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Introduction

In this paper we are concerned with the integrable solutions of func-
tional equations in a single variable. The functional equations which
appear in this paper have been thoroughly investigated in many classes
of functions, such as continuous, differentiable, analytic functions, etc.
(see [12] and the bibliography therein). Concerning the integrable solu-
tions of functional equations, the situation is different. There are two
papers on this subject. In [16] a particular case of the linear functional
equation was considered, and in [13] M. Kuczma investigated the uni-
queness of integrable solutions of the homogeneous linear equation.

In the first chapter of the present paper we quote some fixed point
theorems due to Browder [4], Kirk [11], and Boyd and Wong [3]. More-
over, we give a contribution to the theorem of Boyd and Wong, as well
as proof of a result which has been published (without proof) in [17].

In Chapters 2-5 we consider the Lebesgue integrable solutions, in
turn for linear equations of the 1-st order, non-linear equations of the
1-st order, systems of equations and for equations of higher orders.

In the last chapter we examine solutions integrable with respect
to general measure for a linear equation of order 1.

Moreover, in Chapters 2 and 6 we apply some of the above results
in order to obtain absolutely continuous solutions of a special linear
equation. These results are then applied to a Goursat problem for a hyper-
bolic partial differential equation.

0. Explanatory notes, definitions and a léemma

Let R be the set of real numbers and write B = Ru{— oo, + oo}.
Let (X, 8, u) be a measure space..For a p > 0 we denote by L (X, 8, u)
the set of all S-measurable functions ¢: X—R such that [|p|°du < .

X

The relation “~” in L?(X, S, u) defined as follows:
p~p, I @, = 952 a.e. in X

is an equivalence. We denote by L?(X, 8, u) the set L?(X, 8, u)/~ and
by [#] the class of equivalence of & pe L7 (X, §, u).
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It is known that for every p, 0 < p < 1, the space L*(X, 8, u) with
the metric

elpnly [92)) = [lo1—gal®dp
X

is a complete metric space, and for p > 1, L”(X, 8, u) with the norm

el = ( [ lpi®du)"

is a Banach space. Put
1 <<l
a(p) =| ’ p y
l/p, p=1.

For every p >0
([lePau)™®,  [p1eLP(X, 8, ),
X

8 & paranorm. In particular, we have the following Minkowski’s inequality
o(p)
( f s +%|pdﬂ)a(m < (fl‘?ﬂpdﬂ)a(p’ + ( f lpal® d,u) @
X X e

for ¢,, p.e LP(X, 8, u). The convergence of ¢, to ¢ in the sense of this
paranorm denotes the convergence in measure. But we have the following:

LemmA 0.1. Let @, e LP(X, 8, u), n =1,2,... If

i‘( [ P du)® < oo,
X

[ LD

then the series ) @, converges a.e. in X and its sum o belongs to L? (X, 8, p).

fn=l

Proof. Suppose that 0 < p < 1. By the integral test of convergence
oo o
([22], p. 277), the series ) |p,|” converges a.e.in X. Since 0 < p < 1, } g,
il a0 n=l
converges a.e. in X and, consequently, so does the series 2 ?s- Now, we
have by Fatou’s lemma, n=1

i m
2!Ia;wlf'dy = Jiﬂ,é%] dpgliﬂinfﬂg%l» &
m 00
<limint [ YigPap = Y [lgsdde < o,
M0 X kel —x

which completes the proof for pe (0, 1).
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The proof for p > 1 is similar, and can be obtained by a simple
modification of the proof of Theorem 1.3, p. 214,in[1]. f X = (a,d) c R
and px is the Lebesgue measure, we write L?(a, b) and L”(a, b) instead
of L?(X,S8,u) and L*(X, 8, p).

To simplify the formulation of the results, in the sequel we assume
the following convention. The expression “pe L”(X, 8, z) is a solution
of some functional equation” means, in particular, that after inserting
@ into this equation both its sides are identically equal in X, whereas
the statement “[ple L?(X, S, u) is a solution of some functional equation”
denotes that for every ye [¢], v satisfies this equation a.e. in X. Besides
these conventions, we treat the elements of L?(X, 8, u) as functions.

For A « X put S(4) = {Be8: B c A}. Evidently, S(4) is a o-ring
and. u,, defined by the formula u,(B) = u(B), Be S(4), is a measure.
Suppose that f,: X—>X,k =1,...,n, F: X xB""'>R and u(X)>0.

DEFINITION 0.1. We say that the solution ¢pe¢ LP(X, 8, u) of a fune-
tional equation-

F(2, p(2), o[f1(@)], ..., ¢fal@)]) = 0

depends on an arbitrary function if there exists a set A< S of positive
measure such that for every function g,e LP(4,S8(4), uy) there exists
a pe LP(X, 8, u) satisfying this equation in X and such that ¢ = ¢, in 4.

If h: X xY—-Z, then for every ye¢ Y, the symbol i(-, y) denotes
the function of one variable # defined as follows:

A, 9)(@) =h(z,y), @eX.
The composition of functions f and g is denoted by fog.

1. Some fixed point theorems

1. In our study of integrable solutions of functional equations we
shall apply the well-known Banach’s principle, its generalization given
by Boyd and Wong [3], and some results of Browder {4] and Kirk [11]
(cf. [9] for an elementary proof). '

Let (X, g) be a metric space and write P = {o(x, y): @, y« X}. For
T: X—>X we denote by T" the n-th iterate of T.
THEOREM 1.1 ([3]). Let (X, o) be a complete metric space and let T: X

—~>X satisfy

(1.1) o(Tw, T@/)<V(e(ﬂ3,3/)), @, Yye X,

where y: P—(0, oo)'if upper _semiaonfzimwda from the right on P and satis-
fies y(t) < 1 for all te P\{0} (P denotes the closure of P). Then T has a unique
fived point zy and o(T"x, 3,) tends to O for every ve X.
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Now we shall prove a result which shows that sometimes in Theorem
1.1 the condition of the upper semicontinuity of y may be omitted.

THEOREM 1.2. Let (X, o) be a complete metric space and let T:X->X
satisfy (1.1), where y: (0, 00)—>{0, o) fulfils the following conditions:
y 18 increasing () in (0, o), and imy"(¢) = 0 for every t > 0. Then T has

n—o0
a unique fized point xy and limo(T 2, x,) = 0 for every ze X
N—+00
Proof. For an rz¢ X we put #, = T"w,n =1, 2, ... It follows from

(1.1) by induetion that

Q(wn+11mn)<?’n(9($1r‘v))a n =1$2$°'-1

and, consequently, limg(z, +1,‘mn) = 0. Thus, for an ¢ > 0 we can choose
an n» such that "°%

Q(wn+11 wn) < e—y(¢).

Put K(»,,¢) = {we X: o(zr, 2,) < ¢}. By (1.1) and by the monotonicity
of v, we have for ze¢ K(x,, ¢)

o(Tz, z,) < o(Tz, IT'z,) + o(T2,, z,) < V(Q(zy “"n)) + 0(Tpi1s )
< y(e)+(e—y(e) = e.
This means that T maps K(z,, ¢) into itself, which implies that o(x;, #,,)
< 2¢ for k, m > n. Consequently, {z,} is a Cauchy sequence and hence

converges in view of the completeness of X. By the continuity of T
(resulting from (1.1)), we have

zy, = limg, , =1limTz, = Tlima, = Tx,.

n—>oo n—>o n—>00

The uniqueness of the fixed point is obvious.

Remark. Let (X, o) be a complete metric space and suppose that
T: XX satisfies (1.1) with the function

1, t>1,
1 1 1

y(t) = n+1’ n+1<t<;yn=132:-'-1
o, t=0.

Let us note that all the assumptions of Theorem 1.2 are fulfilled. Since
y is not upper semicontinuous from the right, we cannot apply Theorem
1.1. Meir and Keeler [18] proved a generalization of Theorem 1.1, but

(') Here and in the sequel increasing and decreasing denotes non-decreasing
and nén-increasing, respectively.
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it- does not contain our Theorem 1.2. Moreover, the argument given in
the proof of Theorem 1.2 may be used to obtain a shorter proof of the
theorem in [18], as well as of the result in [3].

Let B denote a Banach space with norm |- |.

DEFINITION 1.1. A Banach space B is called uniformly convexr if
there exists a non-negative function 4: (0, 2)>—(0, 1) such that for some
positive r the inequalities ||| <7, [yl <r and |w—y|l> er imply that

i¥(z+y)l<(1—6(e))r for w,yeB.

Remark 1.1. Clarkson [6] proved that for p > 1 the space L?(X, 8, u)
is uniformly convex.

We quote the following theorem.

THEOREM 1.3 ([4], [11]). Let B be a uniformly conver Banach space
and let K be a non-empty bounded closed and convew subset of B. If a trans-
formation T: K—K fulfils the condition

1Tz — Tyl < llz—yll, z,ye K,
then T has at least one fixed point in K.

2. Now we shall prove a theorem concerning the existence and
- uniqueness of solutions of some systems of equations in metric spaces.
Let (%) be a square matrix with ¢ ¢R, ¢,k =1, ..., n. Define
the sequence of matrices (c}) as follows:
’ 1 Al l ! . ,
c(ll)cg-)t-l,k+.l _024)-1,10(1,)1.;“ i =k,

!

(1.2) di =
I .
c(” ci'-}-l.k+l + "9-1,1 0(1{),,.,.1, i # k,

ihwk=1,...,n—1—1,1=0,...,n—2. Evidently, ¢ is an (n—1) x(n—1)
square matrix.

We start with the following:

LEMMA 1.1. Let ) >0 for i,k =1,...,n,n>2. The system of
inequalities

n

(1.3) Nddn<ddr, i=1,..,mn,
g
has a positive solution r,, ..., r, if and only if
(1.4) M>0, i=1,...,0-0;1=0,...,n-1.

Proof. Suppose that n = 2. Since in the case ¢ = ¢ = 0 the
proof of the lemma is trivial, we assume that one of these numbers, say
o2, is different from 0. Then (1.4) may be written in the form

o o
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Note that the last inequality is fulfilled if and only if there exist positive
numbers 7, and r, such that
o) ra o)
I )
22 1 12

Rewriting the above inequalities in the form
Ara< eQry,  flri< firy,

we get (1.3) for n = 2. Thus the lemma is true for n = 2.
Now suppose that the lemma is valid for n —1, #» > 3, and consider

system (1.3) formed of » inequalities. The first of these inequalities can
be written in the form y

n

1 2
1-5 . 7y 0 .
( ) 0(12) & dlzrk < 7’1

If positive numbers r,, ..., r, satisfy inequalities (1.3), then

o n
(1.6) (so) 01k7k+20(3c)’k< oy, i=2,...,m.
k=2 k=2
k#i

((1.6) is obtained through replacing r, in (1.3) by a smaller value standing
on the left-hand side of (1.5)). Hence we get

2(0"’0&3 i< (@) — o Dr,, =2, ...

K=2
kotd

After taking into account (1.2), the last system of imequalities can be
written in the form

n-1

(1.7) Zogc)rk+1< 0“11’”1, i=1,...,m—1.

k=1
k#1

Thus positive numbers r,, ..., r, fulfil the system of inequalities (1.7).
It follows from the definition of ¢{) for i = k and from (1.7) that ¢ >0,
i =1, ..., n—1, which means that all the numbers ¢{},i,k =1,...,n—1,
are positive. Now from the induction hypothesis we obtain ¢ >0, i =
l,..,%—1;1=2,...,n—1. So we have proved that if the system of
inequalities (1.3) has a positive solution, then inequa.lities (1.4) are fulfilled.
Conversely, if inequalities (1.4) hold, then again by the induction
hypothesis, there exist positive numbers 7,, ..., 7, satisfying (1.7). Pufting
n
Z 0‘:3";: T &

1'1 = )
1 k=3

o9
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where ¢ > 0 is sufficiently small, one can easily verify that the numbers
71y ...y T, Satisfy system (1.3). This completes the proof.

Remark. Lemma 1.1 and Theorem 1.4 have been published in [17]
without proofs.

THEOREM 1.4. Let (X;, ), ¢t =1,...,n, be complele metric spaces
and let T;: Xy x...xX,»X;,4=1,...,n, be mappings. If there exist
numbers 6y, i,k =1,...,n, such thai

n
(1.8) 0l Ts(@1y ooy )y Ti(Fyy .nny By)) < Zaik Ok (Wxy T)
k=1
wk,‘_v'kQXk’ i,k":l,.--,”,
and the numbers
1—ay, t =k,

t,k=1,...,n
oy, i %k, ) ) ey Ty

(1.9) o =

SJulfil the conditions

(1.10) >0, i=1,...,n—-0;1=0,...,0-1,

where ¢} are defined by (1.2), then the system of equations

(1.11) B, = Ty, 0eey @), G =1,.0.,m,

has evaotly one solution z,, ..., z, such that v;e X;, i =1,...,n. For any
arbitrarily fived .’:“e X, i =1,...,n, the sequence of successive approx-
imations

(112) TG = Ty(@yy ey @), mo=0,1,.ey;i=1,.,m

converges and

(1.13) 5 = limz;, i=1,...,n.
m—>o0

e °
Moreover, there exist numbers r; = r(2y, ..., %,) >0 and an 8, 0 < 8
< 1, such that

m+1l m
(1.14) e @y ) <8™ry, t=1,...,mn.

Proof. In view of (1.9) and (1.10), the numbers ¢} are non-negative.
According to Lemma 1.1, there exist positive numbers ry, ..., r, satisfying
the system of inequalities (1.3). It follows from (1.3) and (1.9) that 4, ..., 7,
satisfy

Al

(1.15) Ddagr,<r, i=1,..,n

k=1



12 Integrable solutions of functional equations

Since these inequalities are sharp, there is an 8, 0 < 8 < 1, such that

n
(1.16) Zai,,r,c <s8rg, i=1,...,n.

k=1
Let us note that if r,, ..., r, fulfil (1.15), then so do #ry, ..., tr, for every

0
t > 0. Fix arbitrary z;¢e X;, ¢+ =1, ..., n, and consider the sequence {;i}
defined by (1.12). Increasing, if necessary, the numbers 7, by a constant
functor, we may assume that

1 0
(1.17) (@ m) <1y t=1,...,1n
Now we shall prove estimation (1.14). It follows from (1.17) that (1.14)
holds for m = 0. Suppose for induction that (1.14) is fulfilled for some
m > 0. Then, from (1.12), (1.8), (1.14) and (1.16), we obtain

m+2 m+1 m+1 m
Qt( Tyy D; ) = Qt(T{( 501, ey wn) -Ti(wl’ s mn))

m+1l m m+l .
<2“¢k9k( By y Bp) < Ea.krk ryy t=1,...,n,
k=1 k=1

and induction completes the proof of (1.14).

Now (1.14) yields that, for each 1 < i < n, {z;} is a Cauchy sequence,
and in view of the completeness of (X;, ¢;), there exist x; defined by (1.13).
Since all the transformations 7, are continuous, from (1.13) it follows that
@, 4 =1,...,n, fulfil the system of equations (1.11).

We shall prove that the solution just obtained is unique. Suppose
that =»,,...,2, and ¥,,...,9y, are solutions of system (1.11). Without
loss of generality we can assume that

(@ Yg) <75y, 1 =1,...,m.

Now, from the equations

By =Ti(@y, ooy @)y Y =To(Wry ooy ¥n)y i =1,...,m,
and from (1.8) and (1.16), we obtain by induction
oz, ) <8"r;, m=0,1,...;4i=1,...,n.
Hence ¢;(z;,y,) =0, i =1,...,n which completes the proof of the

theorem.

Remark. In the case m = 2 Theorem 1.4 was proved by Pavaloiu
[19] and Rus [20] by using a different method. ‘

LEMMA 1.2. Let (ay), 4, k =1, ..., n, be a non-negative matriz with
characteristic roots Ay, ..., A,, and let ¢} be defined by (1.9). Then
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(1) the systems of inequalities (1.15) and (1.3) are equivalent;
(i) conditions (1.10) are equivalent o the following:

(1.18) s =max{|4]: i =1,...,n} < 1.

Proof. (i) follows immediately from the definition of ¢{. Note ([8],
p. 365) that if a matrix (a;) is non-negative and its characteristic roots
have the absolute values less than 1, then there exists an ¢ > 0 such that
the matrix (a; + ¢) has the same property. Suppose that a non-negative
matrix (ag) satisfies conditions (1.10). By Lemma 1.1, the system of in-
equalities (1.15) has a positive solution 7, ..., r,. Since these inequalities
are sharp, the numbers r,, ..., r, satisfy

n
2 (Bt e)ym<r, +=1,...,n,
k=1
where ¢ > 0 is sufficiently small. Hence, by Lemma 1.1, the matrix (a,;, +¢)
satisfies (1.10). Therefore we can assume that (@) is positive.

To prove (ii), we first suppose that (1.18) holds. By a theorem of
Perron and Frobenius ([8], pp. 354-355) the number 8 is one of the
characteristic roots of the matrix (a;) and the corresponding eigen-
veetor (r,, ..., 7,) has all coordinates positive. Thus we have

n
(1.19) Dlagre=1sry  i=1,..,m, 1,>0.
k=1
Since 0 < 8 < 1, we see that the positive numbers r,, ..., 7, satisfy system

(1.15). Now, from (i) and Lemma 1.1, it follows that (1.10) must be fulfilled.

Conversely, let conditions (1.10) be fulfilled and suppose that s > 1.
By the theorem of Perron and Frobenius, there exist positive numbers
71y ..., ¥, Such that (1.19) holds, and, consequently, we have

n
(1.20) Dagn=r, i=1,..,n.
k1

Using (1.9) we can write this system of inequalities in the equivalent form

n

(1.21) E'o&‘;zrk> eQr,y, i=1,...,n.
k=1
k#1¢

Since of > 0, the first of these inequalities can be written in the form

n

(1.22) CHRPIC TN

km2
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Replacing in (1.21) for ¢ = 2, ..., n the number r, by the left-hand side
of (1.22), we obtain (by a simple computation)

S oteld + 0> )l =3,

Using (1.2) we can write this system of inequalities in the form

n-—1

2‘4&”’“1 &ty i=1,...,n—1,

kel
ket

Taking into account (1.10), we obtain by induection

n-1

(123) D'f@ru>dry,, i=1,..,0-41=1,..,0-1,
k=1
k#i

Putting in (1.23), | =n—1, we get 0> ofi~Vr,, and consequently, o*~?
< 0. This contradiction proves that 0 <8< 1 and completes the proof
of the lemma.

Now, by Lemma 1.2 and Theorem 1.4, we get

THEOREM 1.5. Let (X, 0;), ¢t =1,...,m, be complete melrio spaces
and let mappings T;: X, X ... XX, —>X‘ samfy (1.8). If the absolute values
of the characteristic roots of (a,k) are less than 1, then system (1.11) has eaactly
one solution z,, ..., =z, such that 2, X;, i =1,...,n. Moreover, for every

.gv,e X 1 =1,...,n, the sequence of successive approvimations (1.12) con-
verges and (1.13) and (1.14) hold.

We shall need the following lemma.

LEMMA 1.3. Let (ay) be a non-'negauve square matric and let the numbers
(1.9) fulle conditions (1.10). If r,, ..., r, satisfy the system of inequalities
(1.20), then 7, <0, i =1,...,n

Proof. By Lemma 1.1, there exist R, >0, ¢ =1,...,n, and an s,
0 < 8 < 1, such that '

n
(1.24) DlagR, <sB, i=1,...,m
k=1

We may assume that

(1.25) <Ry, i1=1,...,1n
COonsequently, the inequalities

(1.26) <8R, i=1,...,n,
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hold for m = 0. Suppose that (1.26) hold for an m > 0. Then by (1.20)
and (1.24), we have

n n
r,lg Za"‘r" < 8m20¢kRk < 8m+l.R‘-
kml k=1

By induction, (1.26) hold for every non-negative integer m. This completes
the proof of the lemma.

2. Integrable solutions of a linear functional
equation of order 1

The general linear functional equation of order n» has the form/(?)

909 +9190f1+ ...+ gp90f, = h,

where g,, f, and b are given and ¢ is an unknown function (cf. Kuczma

[12], p. 27). In this chapter we study the linear equation of order 1. Here
and in the sequel all functions are real-valued.

1. In this section we consider the homogeneous linear functional
equation

(2.1) ¢ = gpof
and the following functional inequality
(2.2) 9l < lgllpof}.

‘We assume that

(2.1) f 8 stricily inoreasing in an interval I = (0,a), 0 < a<< oo;
f and ! are absolutely continuous in I and f(I), respectively; and

(2.3) O<floy<w, wel.
By f* we denote the n-th iterate of f:
PO =0, wel; f*'=fof*, fl=flof" n=0,1,.
Remark 2.1. It follows from (2.i) that:
1. For every xeI, the sequence {f*(®)} is strictly decreasing and
limf™(@) = 0;
n—->00
2. For every interval J = (0, b), & < a, we have f(J) = J;

3. For every posifive integer n, f* is absolutely continuous in I,
and f~" is absolutely continuous in f™(I);

(®) Here and in the sequel the symbol gpof denotes the function g(x)p[f(»)].
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4. f' #0 a.e.(?) in I.

Statements 1-3 are obvious (cf. also [12], p. 21). To prove 4, denote
by m(A) the Lebesgue measure of 4 < E. It follows from (2.i) (ef. [15],
P- 174) that for every measurable set A = I we have

m(f(4)) = Af 5.

Put A = {weI: f'(z) = 0} and suppose that m(4) > 0. Then m(f(4)) = 0,
and consequently, f~! is not absolutely continuous. This contradiction
proves 4.

Remark 2.2. In the sequel we assume the following convention

k-1 k-1
Mao=0, []a=1, k=o0,1,.

fmk i=k
Let w,e I. We pub
Tpt1 =f(oy), n=0,1,...

Now we quote the following three theorems of M. Kuczma [13].

THEOREM 2.1. Let (2.1) be fulfilled, let g be a measurable function in I
and let u be a positive decreasing function on I such that for a certain e I

the series
®© n-1

(2.4) D[] w@
diverges. S’uppoae that for a certain b > 0 and p > 0 we have
(2.5) f=gu ae in (0,D).
If a [ple LP(I) satisfies equation (2.1), then [p] = [0].
THEOREM 2.2. Let conditions (2.i) be fulfilled, let g be a measurable
function in I, and let w be a positive decreasing function on I such that for

& certain xge I series (2.4) converges. Suppose that for a certain b > 0 and
p >0 we have

(2.6) 0< f < I|gPu ae. in (0,D).

Then every measurable function ¢, defined on (z,, 3,) and belonging to
L’((w, iTo)) admits a unique extension to a function ¢ satisfying equation (2.1)
a.e. in I. This evtension is in LP((0, x,)) whenever a,¢ (0, b).

THEOREM 2.3. Under conditions of Theorem 2.2, if, moreover,

infessf [g|™® >0 for every del,
(©.9)

then the extension @ of @, belon‘;]s to L?(0, d) for every de I.

(®) In Chapters 2-5 measure refers to the Lebesgue measure.
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Remark. Some conditions for the convergence or divergence . of
series (2.4) have been given by Kuczma [14].

We shall generalize Theorems 2.1-2.3 as follows.

THEOREM 2.4. Let conditions (2.1) be fulfilled, let g be measurable in
I and let p > 0. Suppose that for a certain xye I the series

oo N—

(2.7) D H #(o),

n=0 i=0
where
#;(2,) = infessf’ |g|~?
(2.8) 0 <x,-+1.&{> g17?,
diverges. If [ple L?(I) satisfies inequality (2.2), then [¢] = [0].

Proof. Since the sequence {z,} is strictly decreasmg (cf. Remark
2.1), we have

(2.9) Figr=3 [ e

=0 Zp 11

for ¢ L?(0, 2,). Suppose that [p]e LP(0, 5,) is a solution of inequality
(2.2). By (2.2) and (2.8), we have

Tp—1 Tpn—-1 Th—1

f lpl? = f pofi*f' > f £ g 1elP = xos(ay) [ 1oIP.

Ta+1 Zn

After n steps we obtain

(2.10) [ s (”x(wo)flcvl” n=1,2,...

Tn+1

In virtue of (2.9) and (2.10), we have

o n-—1

°°>f "»’"|p>(2H%(mo))f|¢I”

n=01{=0

Now it follows from the divergence of series (2.7) that ¢ = 0 a.e. in
(@y, x,). Since

f,‘[] #:(@y) = Zh x,(w.,)+n el wo)(znx,(mk)
n=0 {=0 n=01i=0

(cf. Kuezma [13]), the series
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18 Integrable solutions of functional equations

diverges. Replacing in the above argument the interval (=,,s) by
D41y @)y ¥ =1,2,..., we obtain ¢ = 0 a.e. in (&3,, %), k =1,2,...,
and, consequently, ¢ = 0 a.e. in (0, 2,). Now it follows from the form of
inequality (2.2) that ¢ = 0 a.e. in (z,, a). This completes the proof.

By a simple modification of the proof of Theorem 2 in [13] we get
the following:

THEOREM 2.5. Let conditions (2.i) be fulfilled and let g be measurable
in 1. If for a certain zye I series (2.7) with
(2.11) #¢(w,) = supessf’lg|™® >0, 4=0,1,..,

{Zy41,%9)
oonverges, then the solution pe LF (0, x,) of equation (2.1) depends on an
arbitrary function, viz., for every function e LP{®m,, x,) there evists exactly
one funclion ¢ satisfying equation (2.1) in I suoh that ¢ = @, in (z,, x,).
Moreover, pe L (0, @,).

Theorem 2.3 will be true if we replace “Under conditions of Theorem
2.2” by “Under conditions of Theorem 2.5”. '

Remark 2:3. Suppose that f'lg|™? > 1 a.e. in an interval (0, b),
beI. If [p]e L* (I) is a solution of inequality (2.2), then by Theorem 2.4,
[¢]=[0]in L. If there exist an 8, 0 <8 < 1, and a be I such that 0 < f’'|g|™*
< 8 a.e. in (0, b), then, by Theorem 2.2, the solution ¢ L? (0, 2,), 2, < b,
of equation (2.1) depends on an arbitrary function.

2. Now we confine ourselves to the equation
(2.12) ¢ = @of,

which is a particular case of equation (2.1).

Lemma 2.1. If conditions (2.1) are. fulfilled, then for every funotion
u: I->R, positive, decreasing and such that

f'zu ae inlI,

series (2.4) converges.

Proof. Suppose that series (2.4) diverges. Then it follows from The-
orem 2.1 that [p] = [0] is the unique solution of equation (2.12) belonging
to L? (I). But every function ¢ = const # 0 satisfies equation (2.12) and
[¢le L?(0, a), a < oc. This contradiction completes the proof of the lemma.

Setting # = f’ in Lemma 2.1, we obtain the following:

COROLLARY 2.1. If f fulfils conditions (2.i) and f ¢8 concave tn I, then

the series D) (f) converges a.e. in 1.

A=l
THEOREM 2.6. If conditions (2.i) are fulfilled and f s conwew or oon-
cave in I, then for every de I equation (2.12) has a solution pe L (0, d)
depending on an arbitrary fumdtion.
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Proof. Suppose that f is convex. By (2.i), there exist an 8, 0 < 8 < 1,
and an ¢ > 0 such that 0 < f' < ¢ a.e. in (0, ¢). Hence (cf. Remark 2.1),
0 < f' < 8 a.e. in (0, £) and the theorem follows from Remark 2.3 and The-
orem 2.3.

If f is concave, then by (2.i), we have infessf’ > 0 for gvery del.
(©.9)
Now the theorem follows from Corollary 2.1 and Theorem 2.3.

3. In this section we are going to study the non-homogeneous linear
functional equation

(2.13) @ = geof+h.

We assume

(2.ii) g and h are ‘measurable in I.

We shall prove a few theorems on the existence and uniqueness of
solutions [@]le LP (0, ), zo¢ I, of equation (2.13).

THEOREM 2.7. Let conditions (2.1) and (2.ii) be fulfilled. If there ewvist
an 8, 0 <8< 1, and an d4¢ I such that he L? (0, z,) and

(2.14) 9P <sf, ae in (0,3,

"then equation (2.13) has exactly one solution ttp]e L* (0, z,). This solution
i8 given by the series

(2.15) p = S‘( 1 éof‘) hof,

which converges a.e. in (0, x,).
~  Proof. The part on uniqueness follows immediately from Theorem
2.1. By (2.14), we havefor k =0, 1, ...

zg k-1

k-1 Zo
[J I1 lgof*1?) ihof*P|™® < s@[ [ [17er) [hog*e]
| f° (%) Ihof(P]® = gto¥ [fzk R < (e [ me].

By Lemma 0.1, series (2.15) converges a.e. in (0, #,) and its sum belongs
to L?(0, ,). Now the theorem results from the following:

LEMMA 2.2. Let conditions (2.i) and (2.ii) be fulfilled. If series (2.15)
converges a.e. in (0, z,), @, < a, then its sum ¢ satisfies equation (2.13)
a.e. in (0, z,).

Proof. Let A denote the set of all xe (0, z,) such that series (2.15)
diverges. Therefore A has measure zero. It follows from the absolute
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+ o0

continuity of f and f~! that the set | f*(4) has measure zero. Put
—co

+ o0
B = (0, z)\US(4).
L] + o0
Since f is strictly increasing, f((0, #,)) = (0, %,) and the set (Jf*(4) is

invariant under f, we have f(B) c B, and consequently, if e B, then
series (2.15) converges for « and f(z). Therefore for ¢ B we have

-1 k—1

p(@) = Z ]'] glf @@= Y [] 90 @Irlf* @)1+ hio)

k=0 t=0 k=1 i=0

-
-

k

= D [[9lff @1h[f* (@)1 +h(@)

k=0 i=0

oo k
= g(@) D [] 9[f* @) Ih(f* (@)1 + k()

= y(fv)Z gLf‘“(w 1AL (@)]+ h(@) = g(2)pLf(®)]+h(a).

This completes the proof of the lemma.
Remark. One can easily observe that if series (2.15) converges at
the point # such that g(z) s 0, then it must converge also at the point

f(=).
THEOREM 2.8. Let conditions (2.i) and (2.ii) be fulfilled. If there emist.
an 8, 0 < 8 < 1, -and an z,¢e I such that he L” (0, z,) and

g(@)h[f(x)]

(2.16) o)

<& ae in (0,z),

then equation (2.13) has at least one solution [p]e L (0, ®,). This solution
i8 given by formula (2.15). Moreover,

a. if series (2.7) defined by (2.8) diverges, then ¢ defined by (2.15)
establishes the unique sulution of equation (2.13) in L” (0, x,);

b. if series (2.7) defined by (2.11) converges, then the solution e L* (0, x,)
of equation (2.13) depends an on arbitrary function.

Proof. Since

, LI R )
H I @A @)] = (n o ),
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we have, from (2.16),

k-1
([T 190 @) B[4 @)1 < s*|a(@)}  ae. in (0,), k=0,1,...

i=0

Now using Lemma 0.1, we can easily verify that series (2.15) converges
a.e. in (0, z,) and its sum ¢ belongs to L? (0, ,). By Lemma 2.2, ¢ satisfies
equation (2.13) a.e. in (0, z,). In order to prove a and b it suffices to apply
Theorems 2.4 and 2.5, respectively.

THEOREM 2.9. Let conditions (2.1) and (2.ii) be fulfilled. If there exisls
an 2y I such that he L* (0, x,) and

oo k—1 T )
(2.17) ST ) f we]” < o,
k=0 i=0 0

where
(2.18) N = s?pe)SS(f')“lyI”, i =0,1,...,
0,z;
then equation (2.13) has at least one solution [@]e LF(0, x,). This solution

i8 given by formula (2.15). Moreover,
a. if there exists an M > 0 such that

(2.19) []n<, k=12,

or series (2.7) defined by (2.8) diverges, then solution (2.15) is unique in
L7 (0, x,);

b. if series (2.7) defined by (2.11.) converges, then the solution ¢ ¢ L¥ (0, x,)
of equation (2.13) depends on an arbitrary function.

Proof. From (2.18) we have

zq k-1 k-1 =z
(f TTeosminof e\ ® < ([ n [ mofir(fty)”
3 w0 =0 0
k-1 Ty
~ ([ n:] wr)®.

Now, from the convergence of series (2.17) and from Lemma 0.1, follows
the first part of the theorem.

Let us note that if ¢ is a solution of equation (2.13), then

n n k-1
(2.20) t;o=(Ugof‘)qoof”“+2(”gof‘)hof", n=20,1,...

k=0 i=0



22 Integrable solutions of funotional equations

If e L7 (0, x,), then, by (2.18) and (2.19), we have

f "|[ToosP 100 < ([]n) [ toor=e [ o
0 {=0 is 3 11
Tn+1

Zo
<M [ lgofrP(mtYy =M [ ol
0 0

éince lim z, = 0, it follows that the first cc;mponent of (2.20) tends to

fn—oo

zero in measure. The remaining component of (2.20) is a partial sum of
geries (2.15) which, as we have proved, tends to ¢ given by (2.15) a.e. in
(0, @,). Thus, when n— oo, the right-hand side of (2.20) tends to the sum
of series (2.15) in measure, and, consequently, ¢ is uniquely determined.
The remaining part of a and b follows from Theorems 2.4 and 2.5, res-
pectively.

COROLLARY 2.2. Let (2.i), (2.1i) and (2.19) be fulfilled. If ¢ L(0, x,)
is a solution of equation (2.13), then it must be of the form (2.15).

THEEOREM 2.10. Let (2.i) and (2.ii) be fulfilled. If there exist a number
8>1 and an Tye I suoh that

(2.21) lg\’* = 8f a.e. in (0, z,)
and the series

oo Tr hOf_l o\ o7y
2.22) 2( f _ )
( gOf 1

k=1 " zpiq
converges, then equation (2.13) has a solution ge L7(0, x,) depending on
an arbitrary function.
This theorem can be deduced from Theorem 3.8.

4. Now we shall apply the results of the preceding section to a study
of absolutely continuous solutions of the equation

(2.23) ® = sdof +H.

LEMMA 2.3. Let (2.i) be fulfilled and let f(0) = 0. Suppose that H:
{0, a)—~>R. Then

a. if —1 <8< 1, equation (2.23) has at most one absolutely continuous
solution in {0, a);

b. if 8 =1, equation (2.23) has at most a one-parameter family of
absolutely continuous solutions in (0, a).

Proof. If &,: (0,a)—>R, i =1, 2, are abslutely continuous solutions
of equation (2.23), then @ = &, — P, satisfies the equation

(2.24) P = sdof,
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and, consequently, ¢ = @' satisfies the equation

¢ = sf'Pof

and ¢e L'(0, 2,) for every zyel. Put ¢ = 8f' and p = 1. It follows from
Theorem 2.1 that for 8| <1, p = &' = 0 a.e. in I. By the absolute con-
tinuity of &, there exists a constant ¢ such that @ = ¢in (0, a). Inserting
® = ¢ in (2.23), we obtain @ = 0 for —1 < 8 < 1. Consequently, &, = P,
for -1 <8< 1, and ¥, —P, = ¢ for ¢ = 1. This completes the proof of the
lemma. '

THEOREM 2.11. Let (2.i) be fulfilled and let f(0) = 0. Suppose thai
H: {0, a)—>R is absolutely oontinuous.

a. If |8| < 1, then equation (2.23) has evactly one absolutely continuous
solution @: (0, a)—->R. This solution has the form

® = iskHof".

k=0

b. If s =1, H(0) = 0 and the series

(2.25) D) VarH |0, f*(2)

k=0
converges for a certain w,e (0, a), then (2.25) converges for every we (0, a)
and equalion (2.23) has a unique one-parameler family of absolutely con-
tinuous golutions in (0, a). These solutions are given by the formula

00,
(2.26) @ =o+ D Hof*.
' k=0
c. If 8 = —1 and series (2.25) converges for a certain mye (0, a), then

equation (2.23) has exactly one absolutely continuous solution ®: (0, a)—E.
This solution is given by the formula

¢ = Y (~1)Hof*.
k=0
d. Let zye (0, a) and let @y: {(z,, z,»—>R be absolutely continuous and
such that

(2.27) Do (@) = 8Do[f(wo)]+H(mg) (8 #0).

Then there ewists exaotly one function @: (0, a)->R satisfying equation (2.23)
in (0, a) and such that ® = B, in (w,, z,)>. If, moreover, |8| > 1 and H'of
e It ( f(o, a)), then @ is absolutely continuous in {0, a), where ®(0) is assumed
to be H(0) (1—s)™" (in other words, the absolutely continuous solution of
equation (2.23) in (0, a) depends on an arbitrary function).
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Proof. Put » = H' and consider the equation
(2.28) ¢ =sf gof +h.

a. Put ¢ = 8f' and p = 1. Since he L'(0, 2, for every z,e(0, a),
in view of Theorem 2.7 there exists exactly one solution [¢]e L'(0, x,)
of equation (2.28). Moreover, by (2.15), we have

(nf of ) hof* = 23 (%) hof*.

It is easy to verify that the function

k==

O ()= [ p(t)dt+H(0)(1—9)"
0

8

LT R 014+ H(0)(1—8)

l

8

L
t
°

)

| H'(t)ydt+H(0)(1—s)™*

f
De
ov_.} oo“ "

8

&
[
°

Ma

(HIf* ()] HO)s* + H(O)(1—9)" = D s*H[f¥(=)]
k k=0

(the termwise integration is justified by Theorem 6.7, [22], p. 277), is
an absolutely continuous solution of equation (2.23). The uniqueness of
the solution @ follows from Lemma 2.3.

b. Let us take an xz,¢ I such that series (2.25) converges for x = z,
and apply Theorem 2.9 with p = 1. We have 9; =1, ¢ =0, 1, ... Then,
by the well-known property of absolutely continuous functions (cf. [21],
p. 404, Theorem 5.6), series (2.17) takes the form

ifk lh| = Zm:fk |H'| = j‘VarHl(O,f"(wo))
0 k=00

k=0 k=0

and, consequently, it is convergent. According to Theorcm 2.9, there
exists & solution ¢ of equation (2.28) such that [¢]e L*(0, z,) for every
Zy,€ (0,4) and, moreover,

oo k-1 o0
= ,,Z( [l of)hos* = kZH'Of"(f")’-

The functions

¢(m)=c+fq: =c+ S‘Hof"
0

k=0
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.(where ¢ is a parameter) are absolutely continuous in (0, ¢) and satisfy
equation (2.23). |

Uniqueness is ensured by Lemma 2.3.

c. The proof is similar to that of b.

d. Let us put ¢, = &, in (z,, #,). Since |s|] > 1 and the integrability
of H'of ! imply all the conditions of Theorem 2.10, there exists exactly
one solution ¢ e L'(0, x,) such that ¢ = ¢, in (x,, #,). Now we can uniquely
extend ¢ to a solution onto the whole interval (0, ), in the obvious manner.-
Denote this extension again by ¢. Integrating both sides of equation (2.28)
in turn over the intervals (e, ™" (%))y -+ +y (f~ (@) F " (%)) ..., We see
that ¢e L*(0, b) for every be (0, a). Consequently, the function

T
®(2) = [9+@y(a), e (0,a),
To
is absolutely continuous in {0, a) and @ = @, in {z,, 0,). Moreover, hy
(2.28) and (2.27) for »¢ {0, a); we have

T

®(2) = f«p+¢o(mo [(sf gof + H') +®y(w,)

Zo To
J(2)
=s [ ¢+ H(@)—H(,) + Do(a,)
f(zg)
. Zg flz)
=s( [ o+ [ o)+ H@)~Hiz)+Py(a0)
J(zg) xy

() J(xg)
~3 f ¢+H(m)+(¢owo>—sf ¢ —H (o))

_ w0l H (w)+(¢o(a'o)—s€°o[f @0)]— H (20))
= s®[f(=)]+ H ().

Remark 2.6. If H'e L'(I) and there is a K >0 such that f'< K
a.e. in I, then H'of 'eL'(f(I)). Indeed, we have

[ of < [IHof(f YK =K f|H'|< 0.
(0] 7y

5. In this section we give an application of Theorem 2.11 to the Gour-
sat problem for a hyperbolic partial differential equation.

We assume the following conditions:

1. D ={(z,y): 0<2<a,, 0<y<ay}, a,>0,a,>0, and G: D
—R is an integrable functlon with respect to the two-dimensional Lebesgue
measure;
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2. fi: €0, a,)—>(0, ay), fi: {0, a;>—>0, &, are strictly increasing and

absolutely continuous functions and f;!,f;! are absolutely continuous

in f,(<0, a,>) and f;(<0, ay)), respectively ;

3. fi(0) = £, (0) and the curves y = f, (), <0, a,); @ = fy(¥), ye
{0, ay,> have no point in common except the origin;

4. P: {0, a,)—>R, Q: 0, a3>—~R are absolutely continuous in {0, ai)
and (0, a,), respectively, and such that P(0) = Q(0).

The Goursat problem: Find a funetion #: D—R possessing Lebesgue
integrable derivatives u,, and u,,, %, = 4, a.e. in D, satisfying the equa-
tion

(2.29) Uy = G a.e. in D,
and the conditions

(2.30) u(z, fi(@)) = P(z) for ze{0,a), T
(2.31) w(fa(®),9) =Q(y) for ye (0, a5).

Integrating both sides of equation (2.29), we obtain

(2.32) u(»,y) = U2, y)+P(2)+¥(y),

where

(2.33) U(w,y) =ff0(s,t)dedt,
00

and @ and ¥ are absolutely continuous functions to be determined. Put

(2.34) V(2) =P(2)—Ulo, fi(a)), W) =Q—TUl(fr(n),9)

We shall prove the following:

LEMMA 2.4. Let 1 be fulfilled and suppose that f,: (0, a,>—0, ay)
(resp. fi: <0, a3)—>(0, a,>) t8 absolutely ocontinuwous. If there exists an
M >0 such that

ay

(2.35) flG(w,y)ldng a.e. in {0,a,)
and

(2.36) J llG(m,y)ldwg M ae. in 0,6y,

then the function U(d,f,(x)) (resp. U(f.(y), y)) i8 absolutely continuous
in <0, a,) (resp. <0, ay)).
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Proof. By (2.35) and (2.36), we have
I z h® z @

Ule, fi(2) - U(E, fi(®)] = Udsf (8, t)dz-jdsf (s, 1)dt|

z h@ z h@
|f(f (s, t)dt) ds—f( f G(s,t)ds)dt|
z 0 0 I 1EH
z a h@)  a
<|f(f 1@, nat)ds| +| [ (f G (s, t)lds)dtl
z 0 n@ 0

< Mio—7%| + M|f,(x) —f1(F)!.

This inequality easily implies the absolute continuity of U(w,f(#)).
(For U(fy(y), y) the proof is analogous.)

Suppose that inequalities (2.35) and (2.36) are fulfilled. Then, by 2, 4
and Lemma 2.4, the functions V and W defined by (2.34) are absolutely
continuous in (0, a4, and (0, a,), respectively.

Now (2.32), (2.30) and (2.31) lead to the following system of equations
for & and Y:

-(2.37) P(2)+¥[fr(@)] = Vo), Plfa(y)]+¥(y) = W(y),
whence the elimination of ¥ yields the equation

(2.38) P(x) = P{fa[[i(x)]} + V(®) - W[fi(#)], @e0,a).
Putting in (2.38)

(2.39) ' f=fofi, H=V-Wof,
we obtain the equation
(2.40) é =dof+H,

i.e. equation (2.23) with 8 = 1. By 3, 0 < f(#) < « for z¢ (0, a,). This to-
gether with 2 shows that f satisfies conditions (2.i). Moreover, it follows
from (2.34), (2.33), 4 and from the definition of H that H(0) = 0. In view
of Lemma 2.3, equation (2.40) has at most a2 one-parameter family of
absolutely continuous solutions. They must have form (2.26). By (2.30)-
(2.33), we have

®(0) +¥(0) = u(0, 0) = P(0).
Hence, the constant ¢ disappears in (2.32) and we may assume that

¢ = 0. Taking into account Theorem 2.11 b, we get the following:

THEOREM 2.12. If conditions 1-4 are fulfilled, then the Goursat problem
(2.29)~(2.31) has at most one solution. If, besides 14, inequalities (2.35)
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and (2.36) are fulfilled, and series (2.25), where f and H are defined by (2.39),
converges for & certain mqe (0, a,>, then there exists exvactly one solution
u: D—>R of the Goursat problem (2.29)—(2.31). This solution has the form

u(@,y) = Uz, )+ W)+ D, {HIf“@)])—H[*(f,»)]}.
k=0

Remark 2.7. Bielecki and Kisynski [2], making use of equation
(2.40), considered the Goursat problem (2.29)-(2.31) .in the class of func-
tions C'(D) with continuous derivatives u,, and u,, (cf. also [12], p. 102).

Similar functional equations in connection with a more general
Goursat problem occur also in Deimling [7].

3. Integrable solutions of a non-linear functional
equation of order 1

The general functional equation of order 1 has the form (Faz, ¢(z),
<p[f(m)]) = 0, where F and f are given and ¢ is unknown. We confine
ourselves to the less general equations, namely, to the equation ¢(z) = h(m,
o[f(®)]), when we are interested in the uniqueness of solutions, or ¢[f(®)]
= g(, ¢()), when the problem of the dependence of solutions on an
arbitrary funetion is considered.

1. In this gection we formulate the general assumptions. on given
functions for the equation

(3.1) (@) = h(z, ¢[f()]),
and we prove a uniqueness theorem.

We assume: .

(3.i) f is strictly increasing in an interval I = (0, a), 0 < a < oo; f and
! are absolutely continuous in I and f(I), respectively; and

0<flxy<w>, =el.

(3.ii) h: I x R— R fulfils the following conditions: for every ye R, h(-, y)

i8 measurable in I; for almost every =z in I, h(z, -): R—R is continuous.

Remark 3.1. Carathéodory [5] (cf. also llIparun [23]) proved that
if conditions (3.ii) are fulfilled, then for every measurable function ¢:
IR, the function k(z, ¢(2)) is measurable in I.

(8.ili) There emist an zyc I and a non-negative fundtion 7: (0, @) >R
such that

(3.2)  |h(@,y)—h(z, P <n(@)|y—F ae in (0,3), Y jek.
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For the point z, we define the sequence {a;}:
Tepr =fl@), k=0,1,...
THEOREM 3.1. Let conditions (3.i)-(3.iii) be fulfilled. Put

(3.3) x(2,) =infess fg?, i=01,...
Z{410%3)

If series (2.7) diverges, then equation (3.1) has at most one solution
[ple LP(I).

Proof. Suppose that [¢,], [p:]e L¥(I) satisfy equation (3.1). It fol-
lows from (3.2) that

@1 (@) — @a (@) = |h(z, 91 [f(2)]) —h (2, ps[f(2)])]
< (@) [f (@)1 —@a [f (@) ]I a.e. in (0, x).
Then ¢ = ¢, —¢@, satisfies the inequality
lp(2)| < n(@)lef(2)]l.

By Theorem 2.4, ¢ = 0 a.e. in (0, a). This completes the proof.

COROLLARY 3.1. Let (3.i)—(3.iii) be fulfilled. If there is an ¢ > 0 such
. that

(3.4) <[ ae. in (0,¢),
then equation (3.1) has at most one solution [p]e LP(I).

2. Now we shall prove a few theorems on the existence and uniqueness
of integrable solutions of equation (3.1).

THEOREM 3.2. Let (3.1)—(3.iii) be fulfilled. If h(-, 0)e L?(0, 2,) and
there exists a number 8, 0 < 8 < 1, such that '

(3.5) P <sf  ae in (0,z),

then equation (3.1) has ewactly ome solution [@]e LP(0, x,).

Moreover, for every fized poe L (0, x,), the sequence of successive approz-
imations

(3.6) ,Pra(®) = h(ma %D’(w)]), n=20,1,...
converges a.e. in (0, x,) and

(3.7) p(z) = limg, (z) a.e. in (0, x,).

n—oo

Proof. L?(0,2,) with the metric

o([9]), [pa)) = ([ 192(0) — pa(a)? da)"™

e d
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is & complete metric space. The mapping 7', defined as
(3.8) T(i) = [b(o, pADI)],

maps L*(0, »,) into itself. Indeed, take a [¢]e L*(0, z,). By (3.i), pof
is measurable and, consequently, & (w, ¢[f(«)]) is measurable (cf. Remark
3.1). From (3.2), (3.5) and from the inequality

(a+b)v<(2max(a’b))1’<2p(ap+bp)’ a=>0,0>0,p>0,
we have
|h{o, o F @) [P < (| 2 (2, ¢ [F(2)]) —B(2, 0)| + Ih(e, 0)])°

< (n(@) e [f(2)]1 + (2, 0)])* < 2° (n(a)? lp[f(®)11° + 1A (, 0)I7)
< 2%(s|[f(@)I°f (®) + |k (=, 0)|).

Hence, by (3.8), we get
Zo 2 z9
[ 1TeDP <2°(s f 1p(@)Pda+ [ 1h(w, 0)Pda),

which proves that T maps LP(0, z,) into itself.
Now, in view of (3.2), (3.5) and (3.i), we have for ¢,, pse L?(0, 0,)

(T, Tload) = ([ 1hlo, 9l @)) = he, pal f(@)1) P )
0

Zg .
< (o) 19 L@1—:[f(@]11°f (@) do) ™ < 8" P o([9,], [p4])-

Since s*® < 1, the first part of the theorem follows from Banach’s prin-
ciple. It follows also from this principle that for every g,¢ L?(0, @,) the
sequence {g,} defined by (3.6) tends to ¢ in the sense of the metric, i.e.,
in measure,

To prove the second statement of the theorem, let us nete that

190 11(8) —Pa (@) < " I (@)] 192 [ (@) — @0l (@]F  aee. in (0, 7y)

for » = 0,1, ... This inequality easily follows from (3.2), (3.8) and (3.5)
by induction. Hence, we obtain

([ st =outar ) < o [ o) oo o)™

< (o j " Ipa(2)— pa(@)1? da)™®.
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Now it follows from Lemma 0.1 that the series

Pot+ 2 (Pnt1— @n)
n=1
converges a.e. in (0, @,), and this completes the proof.
THEOREM 3.3. Let (3.i) and (3.ii) be fulfilled. If there exist an w e I
and funotions a,: (0, 2,)—>R, k = 1, 2, such that

(3.9) a;,<ay ae in (0,m3,), a,e LP(0, x,), ¥ = 1lp®;
(310)  ay(@) < hlw, a,[f(®)]), b, aalf(@)]) < as(@) a.e. in (0, 3);
(8.11) a[f(@)] < 91 < ¥: < ap[f(2)] = h(z, ¥1) < h(2, ¥,) a-&l in (0, @,),

then there emist at least one solution [p]e LP(0, @) of equation (3.1). If, more-
over, conditions (3.iii) and (3.4) are fulfilled, then equation (3.1) has exvactly
one solution [ple L*(0, o,).

Proof. It follows by induction from (3.9)-(3.11) that the sequence
(3.6), where ¢, is chosen to be equal to a,, is an increasing sequence of
measurable functions bounded by e, and a, a.e. in (0, 2,). Then the func-

tion ¢ = limg, is defined a.e. in (0, z,), measurable and integrable with
i—00 '

the power p. Since, in view of (3.ii), &(@, -) is continuous in R for all @ in
(0, x,) except & set of measure zero, we can pass to the limit in (3.6) a.e.
in (0, @,). Thus, ¢ satisfies equation (3.1) a.e. in (0, #,). The part on uni-
queness follows from Corollary 3.1.

Remark 3.2. Note that if h(», 0) > a.e. in (0, 2,), k(-, 0) belongs
to L*(0, o,) and there is a ¢ > 0 such that

h(z, oh(f(z), 0)) < ch(@, 0)  a.e. in (0, my),
then conditions (3.9) and (3.10) are fulfilled with a, = 0 and a,(») = ok (»,0).
ExAMPLE 3.1. Apply Theorem 3.3 to the equation

o (2% 1
T T
1+le@) Vo
assuming p = 1. Since h(2,y) =2(@—oY)y(1+ ly)~ ' +o0~'%, (3.11) is
fulfilled. Taking a ¢ > 3/2 we can easily verify that h satisfies conditions

given in Remark 3.2 and, consequently, (3.9) and (3.10) are fulfilled.
Moreover, we have 7(z) = 2(»— 2?), and

p(0) = 2(z —~2?) o<z<1,

n(@) .
70) =l-0<l, O0<b<1.

By Theorem 3.3, there exists exactly one solution [ple LP(0, 1).
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Let us note that Theorem 3.2 cannot be applied here.

In Theorem 3.3 the monotonicity of 2 with respect to the second
variable is assumed. It turns out that in the part of Theorem 3.3 concerning
the uniqueness of the solution we can replace (3.10) and (3.11) by a weaker
condition, whenever p > 1. Namely, we have the following:

THEOREM 3.4, Let (3.i)—(3.iii) be fulfilled. Suppose that there exist
a.: (0, x))>R, k = 1, 2, satisfying (3.9) and such that

(3.12)  a[f(g)] <Y < a:[f(@)]= ay(®) < h(z, ¥) < ay(x)  a.e. in (0, 2).

If p>1 and y* <f a.e. in (0, x,), then there exisis exactly one solution
[ple L?(0, x,) of equation (3.1).

Proof. Put K = {[¢p]e L*(0,%,): a, < ¢ < a; a.8. in (0,3,)} K is
a closed subset of the uniformly convex space L*(0, z,) (cf. Remark 1.1).
For [p]e K we have |p| < |a,| + |ay| a.e. in (0, =,), a;, aye L7 (0, 2,). Hence,
by Minkowski's inequality, K is bounded in L?(0, z,). Convexity of K
is trivial. We shall show that the mapping 7T defined by (3.8) maps K into
itself. By the same argument as that applied in the proof of Theorem 3.2,
we obtain that T'(L?(0, @,)) = L?(0, #,). Now take a [p]e K. We have a,
< ¢ < @, a.e. in (0, x,). Hence, and from (3.12), we obtain

(@) < h(z, ¢[f(2)]) < as(®)  a.e. in (0, z,)

and, consequently, T([¢]) ¢ K. Finally, by (3.iii) and the inequality »* < f"
a.e. in (0, @,), we get for [p,], [psle K

Zo
IT([pe]) —~T([@a D)l = (f Ih(a” %Lf(-‘v)]) —h(.’v, %l'_f(m)])lpdm)”p

< ([ n(@Plp @] —plfio)]Pds)”

0 _
< ( f f'(m)l¢1[f(ID)] -(P’[f(m)llpd@)l’p

e yp
= ([ @) — g2 (@)*)* < I — el
0

80 T is non-expansive. In view of Theorem 1.3, we obtain the existence of
at least one solution [¢]e LP(0,z,) of equation (3.1). The uniqueness
follows by Corollary 3.1. This completes the proof.

Now we shall prove a lemma which contains a condition for the uni-
queness of integrable solution of equation (31) which is slightly different
from the one ocecurring in Theorem 3.1.

LEMMA 3.1. Let (3.1)—(3.iii) be fulfilled and let

(3.13) n; = supessy®(f)™', i =0,1,...
(0,z¢)
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If there exists a number M > 0 such that

(3.14) ”’7*< M, n=0,1,...,
i=0
then equation (3.1) has at most one solution in L*(0, z,).
Proof. Suppose that ¢,, ¢, L?(0, x,) satisfy equation (3.1) a.e. in
(0, z,). Hence, and from (3.2), we obtain by induction '

n .
g1~ ol < ([ o) lnof™* a0 f**'|  ae. in (0,5), n = 0,1, ...

‘iao

Now from (3.13) and (3.14) we have

[ 1= al? f [[T ooy mof™ = piof™+i (74
0 t=0
T+l

< ”m) f 2:0f" — o f Y < M [ lpi—pal?

0

Since limz, = 0, we have ¢, = ¢, a.e. in (0, ,).

n-—»o0
THEOREM 3.5. Let (3.i)-(3.iii) be fulfilled. If h(-,0)e L?(0, ,) and
the series (where n; are defined by (3.13))

oo k-1

1) S([Tw (] i, o)

=0 1i=0

converges, then there exists at least one solution [p]le LP(0, z,) of equation.
(3.1). The function ¢ can be obtained as the limit of the sequence of successive
approzimations (3.8), where @, = 0. If, moreover, (3.14) is fulfilled, then
this solution is unique.

Proof. Consider sequence (3.6) with ¢, = 0 and put % = h(:, 0).
From (3.2) we obtain by induction

Nng1— (”nOf') |hof™| a.e. in (0,,), n =0,1,...

t=0

Hence we get

U ] U [H (;?Qp ] m,ofn'.p(ﬁ)')"(m; |
0 o 1=0 s
<([T [ oreim) = ([ (] #)
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Now it follows from the convergence of (3.15) that ¢, e L*(0, z,), » = 0,
1, ..., and hence, in view of Lemma 0.1, the sequence

n
n = D, (9= Penr)
k=1
converges &.e. in (0, @,) to a function pe L¥(0, x,).

In order to prove that ¢ satisfies equation (3.1) a.e. in (0, z,), denote
by..A the set of those points xe (0, »)) for which the sequence {g,(z)}
diverges, and by B the set of those points x¢ (0, z,) for which the function
h(»,-): R— R is not continuous. Assumptions (3.i) and (3.ii) imply that
the set

+o0
¢ = Uf"(4uB)
has measure zero, and evidently f(C) = C. We have

1o, a’o)\U)l=f((0, 20))\f(0) = f((0, z))\C < (0, D) \C.

Therefore, if &e (0, 2,)\C, then f(z)e (0, 2,)\C, h(x,:): R—R is con-
tinuous and there exist limg,(z) and limg,[f(x)]. Consequently, we have

for ze (0, 2,)\C ne oo '
¢(€D) =,E’2‘Pn(m) =n;112h(w’ %l—l[f(w)]) = h(w)'l.i_gloq’n—l U(m)])
= h(-"” ‘P[f(w)])

The uniqueness of the solution is a consequence of Lemma 3.1.

At the end of this section we give one more result, whose proof is
based on Boyd-Wong's fixed point theorem. We shall use the following
lemma which contains Jensen’s inequality for concave functions (cf.
W. Feller, An introduction to probability theory and its applications, Vol.
II, Chapter V, § 8b). '

LEMMA 3.2. If y: (6,0)>R, —oo<a<b< +o0o, i8 oonoave, then
Jor every fundtion pe LA(X, 8, u), u(X) =1, such that ¢: X—(a,b), we
have

f70¢dﬂ<7( f‘Pdﬂ)~
X X

Now we replace assumption (3.iii) by

(3.iv) There exist functions 7: I—>(0, co) and y: (0, 00)->(0, o)
such that for almost every o in I
(3.16) (2, y) —h(o, )| < n(@)y(ly—7F), 9,§ek,
where y i8 inoreasing, conoave and fulfils the condition
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(3.17) y)<t, t>0.

THEOREM. 3.6. Let I = (0,1) and let (3.i), (3.ii) and (3.iv) be ful-
filled. If h(- ,0)e L'(0.1) and

(3.18) n<f a.e inl,

then equation (3.1) has exactly one solution [ple L'(0,1). Moreover,
Jor every go,e L'(0, 1) the sequence of successive approwimations (3.6) con-
verges to ¢ in measure.

Proof. We shall prove that the transformation T defined by (3.8)
maps L!(0, 1) into itself. Take a ¢ L!(0, 1). Then, by (3.16) and (3.17),
we have

|b(2, p[f(@)]}| < n(@)l@[f(2)1l + b (2, 0)]

and, consequently, in view of (3.i) and (3.18), we get

[1ZeDI< [£ 100+ [C, 0< [lel+ [Ih(, 0) < oo.
I I I

nn I
Let ¢y, @3¢ L!(0, 1). It follows from (3.16), (3.18), and (3.i) that

e(T(lg1]), T([‘Pl])) = flh(w, q:,[f(a;)])—h(w, Ps U(m)])ldw
I .
< [rlm@1-e @) (@)

{r(l%(-’v) —gs(@)|)do < f}'(lqvl(w) @2(@)|) do
b {

Hence, by Lemma 3.2, we have

o(Z(lpa) T ([} < 7 ( [ lpa(@) —pa(2) | d0) = ¥(0(g1, @)
I

Now the result follows from Theorem 1.1 of Boyd and Wong or from
Theorem 1.2.

3. Theorems 3.1-3.5 have a local character. Namely, they guarantee
the existence ahd uniqueness of mtegrable solutions of equation (3.1)
in a certain neighbourhood of the fixed point of f. It is known that, in
general, every such solution may be uniquely extended onto the whole
interval I (cf. [12], Chapter IIT, § 2). Now the question arises: Is this ex-
tension an integrable function?

LEMMA 3.3. Let (3.i) and (3.ii) be fulfilled. If zye I and @,: (0, ¢,)—>R
satisfies equation (3.1) a.e. in (0, x,), then there exists ewactly one funotion
¢: I->R satisfying equation (3.1) a.e. in I and such that o= g, in (0, x,).
If, moreover, pye L*(0, 3,) and there exist a K > 0 and a measurable func-
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tion n: (@, 6) >R such that

(3.19): h(-, 0)e L”(n,, a),
(3.20) h(2,y)—h(a, )| <n(2)ly—7F| ae in (25,8), Y,FeR,
(3.21) 7" < Kf ae in (2,4 a),

then pe LP(0, b,) for every bye (2, ).

Proof. The first part of the lemma follows easily by (3:1), (3.i) and
(3.ii). Take a bye (2o, a). The sequence b, = f*(b,), » = 1, 2, .., is strietly
decreasing and limb, = 0 (cf. Remark 2.1). Consequently, there exists

n—>00

an N such that (by,,, by) = (0, z,) and we can put

(3.22) Pr(®) = h((v, Pr—1 I'_f(w)])-.~ e by _x11708—x)-
k=1;...,N.

It follows from the liniqueness of p that

Po(2)y, O0<az<by,

(®)y, by g <o<byy k=1,...,N.
By (3.20), (3.22) and (3.21), we have .

bN—k bN—k

[ m@rd< [ (b, g lf@)]) - b, 0)] + b2, 0))7do
N—Kk+1

ONk+1

(3.23) () =

bN-k
< [ (@) g [f@)]+ b(, 0))7do
bN k41
by—k bN—-k
<?( [ 2@ lpalf@Pda+ [ ke, 0)1Pdo)
bN—k+1 ON—k+1
bN—k bN—k
<SP(E [ lpalf@)Pf @dot [ (b, 0)da)
bN—k+1 bN-k+1
bN—k+1 bN—k
=2°(K [ Ipa(@WPdo+ [ k(s 0) (7 da)
bN—k+2 ON—E+1

for k =1,..., N. Hence and by (3.19), we obtain ggze I*(by_pi1,0n-1)
for & _1 .y N. Now, in view of (3. 23), we have gpe L?(0, by). This
completes the proof

For & boe I we put
. “‘f—"(bo)y n=0,1,... )
Note that the sequence {a,} is stricfly mcrgasin'g.and iﬁﬁnite if imf(o) = a.
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THEOREM 3.7. Let all the assumptions of Lemma 3.3 be fulfilled.
(i) If .
(3.24) b = lim f(2) < a,

H_
then the ewiension ¢ belongs to LP(I).
(ii) Suppose that
(3.25) lim f(@) =

—»a—

If, moreover, there exist & bye (©,,a) and a ¢, 0 < ¢ <1, such that

(3.26) P <cef ae in.(by, a),
and
.00 an
(3.27) S [ @, 0)ras)"® < o,
Ne=] Gn—1

then the extension ¢ belongs to LP(I).

Proof. (i) Without any loss of generﬁlity we can assume that z, < b,
By Lemma 3.3 and (3.24), there exists ¢,¢ L”(0, b) such that

?(@) = hlz,9:[f(@)]) a1 (0,)
and .
P1 = Do in (0, ).

By (3.i) and (3.24), we have f(<b, a)) = (0 b). Therefore we can define
P2 a8

(3.28) P2(®) = h(“’) P1 [f(w)]) 77_- re <br a). -
Now it follows trom the uniqueness of the extension ¢ that

¢1(®), @e(0,D),

Plo = pa(@), @b, a).

Hence, from (3 28), (3. 20) (3 21) and (3 24) ‘we have

nr- \

f |¢(m'5l”dw = f (2, ¢, [f(w)]) lpdw é]“(n (w) pa L (@) +Th(a, O )I)? des

<2?(K f|¢1(m l”da:—l-f]h (2, 0)"da).
. 1) '
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In view of (3.19), we have

a

flqa(w)l”dm< 00,

b

This completes the proof of (i).

(ii) By Lemma 3.3, we have ¢e L?(0, a,). Define the sequence of
functions ¢, as follows:

(3.29) Yo=9 in(0,a), v.(@) =h(z,vaalf@)]),
Te(B,_1,8,), 0 =1,2,.,,
Evidently, we have
(3.30) =19, In {a,_,,a,).
By (3.20) and (3.29), we have
¥n! < DlYn_10f1+18(-, 0)]  a.e. in (a,_,,a,).
Hence, by Minkowski’s inequality and (3.26), we obtain

an Gn— apn
(S 1)< (T sl ( [ e, 0.
-2 1

a-1 Op—

Put
2,

(331) 4, =( [ w.l?)?, B, = j (-, O)F) P, € = o%P.
1 Gp-1

Opn—

Thus we have
OQA”QCA”_I'FB"’ n=1’2,---,0<0<1-

Using this inequality we obtain by induction
n-—1
(3.32) A, <C" 4+ D C*B,y, n=1,2,...

k=0

Taking into account (3.30), Minkowski’s inequality, (3.31), (3.32) and
(3.27), we have

( %f o)< nZﬂAﬂ < Z, "0+ ,‘Z_; 0*B,_y|

Eo v 3 oma =y S (3n)

ke _fl-k+l kwl ﬂ-.l .

c4, 1
=1i=¢ ™ 10 nZ_:B"< >

This completes the proof.
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4. We shall now consider the equation

(3.33) oLf(@)] = g(o, p(a)).
Assume:
(3.v) g: I xR—R fulfils the following conditions: for every ye R,

g, ¥): I>R is measurable in I; there exisis a measurable funciion y:
I—>{0, oo) such that

(3.34) 9@, y)—g(z, I <y(@)ly—Fi e inl, y,jeR.

From (3.34) there follows the continuity of the function g¢(=, ‘):
R—R for almost every z in I. Consequently, for every measurable function
¢: IR, the function g(s, ¢(v)) is measurable in I (cf. Remark 3.1).

THEOREM 3.8. If g: I x R—>R, conditions (3.i) are fulfilled and vye I,
then for every fumotion go: {f(wo), o) >R there ewisis exactly one fumction
@: (0, m,)—>R satisfying equation (3.33) in (0, x,) and such that ¢ = @,
in <f (), a’o)-

If, moreover, conditions (3.v) are fulfilled, goe L?(f(@,), @o) and there
exists an 8, 0 << 8 < 1, such that

(3.35) (yof W2 < sf!  ae in (0, f(2)),
and
(-] zk
(3.36) D S latf @), 0)[?da) < oo,
k=1 Tpi

then pe L?(0, 3,); in other words, the solution pe LP(0, z,) of equation
(3.33) depends on an arbitrary funotion.
Proof. Put

(3-37) (@) = g(f—l(a’); ?’k—lU—I(a’)])y Te D1y )y 6 =1,2,...,
and

(3.38) ® =@, Iindwy,%), k=0,1,..

It follows from (3.37) and (3.38) that ¢ satisfies equation (3.33) in (0, ,)
and ¢ = ¢, in < f(#,), %,). The uniqueness of such ¢ is obvious. This com-
pletes the proof of the first statement of the theorem.

By (3.34) and (3.37), we obtain
okl < (yof Nlge—i0f 1 +|g(f71 (), 0)]  a.e. in (&pyy,y @)
Hence, by Minkowski’s inequality and (3.35), we get

Tk—1

( fk [q’klp)qp) < sa(p)(‘f I‘Plc—llp)a(z) + ( ‘}klg(f'l(.)’ O) lp)“(P).
2

Te+1 Tk+1
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Putting

— ( J’.k _l%lp)n(p), B, ~ ( fklg(f_li(')" 0)[")"“'), 0 = g,

Tr+1 Tr+1
we have

O Ak OAk 1+BL’ k=1,2,.-.,

where C < 1. Further, the argument is the same a8 in the proof of Theorem

3.7 ; the convergence of the series ) B, results now from (3.36).
k=1

Remark 3.3. If 0<p<1, then the convergence of series (3.36)

means. that .g(f7!(-), 0)e L?(0, f(x,)). For p>1, denote by LP(0, )
the class of all measurable functions ¢: (0, z,)->R such that

o Tr+l u

D
2( [ wr)< e
k=0 Zpiz

Let us note that L”(O z,) < L?(0, v,) and L}’(O &,) # LP(0, ).
Actually, for p >1 we have proved that if g{f~*(- ,O)eLf"(O y @o), then
pe L7 (0, zo).

4. Integrable solutions of systems
of functional equations

1. We shall consider the system of functional equations

(4.1) @i(@) = k‘(w’ o1l fu(@)], ..., ‘Pn[fm(-'”)])’ i = 1'7v ey

We begin with the formulation of the assumptions for given functions.

(4.1) For every i, k =1, ..., m, fy 18 strictly increasing in an interval
I=(0,a),0< a< oo f, and f3' are absolutely continuous in I and fu (I),
respectively, and

(4.2) 0< fulz)y< @, mel.

(4.ii) For every i =1,...,n, h: ILxE">R fulfils the following
conditions.: for every yy,...,Y,e By hi(y Y1y ..., ¥,) 18 measurable in I;
there exist meagurable funotions ng: I—+(0; 00), bk =1;,..,m, such thal

n

(43) Ry, Yay ees Y) =il ®y Fay ooy T < D) 10(@) [ Y1 — T
k=1

ae. in I, Ynp,UnecR,m=1,...,m
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Remark 4.1. Inequality (4.3) ensures the continuity of the functions
hi(®,+y...,): R*>R for almost every x in I. This, together with the
measurability of k(:, ¥, ...,¥,) for every y,, ..., y,¢ R, guarantees the
measurability of the composition h;(x, ¢,(2), ..., q:n(w)) for any measur-
able function ¢;: I-R, ¢ =1, ..., n, ([6], [23]).

THEOREM 4.1. Let conditions (4.1) and (4.ii) be fulfilled and let
hi(0,...,0)e L*(I), © =1, ..., n. If there exist 3; > 0 such that

(n&
fik

and the numbers

a(p)
(4.4) ) <8 ae inlI, i, k=1,...,n,

0(32 — Il_‘g‘ik’ (e k7
Siky i #+k,

fulfil inequalities (1.10), where the numbers ¢} are defined by (1.2) (or, what
amounts to the same, the characteristic roots of the matriz (8;;) have absolute
values less than 1), then the system of equations (4.1) has exactly one solution
lpde LP(I), i =1,...,n.

Moreover, for every fived ¢;e L*(I), © =1,...,n, the sequence of
successive approrimations

k+1 k k '
@i(@) = hi(m’ o1 [fu(@)], ..\, ‘Pn[fin(m)})’ k=0,1,...;¢=1,...,m,

converges a.e. in I and

- k 3 .
@; = limg; ae. in I;i=1,...,n.
k—o0

Proof. Put X; = L?(I), ¢ =1,...,n, and define the mapping T,
as follows:

(4.3) Ti([@aly ---s [@a]) = [Bs(*y @10fias ++vs @uOfin)], & =1,..., 7.
We shall verify that .
(4.6) T(X,X...xX,)c X;, i=1,...,n.

Let [pple Xpy k =1,...,n It follows from the absolute continuity
of f,. and from (4.ii) (cf. Remark 4.1) that the function

hi(w7 @1 [fﬂ ("B)] y ooy Pn [fm,(a‘.)])
is measurable in I. Taking into account the inequality

(@1 4... +a,)" <nP(a? +... +a7),

@20, i=1,...,,n; p>0,
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we have by (4.3) and (4.4),
lh{(wi @1 [fa(@)]y -..s @n Ufn(h’)])lp

<( X ma@leelfa(@]1 + (2, 0, ..., 0))°

k=1

< (n+17{ 3 10(2)? 19 Lful@) I + he(2, 0, .., 0)7)

k=1

< (AP ( ) (80P ()10 [fie (@) 1P + [hi(@, 0, ..., OF),

k=n

and, consequently,

1201, ..., toadP?

] _
<417 Y 6" [ g + [ (-, 0, ..., 0F) < co.
k=1 LudD 1

This proves (4.6).

Let [pleX;, i =1,...,n5 m =1,2. By (45), (4.3), (4.4) and
Minkowski’s inequality, we have

Tl @)y - vy [9a])y Til[pal,y +--» [pu])

< [f ( Zﬂ ’Jml;’kofu, - (;;kof‘kl)”}“@)
I k=1

< 2 (f (s"‘)ua(p)l';’kofs‘k—‘;’kamlpft’k)dp)
k=l I

kid 1 2 afp) i 1 2

= Zsm( f I‘Pk—%lp) < Zsmek([%]’ (9e]).
k=1 Judd) k=1

Thus, the first statement of the theorem results from Theorem 1.4.

k
To prove that ¢; tend to ¢; a.e. in I, let us note that in view of Theorem
1.4 there exist numbers 7; and 0 < 8¢ < 1 such that

K+l k k41 K _
eu(locd, [94]) = U l 9’4—¢4I”)a(p)< gr, k=0,1,..5i=1,...,n
T

Now the desired convergence follows easily by Lemma 0.1. This completes
the proof.
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2. In this section we consider the system of equations

(4.7) p:[f(2)] = y{(m; P1(®@)y -y ?’n(w))’ t=1,...,n.

We assume that

(4.ili) The functions g;: IXR"—>R,i =1, ..., n, fulfil the following
conditions: for every Yy ..., Yne By ¢;(*s Y1y ..., ¥,): R—R is measurable
in I; there exist funotions y;: I-(0, ), i,j =1,...,n, such that

n
(4.8)  19:(@) Y1y -5 Yn) = Gs(@s Fuy ooy Tl < ) v5(@) 19y — ]
i=1
a.e. in I, Yjs Y€ R.

THEOREM 4.2. a) If conditions (2.i) are fulfilled and g,: I XxR"—>R,
i =1,...,m, then for every moe I and for every system of functions ¢, ,:
< f(mo),a:o)—>R, i =1,...,n, there ewists exactly one system of functions
@ (0, B)—~R satisfying (4.7) and such that ¢; = ;o in {f(@,), s), 5 =
1,...,n.

b) Moreover, suppose that (4.iii) is fulfilled, @; e L?(f(w,), o), i=
1,...,n, and there emist numbers 8; > 0 such that

o f~1yp \ol®)
(?f(afo—'_f,)_,)”) 7 <8y a.e in (0,f(m)), i,§=1,...,n,

and the numbers

(4.9) (

o) =‘ 1_81']’ i =j’
1j . .
8y v F7,

Fulfil inequalities (1.10). If the series

o Tk+l
(4.10) 2( f lgi(f‘l(w),o,...,O)I”dm)u(p), i=1,...,n,
k=0 Ty, g

where x, = f*(z,), k =1, 2, ..., converge, then ¢;e L*(0, z,), i =1, ..., n,
and 8o the integrable solution of system (4.7) depends on an arbitrary function.
Proof. a) Put

(4.11) Pt k() = gi(f—l(w)’ ‘Pl,k[f_l(w)]: ceey ?’n,k[f—l(‘v)])!

el Bpyyy Tpy)y b =0,1,...5i=1,...,n,
and
(412) ¢, =@;; in <mk+1193k)1 k=0,1,...; ¢ =1,...,m.

It follows by (4.11) and (4.12) that ¢;, 7 =1, ..., n, is a solution of system
(4.7). The uniqueness is trivial.
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(b) In view of (4.11) and (4.8), we have

94, k41 <2%‘10f—1 log, k0 f '+ |9'¢(f_1(')7 0,...,0)|
=1

a.e. in Wy s, Thyy)y, k=0,1,..5i=1,...,n.
Hence, by Minkowski’s inequality and (4.9), we have

T+1
(f l%,k+1]p)a( )<28¢;( f |‘Pj,klp)a(p) (f !gf(f—l(')aOy'--,o)p)a(?);

Tk+2 Tr+1 ZTr+2

for k¥ =0,1,...; ¢ =1,..., n. Putting

Ty
af .
413) e =( [ Ipul?) P k=0,1,...;8=1,...,m,

ZTr+1 f
Z 11 ®)
(414) b =( [ |9(f7C)0,- 0, OF)P, k=0,1,..5i=1,...,n,
Th+2

we obtain the following system of recurrence inequalities

n
(418) G xa < D 8gBiutbiy k=0,1,..5i=1,..,n.
i=1
o0
To complete the proof it suffices to show that Ya, ; <oo,i =1,...,n
This follows from the following: k=1
LEMMA 4.1. Let 8> 0,4,j =1,...,m,and let b, , >0,k =0, 1,
i =1,...,n Suppose that the charaoterzstw roots of the matriz (84,) have
absolute values less than 1 and let 6,, >0, k =0,1,...; i =1,...,m,
be a solution of recurrence system (4.156). i

() If )by < oo, then Y a;,<oo, 8 =1,...,7m
k=1 k=1

(ii) If sequences {b,.}, i =1,...,n, are bounded, then so are {601}
(iii) If imb, , =0, i =1,...,m, then lima,, =90, i =1,...,n.
k—»o0 ko0

Proof. (i) By induction on k, we have

n N .

(4.16) @41, < 2 S 8 St Fiar0 T o
,])---njk-'.]-l

k n .

+2 Z 8ijl"h’2"'8fm—lfmbfm’k-m+b‘-’” 1: = 1, .uo’n; k: 0,1,0-.

M=) ’lv"-'fm'l
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In view of Lemma 11, there exist 7, >0, i =1,...,m, 8, 0<s<1,
such that (cf. (1.16))

(4.17) Zs,,r,gsr,, i=1,...,n.

=1

Without loss of generality we can assume that

(4.18) Go <ty d=1,...,m,
(4.19) Dbp<ry i=1,..,n.
k=0

Estimate the first component on the right-hand side of (4.16). By (4.18)
and (4.17), we have forz =1, ...,n

n n n n
2 845, 83105* - I pr Mpa1d S 28‘11 2 8j1dg Z et err T
j],...,jk+1|=1 j)':I 2=1 jk+l=l

n
k+1
<8 23,,1 jz;l's,k_,,kr,k <. <8y,
k=

and, éonsequently, we have

k n
(4.20) b <+ Y S sya by bk

m=1 ’l--"'j'm=‘l

E=0,1,...;i=1,...mn.

- ] ©
Since the series r; 3's**' and ) b, , converge, it suffices to show that the
k=0 k=0

-series formed of the middle summands on the right-hand side of inequality
(4.20) is convergent. By (4.19) and (4.17), we have

0o k »
Z 2 Z 8”181152'"sjm—ljmbjm-k_m
= mem1 4y, dme=1

n

oo
2 2 8‘-71 8’11:' . slm—ﬂm bjm. k—m

Ms

m=1 k=m 11,‘..,11»!:1
0o n )
= 2 2 8i4,81192° *  S1m—1im 2 btms k—m
m=1 j1,...,Im=1 k=m
o =n n
< 2 28”1 285112 2 %m— 1/mrfm S 28 < oo.
m=l fj=1  fo=1 m=1

This completes the proof of (i).
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(ii) Choose r;,>0, i =1, ..., n, satisfying (4.17) in such a manner
that

b",‘<’r¢, i=1,...,'n; k=0,1,...
By (4.20) and (4.17), we have

n
+
G, k41 S 815+ 2 28’11 2 g 28”"—1’"‘7’"‘_{-"

m=l ,1=l

r¢+2r,s +7r; < r‘(2+ ) k=0,1,...;i=1,...,n,
me=1 —#
which proves (ii). _
(iii) In view of (ii), the numbers p; = ,l‘im supa;;, ¢ =1,...,n,

ulfil the conditions 0 < p; < o0, 4 =1,...,n By (4.15), we have

n
Pigzsﬂpﬁ t=1,...,n,

i=1

and, consequently, p; =0, 7 =1,...,n (cf. Lemma 1.3). This completes
the proof of the lemma.

Remark 4.2. The convergence of series (4.10) for 0 < p <1 denotes
simply that g,(f~'("), 0, ..., 0)e L*(0,2,), i =1, ..., n. For p >1, The-
orem 4.2 states that if gf(f"(*), o,..., o)ei;f(o,m.,), i=1,...,n, then
also ¢;¢ L7 (0, z,) (cf. Remark 3.3).

Remark 4.3. Assume that f;, i =1,...,n, fulfil (2.i) and there
exists an @oe I such that ff(zo) =ff(xy), i,j=1,...,m; k=1,2,...
If in Theorem 4.2 we replace conditions (4.9) by

( (yyof &P
(Y

and if in (4.10) we put f;! in place of f~', then we get an analogous result
for the more general system of equations

a(p) . )
) <8 ae. in (0,xy), ¢, =1,...,m,

e[ fi(2)] = 91(-’171?71(57), ceey ‘Pn(m))v t=1,...,n.

5. Integrable solutions of equations of higher orders

In this chapter we study functional equatibns of order n > 1. The
general form of such an equation is

F(m! ¢(@), plfi(2)], ..., ?[fn(w)]) = 0.
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Similarly as previously, investigations of the existence and uniqueness
of solutions are carried out for the equation

p(w) = h(“” elfil@)], ..., ‘P[fn(m)])

For investigations of the dependence of the solution on an arbitrary
function,  the form

q’[fn )1 = g(w:q’(w y [ f1(2)], ')‘P[fn—l(a’)])

is more convenient. But in the latter case f, must fulfil some gdditional
conditions. We shall confine ourselves only to the case where all the func-
tions f; are iterates of the same function f, i.e., f = f*.

1. In this section we consider the linear equation

e

(5.1) =)D gpofith.

k=

=

Assume:
(B.1) f 48 striclly increasing in an interval I = (0, a), f, and fi' are
_ absolutely oontinuous in I and f,(I), respectively, and

o< file)<®, wel, k=1,...,m;

(b.ii) gy ¥ =1,...,m, and h are measurable in I.

THEOREM b.1. If (5.i) and (5.il) are fulfilled and there exist an @, e I
and numbers 8, > 0, k =1, ..., n, such that he L* (0, x,) and

52 nglp a(p) . .
(6.2) 1 <8 ae in (0,2), k=1,...,n,
n
(5.3) 28k< ]_’
fem1

then equation (5.1) has ewmaclly one solution [ple LP(0, m,). This solution
i3 given by the series

(5.4) v=) ) ( n 94,0 fy_,0-+-0f ) hofy,0...0fs,

k=0 1), 0p=1 =1

which converges a.e. in (0, 2,).
Proof. Write

(8:5) @ g = fo0-0fq (@) dayeeyip =1,.0ym5 k=1,2, ...
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It follows from (5.i) that @, ¢ < #, and

(5.6) lima, . =0.
k—co

Using (5.2), (5.5) and the relation
k
(fuo--wofy) = [[fiofy_0---0f,
i=1
we obtain the following estimation
e atp)
{f (n |g,-jof¢j_lo . .of;ll”) lhofy0... of,-llpl
0 j=1
Zy
<{ of ( [] P fiofy_0...0f)hofy0...0 f,y}“‘”’

f=1

k
(U ‘J)U (fo,0- Offl)’lhOf,-,co...ofil;:o}“(f”

_ (ﬂsij)( ,-:f...ncIhl,,)«(p)< (of" Ih]p)a(mfl] 0y

It follows from (5.3) that

o n k .
2 Z n81'1=2(31+~-+3.'n)k< 00.
k=0 1),...,ig=14=1 k=0

Hence, in, view of Lemma 0.1, series (5.4) converges a.e. in (0, #,) and
its sum ¢ belongs to L*(0, x,).

We shall verify that ¢ satisfies equation (5.1) a.e. in (0, #,). For this
purpose define

fox =Tk ! k=1,...,m,

and denote'by A the set of those points xe (0, z,) for which series (5.4)
diverges. According to what we have already proved, A has mesasure
zero. By (5.i), the set

B = U U fy 0. 0fy(4)

k=1 “l, kﬂ—ﬂ

has measure zero. Moreover, we have f;(B) = B, k =1, ..., n, and, conse-
quently,

£e((0, 2)\B) = f((0, B))\fi(B) € (0, 2)\B, k=1,...,n.
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Therefore, if ¢ (0, 2,)\B, then series (5.4) converges at the points s,
fi@), k=1,...,n, and we have

o n

o) =Y D (H 9i,0fy-10...0fy, (1)) hofy,0...0f;, ()

k=0 il ‘k=l j=1
w n

( H g,,of,j 0-+-0f3, (@) hofy0...0f; (a) + h(a)

k=1 {1 ‘k-l F=1

Zg,l(m 2 b ( H 94,05;_,0 - -0fy,0f; (@) X

=1 k=1 1y...0=1 j=2
X hOfikO .o .Ofizofil (m) + h (w)

= Zg,(w) 2{ 2 (n 8050 -.ofy (@) X
k=0 4. 4p=1 j=1
X hofy 0...of; (fi(®)) + h(w)

= ) 0@ g[fi(@)]+ h(a).

t=1

The uniqueness follows simply by (5.2) and (5.3). This completes the proof.

Remark 5.1. Replacing formally » by oo in Theorem 5.1, one can
obtain the corresponding result for a linear equation of order oc.

2. Now we present some results concerning the non-linear equation

(6.7) ¢(@) = hz, p[f1(2)], ..., 9 [fu(@)]).

Assume:”

(b.1i) The function h: I x R"—>R fulfils the following conditions: for
every Yyy .oy Ype By h{*y Yy, ..., ¥,): I->R is measurable; there exist zye I

and measurable functions n;: (0, £,)—><{0, 00), ¢ =1,...,n, such that

B(@) Ysy +eey Ya) =By Ty ooy Tl < D) 1:(@) l9:—Til @t im (0, 2p).
i=1

Let us put

P\ a(p)
s,=supess(—') y t=1,...,n.

(0,29) f':

THEOREM 5.2. Let (5.1) and (5.iii) be fulfilled. If h(-, 0, ..., 0)e L?(0, x,)
and

13
Sa<t,
i=1

then equation (5.7) has exactly one solution [p]e L*(0, ,).
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Moreover, for every fized pye L7 (0, x,), the sequence of successive approz-
imations
(5.8) Pr1(®) = h(wr‘?’k[fl(w)]a ---v?’k[fn(“’)])’ k=o0,1,..,
converges a.e. in (0, @,) and ¢ = limg,, a.c. iﬁ (0, m,).
k~»00

This theorem follows from Banach’s principle and Lemma 0.1.
Now we put

P\ a(p)

¢ . .

Mi,...5,, — SUPOES |- y Lty ..t =1,...,0; k=0,1,...,
(o'z‘l.. .‘k) f‘

where ;. is' defined by (5.5).
THEOREM 5.3. Let (5.1) and (5.iii) be fulfilled. If h(-, 0, ..., 0)e L?(0, @,)
and the series

had i k Tid
2 2 (” nijil...ij_l.)( lf * k(-,0,..., O)|p)m(p)
k=0 .

1o dg=1 j=1
converges, then there exists at least one solution [ple LP(0, z,) of equation
(5.7). This solution is given by the formula

¢ =limg, a.e. in (0, ),
k—00

where ¢, are given by (5.8) with ¢, = 0. If, moreover, there exisis an M > 0
such that

n k
2 ”ﬂijil...ij_] <M, k=0,1,...,

fiig=1 =1

then this solution 18 unique.
The proof of this theorem is similar to that of Theorem 2.9,
Using Theorem 5.3, one can prove the following:

THEOREM b5.4. Let (5.i) be fulfilled and put f = max(f,, ...,f,). Lel
$+...+8, =1, 8>0, © =1,...,n. Suppose that H: (0,a)>R is
absolutely continuous and H (0) = 0. If for a certain mye I

, D VarH [€0,f*(a,)) < oo,
_ ) k=0
then the equation
P =g, Pof,+...+8,P0f, + H

has a unique one-parameter family of absolutely continuous solutions in
{0, a). These solutions are given by the formula

oo n k
(D:Z Z ,(”sij)Hoffko...of‘l+c, ceR.

k=0 1),.. =1 j=1
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3. We shall now investigate the equation
(5.9) e[*(@)] = glo, p[f*7 (@)1, .., e [f(#)], ().

We assume:

(5.iv) The fundtion g: I x R"—~R fulfils the conditions: for every y, ...
s YneRy, gy Y1y ..oy Yn): I>R s measurable; there exist an @ye 1
and functions v;: (0, z,)—>{0, ), ¢ =1,...,n, such thal

. n
(5.10) 1G(Ly Yry oevy YUn) — G(By Yry vy Yn)l QZ}J;({D) 1Y — ¥l

=1
a.e. in (0,2y), ¥, ;¢ R, 1 =1,

LEMMA 5.1. Let 8,>0, 1t =1,...,n, and b= 0, k—l 2,
Suppose that all the roots of the polynomial .
(5.11) p2) =2"—8,2" ' —...—3,
have absolute values less than 1 and the sequence a,>0, k =1,2,...,
satisfies the inequality ’

(5.12) Oprn <8184 1t +8,8.+b, k=1,2,...

1. If the series Z b, converges, then Zak converges.

2. If the sequence {b,,} 18 bounded, then 80 is {a;}.
3. If limb, = 0, then lima, = 0.
k—oo

k—o0
Proof. Inequality (5.12) is equivalent to the following system of
recurrent inequalities

iy S 810yt H 88y gt by Bk =8y, i =1,...,n—-1,
where a,, = a,,,_;. Let us put
8y =8, i =1,...,m; s,,=1,1i=1,...,n—1;

31')':0’ i#l,j?’-"i/—l,
and
bl,k=bk$ bi.k=0’ i=2,...,%;k=1,2,..

The characteristic polynomial of the matrix (s;) has the form

81—2 8, 8 | 8,
1 -2z 0 ... 0
0 1 —z ... 0 | =(-1)"p(2),
0 o 0 ...1 —=2

and, consequently, the lemma follows from Lemma 4.1.
Put @, = f¥(w,), k =1, 2,... Applying Lemma 5.1, we shall prove
the following: ‘
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THEOREM 5.5. a) If (2.1) and (5.iv) are fulfilled, then for every system
of fundtions

@i Ty, Bpy) >R, k=1,...,m,
there exisis exactly one <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>