MAPPINGS AND INDUCTIVE INVARIANTS

BY

CALVIN F. K. JUNG (BANGKOK)

1. Introduction. All spaces considered are presumed to be separable metrizable.

For any space \(X \), the inductive invariant \(\text{loc com} X \) is defined as follows:
\[\text{loc com} X = -1 \text{ if and only if } X \text{ is locally compact and, for } n \geq 0, \]
\[\text{loc com} X \leq n \text{ if each point of } X \text{ has arbitrarily small neighborhoods } U \]
in \(X \) with \(\text{loc com} \text{Fr} U \leq n - 1 \).

Moreover, the deficiency of \(X \), \(\text{def} X \), is defined to be the integer
\[\min \{ \dim (\gamma X - X) | \gamma X \text{ is a compactification of } X \} \].

Lelek (see [3], Theorem 3.2) proved the following interesting result:

1.1. Theorem. If \(f \) is a continuous mapping of a space \(X \) such that
\(f^{-1}(y) \) is locally compact for each \(y \in f(X) \), then
\[\dim X \leq \dim f(X) + \max \{ \dim f, \text{def} X \} \].

At the same time, Lelek (see [3], P 469) posed the following question:

1.2. Question. If \(f \) is a continuous mapping of \(X \), is it true that
\[\dim X \leq \dim f(X) + \max \{ \dim f, \text{def} X \} + \text{loc com} f + 1 \]?

As usual, we write
\[\dim f = \max \{ \dim f^{-1}(y) | y \in f(X) \} \]
and
\[\text{loc com} f = \max \{ \text{loc com} f^{-1}(y) | y \in f(X) \} \].

This paper originated from an attempt to answer Question 1.2. In fact, we obtain an affirmative answer to this question in the case \(\text{Fr} f^{-1}(y) \) is locally compact for each \(y \) in \(f(X) \). It should be pointed out that an affirmative answer to this question has already been obtained by Nishiura in a paper [4]. However, in the case we considered here, we obtain a stronger result (see Main Theorem 3). The result will be a consequence of a generalization of Theorem 1.1.
2. Some properties of loc com and def. The following lemmas, whose easy proofs are omitted, are needed for the proof of our main result:

2.1. Lemma. If A is an open subset of a space X, then

$$\text{loc com } A \leq \text{loc com } X.$$

2.2. Lemma. If $\{X_\alpha | \alpha \in \mathcal{A}\}$ is a covering of X consisting of pairwise disjoint open subsets of X, then

$$\text{loc com } X \leq \max \{\text{loc com } X_\alpha | \alpha \in \mathcal{A}\}.$$

2.3. Lemma ([1], Theorem 4.2.1). If A is a closed subset of a space X, then

$$\text{def } A \leq \text{def } X.$$

3. Main Theorem. If f is a continuous mapping of a finite dimensional space X such that $\text{Fr } f^{-1}(y)$ is locally compact for each $y \in f(X)$, then

$$\dim X \leq \max \{\text{loc com } f + \dim f + 1, \dim f(X) + \max \{\dim f, \text{def } X\}\}.$$

Proof. Let

$$X_0 = \bigcup_{y \in f(X)} \text{int } f^{-1}(y),$$

and let

$$X_1 = \bigcup_{y \in f(X)} \text{Fr } f^{-1}(y).$$

Then X_0 is open in X and $X_1 = X - X_0$ is closed in X, and $X = X_0 \cup X_1$, so that

$$\dim X = \max \{\dim X_0, \dim X_1\}$$

by [2], Corollary 2b, p. 289.

The restriction

$$g = f|_{X_1}: X_1 \rightarrow f(X_1)$$

is continuous with $g^{-1}(y) = \text{Fr } f^{-1}(y)$ locally compact for each $y \in f(X_1)$, by assumption. By Theorem 1.1,

$$\dim X_1 \leq \dim f(X_1) + \max \{\dim g, \text{def } X_1\} \leq \dim f(X) + \max \{\dim f, \text{def } X\},$$

where the last inequality follows from Lemma 2.3.

On the other hand, for each compact subset C of X_0, there exists a finite number of y's, say y_1, y_2, \ldots, y_k, such that

$$C = \bigcup_{i=1}^k \text{int } f^{-1}(y_i),$$
so that, by [2], Corollary 2b, p. 289,
\[\dim C \leq \dim \bigcup_{i=1}^{k} \operatorname{int} f^{-1}(y_i) \]
\[\leq \max \{ \dim \operatorname{int} f^{-1}(y_i) \mid i = 1, 2, \ldots, k \} \]
\[\leq \max \{ \dim f^{-1}(y_i) \mid i = 1, 2, \ldots, k \} \leq \dim f. \]

Hence, by [3], Section 2, and since \(\dim X_0 \leq \dim X < +\infty \),
\[\dim X_0 \leq \operatorname{subcom} X_0 + \dim f + 1 \leq \operatorname{loccom} X_0 + \dim f + 1. \]

By Lemmas 2.1 and 2.2,
\[\operatorname{loccom} X_0 \leq \max \{ \operatorname{loccom} \operatorname{int} f^{-1}(y) \mid y \in f(X) \} \]
\[\leq \max \{ \operatorname{loccom} f^{-1}(y) \mid y \in f(X) \} = \operatorname{loccom} f, \]
so that
\[\dim X_0 \leq \operatorname{loccom} f + \dim f + 1. \]

Putting things together, we have
\[\dim X = \max \{ \dim X_0, \dim X_1 \} \]
\[\leq \max \{ \operatorname{loccom} f + \dim f + 1, \dim f(X) + \max \{ \dim f, \operatorname{def} X \} \}. \]

This completes the proof of the theorem.

COROLLARY. If \(f \) is a continuous mapping of the finite dimensional space of \(X \) with \(\operatorname{Fr} f^{-1}(y) \) locally compact for each \(y \in f(X) \), then
\[\dim X \leq \dim f(X) + \max \{ \dim f, \operatorname{def} X \} + \operatorname{loccom} f + 1. \]

REFERENCES

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
CHULALONGKORN UNIVERSITY
BANGKOK, THAILAND

Reçu par la Rédaction le 26. 10. 1971