A. Generalized affine symmetric spaces of order 3.......................... 71 B. Generalized affine symmetric spaces of order 4.................................. 73 C. Generalized affine symmetric spaces of infinite order........................ 73
References and bibliography............................................................................. 77
[1] M. Berger, Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup. 74 (1957), pp. 85-177.
[2] M. Cahen and N. Wallach, Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (1970), pp. 585-591.
[3] A. S. Fedenko, Spaces with symmetries (in russian), Izd. BGU Minsk, 1977.
[4] P. J. Graham and A. J. Ledger, s-regular manifolds, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 133-144.
[5] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry 7 (1972) (3-4), pp. 343-369.
[6] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York-London 1962.
[7] V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional Analiz i Priloženia 3 (1969), pp. 94-96.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, New York-London, Vol. I 1963, Vol. II 1969.
[9] O. Kowalski, Riemannian manifolds with general symmetries, Math. Z. 136 (1974), pp. 137-150.
[10] O. Kowalski, Smooth and affine s-manifolds, Period. Math. Hung. 8 (3-4) (1977), pp. 299-311.
[11] O. Kowalski, Generalized affine symmetric spaces, Math. Nachr. 80 (1977), pp. 205-208.
[12] O. Kowalski, Classification of generalized symmetric Riemannian spaces of dimension n ≤ 5, Rozpravy CSAV 85 (8), (1975).
[13] A. J. Ledger and M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry 2 (4) (1968), pp. 451-459.
[14] A. J. Ledger and B. Pettit, Classification of metrizable regular s-manifolds with integrable symmetry tensor field, J. Math. Soc. Japan 28 (1976), pp. 668-675.
[15] O. Loos, Symmetric spaces. Vol. I (General Theory), New York-Amsterdam 1969.
[16] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), pp. 33-65.
[17] S. Węgrzynowski, Representation of generalized, affine symmetric spaces by s-structures, Demonstratic Math. 9 (1976), pp. 707-727.
[18] S. Węgrzynowski, Disconnected regular s-manifolds, Comment. Math. Univ. Carolinae in Prague, 22 (3) (1981).
[19] S. Węgrzynowski, Parallel and non-parallel s-structures on Euclidean spaces, Czechoslovak Math. J. (to appear).