, O6 00Hom anzopumme cmoxacmuuecko20 ROUCKA MAGKCUMYMA 8 demepMmu-
Huposanuom nose, Tpyart MaTeM. HHCTHTYTa UM. B. A. Crexnosa LXXIX (1965), pp. 71-75.

[7] C. C. Heyde, On martingale limit theory and strong convergence resulls for stochastic
approvimation procedures, Stochastic Processes and their Applications 2 (1974),
pp. 359-370.

[8] S. M. Jermakow, Metoda Monte Carlo i zagadnienta pokrewne, PWN, War-
szawa 1976.

[9] B.T. KapMaHOB, O cx00umocmu memooda CAYYatiHO20 NOUCKA 8 BBINYKABLIX 3a0ayax Mul-
musayuu, Teopus BepoAT. U ee mpuMeH., XIX, 4 (1974) pp. 817-824.

[10] J. Kiefer and J. Wolfowitz, Slochastic estimation of the maximum of a regres-
sion function, Ann. Math. Statist. 23 (1952), pp. 462-466.

[11] P. Major, A law of the iterated logarithm for the Robbins—Monro method, Stud.
sci. math. Hung. 8, 1-2 (1973), pp. 95-102.

[12] J. von Neumann, Various technique used in connection with random d@gzts, Nat.
Bur. Stand. Appl. Math. Ser. 12 (1951), pp. 36-38.

[13] B. T. IlepexpecT, O6 0dnoit adanmuenoii cxeme zaobasvnozo noucka, YMH 29, 3 (1974),
PP. 223-224.

[14] 1. A. Pactpurun, Cucmemsr 3xcmpemanvHozo ynpas.enuA, ,,Hayka”, Mocksa 1974.

[15] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math.
Statist. 22 (1951), pp. 400-407.

[16] 3. M. Batc6opn, A. B. FOxun, MHo203KcmpemaibHar cmMoXacmu4ecKan annpoxkcumaius,
H3s. AH CCCP, Cep. Texu. xabepHetuka. 5 (1968), pp. 3—~13.

[17] 3. M. Baiic6opa, A. b. FOaun, Cnoxacmuueckan annpokcumayus 013 MHO203KCmMpeMae-
HbIX 3a0au 6@ 2uavbepmosom npocmpanncmee, JAH CCCP 181, 5 (1968), pp. 1034-1037.

[18] M. T. Wasan, Stochastic approzimation, Cambridge 1969. '

[19] R. Zielifiski, On convergence of a randomized optimizalion procedure, Algorytiny
7, 12 (1970), pp. 29-32.

[20] — A Monte Carlo estimation of the maximum of a funclion, ibidem 7, 13 (1870),
pp. 5-7.

[21] — A randomized Kiefer—Wolfowitz procedure, Europcan Mceting of Statisticians
and 7-th Prague Conference on Information Theory, Statistical Decision Functions
and Randowm Drocesses, Praguc 1974.



