GEOMETRIC AND ALGEBRAIC TOPOLOGY
BANACH CENTER PUBLICATIONS, VOLUME 18
PWN - POLISH SCIENTIFIC PUBLISHERS
WARSZAWA 1986

MAPPINGS OF REDUCIBLE 3-MANIFOLDS*

DARRYL McCULLOUGH

Norman, OK, U.S.A.

This article 1s expository, although some of the material in section 3 is new.
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Oklahoma, the Stefan Banach International Mathematical Center, and the
Mathematical Sciences Research Institute for their support in its preparation.
I would also like to thank Harrie Hendriks for reading an earlier version and
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Recall that a 3-manifold M is prime if whenever M 1s written as a
connected sum M, # M,, then at least one of M, or M, is homeomorphic
to the 3-sphere S®. By the Kneser factorization theorem [K], [H8] every
compact 3-manifold can be written as a connected sum of finitely many
prime 3-manifolds. In the orientable case, the summands that are not S* are
unique up to order [M2]. In the nonorientable case, the summands that are
not S> are unique up to order and up to ambiguity arising from the fact that
if N is nonorientable then N # (S! xS2) = N # (S! X §?), where S' XS? is the
nonorientable S2-bundle over S'. A 3-manifold M is irreducible if every
(tame) 2-sphere imbedded in M separates M and bounds a 3-ball in M.
A prime 3-manifold must be homeomorphic to S!'xS2, S'XS? or else
be irreducible. The reader is referred to the book by Hempel [H8] for an
excellent treatment of these facts.

At this point, most discussions of compact 3-manifolds specialize to the
irreducible case. For classification of 3-manifolds, this is sufficient, because of
the uniqueness of the factorization. But in the study of mappings between 3-
manifolds, many phenomena arise in the reducible case that do not appear in
the irreducible case. In this article, I will discuss some of these phenomena
and the progress that has been made in understanding them.

We will need a few more standard definitions and facts, which may be
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found in [H8] or most other texts on 3-manifolds. A 3-manifold is P?-
irreducible if it is irreducible and contains no 2-sided projective planes. A P?-
irreducible 3-manifold M with infinite fundamental group must be aspherical.
A surface F imbedded in a 3-manifold N is properly imbedded if F n oM
= 0F, and such a surface is called incompressible if it is 2-sided and the
homomorphism =, (F) — n,(N) induced by inclusion is injective. A P?-
irreducible 3-manifold M is sufficiently large if it contains an incompressible
surface F with F % S2. This implies that either M is a 3-ball or =n; (M) is
infinite. Note that any P?-irreducible 3-manifold with nonempty boundary is
sufficiently large.

All homeomorphisms, imbeddings, and submanifolds will be PL, without
explicit mention. The mapping class group # (M) is the group of path
components of the homeomorphism group Homeo(M). The group of
homotopy equivalences &(M) is the group of path components of the H-space
of self-homotopy-equivalences Equiv(M). A proper map from M to N is a
map which carries dM into dN, and a proper homotopy equivalence is a
homotopy equivalence of pairs f: (M, M) — (N, 0N). The group of proper
homotopy classes of proper self-homotopy-equivalences is denoted
EM, oM). Il A =M then # (M rel A) is the group of path components of
Homeo(M rel A) = {(he Homeo(M)| h|, is the identity map 1,}.

If M is aspherical, the correspondence <(f)>— f, induces an

isomorphism from &(M) to Out(r, (M)), the group of outer automorphisms
of m,(M).

1. Splitting a homotopy equivalence along a 2-sphere

Suppose N 1s an n-dimensional manifold with N =N, # N,. We have N
= N U N3 where N{ n Nj is a 2-sphere S. To split f along S means to find a
homotopy equivalence g: M — N, homotopic to f, with g~ '(S) equal to an
imbedded (rn— 1)-sphere X in M. When § separates N, then X must separate
M into M, # M, with g~'(N}) = M;. The maps gl,; can be extended to
maps g;: M, — N, by coning over the boundary components X and §, and
the maps g; will be homotopy equivalences. In this way the problem of
understanding f can be reduced to an inductive procedure, beginning with
the case of N prime.

In dimensions n > 5, the general problem of splitting a homotopy
equivalence has been studied by many authors, notably by Cappell. In
particular, he showed [C1] that for closed N of dimension n = 2k+1 2> 5, if
7, (N) contains no element of order 2 which is orientation-preserving (when k
is even) or orientation-reversing (when k is odd) then any homotopy
equivalence from a closed n-manifold to N is splittable; however if x, (N)
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does contain such an order 2 element, then there is a nonsplittable homotopy
equivalence from some closed n-manifold to N. As we will see, these results
hold for n =3 as well.

Since 3 = 2k+1 for k = 1, Cappell’'s condition in dimension 3 states that
n; (N) containg an orientation-reversing element of order 2. In dimension 3,
this has a simple ‘geometric meaning:

ProrosiTiON. Let N be a compact 3-manifold. Then m,(N) contains an
orientation-reversing element of order 2 if and only if N contains a 2-sided
projective plane.

Proof. The proposition is an immediate consequence of Theorem 8.2 of
[E]l. =

The positive splitting result in dimension 3 is due to Hendriks and
Laudenbach:

SpLITTING THEOREM ([L1], [H-L1]). Let N be a closed 3-manifold and S
an imbedded 2-sphere in N. Suppose that N does not contain any 2-sided
projective planes. Then any homotopy equivalence f: M — N can be split
along S.

The proof of the splitting theorem occurs in two steps. First, [ is
changed by homotopy so that f~*(S) consists of 2-spheres and tori. In [L1]
this is accomplished by a delicate geometric argument, while in [H-L1] it is
accomplished by using obstruction theory. Then, in both proofs, it is shown
that f can be changed by homotopy to accomplish ambient surgery on the
tori, changing them into 2-spheres, and it is easy to “pipe together” all the 2-
spheres by a final homotopy to make f~'(S) into a single 2-sphere.

The Splitting Theorem has been extended to manifolds with boundary
by Swarup [S2].

The negative splitting result in dimension 3 is due to Hendriks:

THeOREM ([H9]). Let S be an imbedded 2-sphere in the closed 3-manifold
N. If S separates N so that N = N| us N, suppose that neither Ny nor N is
simply connected. Suppose N contains a 2-sided projective plane. Then for any
3-manifold M homotopy equivalent to N, there is a homotopy equivalence
f: M = N which cannot be split along S.

In order to give.an example of such a nonsplittable f, we first describe a
general method for producing homotopy equivalences. Let f: (M, x;)
— (N, f(xo)) be a homotopy equivalence between n-manifolds, and let B be
an n-ball imbedded in M disjoint from x, and from the (n— 1)-skeleton
M®= 1D Assume x e M1 By homotopy we may assume f (B) = f(x,). Let
g: M— M v §" be the quotient map that collapses dB to a point. If
(tYen, (N, f(xo)), then the map (f v 1)oq: M — N is said to be obtained
from f by a modification within the ball B using t.

LeEMMA. Suppose M is an n-manifold, n > 2, whose universal cover is not
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closed. If f- M — N is a homotopy equivalence, and {' is obtained from f by a
modification within a ball, then ' is also a homotopy equivalence.

Proof. Since n = 2, f' induces an isomorphism on fundamental groups.
Since the universal covering of M is not closed, it deformation retracts to a
subcomplex of its (n—1)-skeleton, consequently any element of n (M, x,) can
be represented by a map into the (n-—1)-skeleton of M. But f’lM(,,_l,
= fl -1 50 (f)a: 7 (M, x0) = ,(N, f(x0)) is an isomorphism for all ¢
> 2. By Whitehead’s criterion, f’ is a homotopy equivalence. =

Remark. When n=3, M = N, and f = 1,, f' will be a simple homotopy
equivalence [H9, section 3.2).

Return now to the situation of the previous theorem. Let P be a 2-sided
projective plane in N. By a cutting and pasting argument we can find P
disjoint from S. Let yen,(N, p,) be represented by the orientable double
covering (52, so) — (P, po) (N, po). Let a be a loop in N based at p, which
intersects S in one point il S is nonseparating, or intersects S in two points
and is not homotopic (rel. py) off of §, i[ S is separating. Let t be the
Whitehead product [y, a-y]en; (N, pg). Now 1 can be represented by a map
t: 8§ - N so that ™ !(S) consists of one torus (if S is nonseparating) or two
tori (if S is separating). Let f: M — N be any split homotopy equivalence
and let f’ be obtained from f by a modification within a ball using r. The
preimage (f)~ ' (S) consists of a 2-sphere and one or two tori, and for this f”
the argument for the second step of the Splitting Theorem cannot be carried
out. In [H9], it is proved that such an f” is not splittable, by constructing an
invariant which gives an obstruction to eliminating the preimage tori by
homotopy.

2. Deforming homotopy equivalences to homeomorphisms

In this section, we consider the question of when a homotopy equivalence
f: M — N is homotopic to a homeomorphism. If M and N contain 2-sided
projective planes, then as we have seen, f might not even be splittable. So we
will assume M and N do not contain 2-sided projective planes.

Even in the irreducible case, a homotopy equivalence need not be
homotopic to a homeomorphism. The standard example is:

Examp,e A. M =1(7,1) and N=L(7,2). Here M and N are 3-
dimensional lens spaces. By (29.5) of [C3], there is a degree 1 homotopy
equivalence from M to N. But by (30.1) of [C3], there is no simple
homotopy equivalence, and hence no homeomorphism, from M to N.

We can rule out this example by assuming that there is some
homeomorphism from M to N. But we still have:

ExampLe B. M = N = L(12,1). Let y be the standard generator of =, (M)
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=~ Z/12. By (29.5) of [C3], there is a self-homotopy-equivalence of M taking
7 to y°. But by (30.1) of [C3], there is no simple self-homotopy-equivalence,
and hence no self-homeomorphism, of M taking y to y°.

In the sufficiently large case, we have important positive results:

THeoreM ([W],[H7]). Let N be a closed P*-irreducible sufficiently large
3-manifold. Then every homotopy equivalence from a closed 3-manifold
(satisfying the Poincaré conjecture) to N is homotopic to a homeomorphism.

THeoreM ([W], [L1]). Let M be a closed P?*-irreducible sufficently large
3-manifold. Let [ and g be homeomorphisms from M to M. If f and g are
homotopic, then they are isotopic.

These two theorems can be combined into the statement that # (M)
— &(M) 1s an 1somorphism. In the bounded case, .# (M) — &(M, dM) is an
isomorphism,

These theorems have reducible versions due to Laudenbach:

THeOREM ([L17). Suppose the closed 3-manifold N is a connected sum
N, #N, #... # N, where each N; has the property that any homotopy
equivalence from a closed 3-manifold (satisfying the Poincaré conjecture) to N;
is homotopic to a homeomorphism. Then every homotopy equivalence from a
closed 3-manifold (satisfying the Poincaré conjecture) to N is homotopic to a
homeomor phism.

Tueorem ([L1]). Suppose the closed 3-manifold N is a connected sum
N, # N, #...# N, where each N, is either an S*-bundle over S' or a P*-
irreducible sufficiently large 3-manifold. Suppose M satisfies the Poincaré
conjecture. Then every homotopy equivalence from M to N is homotopic to a
homeomorphism, unique up to isotopy.

The first of these theorems is proved using the Splitting Theorem and
induction on k. The uniqueness part of the second theorem uses
Laudenbach’s result that homotopic imbedded 2-spheres in M are isotopic,
together with results of Hendriks. )

In case M = N, it i1s not sufficient to assume that every self-homotopy-
equivalence of each summand is homotopic to a homeomorphism:

ExampLe C. M = L(7,1) # L(7,2). Using [C3], every self-homotopy-
equivalence of L(7,1) or L(7,2) 1s homotopic to a homeomorphism. From
Example A, there is a degree 1 homotopy equivalence g: L(7,1) —» L(7,2), but
there 1s no homeomorphism. Let 5 be a homotopy inverse for g. We may
assume that g carries a 3-ball B; < L(7,1) homeomorphically to B, < L(7,2),
with g~ '(B,) = B, and h carries B, homeomorphically to B,, with A~ !(B,)
= B,. We can use g and h to construct a self-homotopy-equivalence f of M
= (L(7.1)-int (B,)) us(L(7,2)-int(B,)) that interchanges the sides of S. Suppose
f were homotopic to a homeomorphism F. An easy argument using

5 — Banach Center Publications
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irreducibility of L(7,1) and L(7,2) shows that any essential imbedded 2-sphere
in M is isotopic to S, so we may assume F(S) = §. Since F , interchanges the
factors of m; M = n, (L(7,1)) = n, (L(7,2)), F must interchange the sides of S.
Splitting along S and filling in 3-balls would yield a homeomorphism [rom
L(7,1) to L(7,2). Therefore, f cannot be homotopic to a homeomorphism.

There is, however, an important case for which a general result is
available. In order to state it, we must first describe a certain kind of
homeomorphism. Suppose S is a 2-sphere imbedded in the interior of M (or
alternatively as a boundary component of M). Let §? x1 be coordinates on a
product neighborhood of S. Regard $* as the unit 2-sphere in R, and let
SO (3) be the group of orthogonal linear transformations of R*> of determi-
nant 1. It is known that =, (SO(3), 1R3) =~ Z/2 (with generator carried by
SO(2) =50(3)). Let t: (I, 0, 1)~ (SO(3), 1,3, 1,3) represent the generator,
and define f;: M — M by f.(x,t) =(t(t)(x), t) for (x, 1)eS? xI and f,(y) =y
for y¢S* x 1. Observe that f;? is isotopic to f,, and a nullhomotopy of r*

gives an isotopy from f, to 1. Thus {f.> is an element of #' (M) of

order < 2. Since f, moves points only in a simply connected subset of M,
(fo)w: m (M, xo) — n, (M, x,) ts the identity at any basepoint x, fixed by f.
The isotopy class (f,> does not depend on the choice of product
ncighborhood or the choice of t. The homeomorphism f, is called a roration
about the 2-sphere S.

We can now state the result of Hendriks:

Tueorem ([H10], [H11]). Let M be a closed 3-manifold which does not
contain 2-sided projective planes, and let > (M, x5) — (M, x,) be a homotopy
equivalence having local degree 1 at xq and inducing the identiry
automorphism on 7, (M, x;). Then f is homotopic (rel x,) to a rotation about
a 2-sphere.

There is a generalization of this result to bounded 3-manifolds in
[K-M]. .

In many cases, the theorem of Laudenbach mentioned above implies
that the rotation in the conclusion of Hendriks’ theorem is unique up to
isotopy. In fact, Laudenbach [L1, p. 133] conjectured that in general two
products of rotations that are homotopic must be isotopic. A recent and
surprising result of J. Friedman and D. Witt disproves this conjecture. Recall,
for example from [O], that there is a free action of D(2*, m) xC, on §?,
where D(2*, m) is the extension of the cyclic group C,, by C,x which has
presentation

{a, b| a® =b" =1, aba™! =b"1

with k=2 m odd and m=>3, and (2*m,n)=1. Let N(k, m, n) be the
quotient of S? by this action, and let M(k, m, n) be the complement of an
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open ball in N(k, m, n). Denote by R the rotation about the boundary 2-
sphere of M(k, m, n). '

TueoreM ([F-W1]). For k=3, R is not isotopic to the identity (rel
M (k, m, n)).

This theorem is proved using results of Ivanov [I]. We have also a
remarkable theorem of Hendriks:

Turorem ([H10], [H11]). A roration about an imbedded 2-sphere S in M
is homotopic to the identity (rel OM) if and only if S bounds a submanifold M,
in M such that M, ugD? is a connected sum of closed manifolds, each either
with finite fundamental group whose 2-Sylow subgroup is cyclic, or homotopy
equivalent to an S* or P? bundle over S'.

Since the 2-Sylow subgroup of n, (N (k, m, n)) is cyclic, the rotations in
the theorem of Friedman and Witt are homotopic to the identity (rel
¢M(k, m, n)). To get a closed example, form N = N(k, m, n) # N(k', m', n’)
from summands as in their theorem. Using a result of Hatcher [HS5], one
shows that a rotation about the connected sum sphere of N is not isotopic to
the identity, while Hendriks’ theorem still apples.

3. The mapping class group of M

In Section 2, we discussed the homeomorphism called a rotation about a 2-
sphere in M. More generally, when F is a properly-imbedded 2-sided 2-
manifold in M and () is a nontrivial element of n,(Homeo(F), 1f) (sce
[H1], [H2], [H3] for calculation of n, (Homeo (F))), we may define a similar
homeomorphism f, with support in a product neighborhood of F. When
F = RP?, we have n,(Homeo(RP?) = Z/2 and f, is called a rotation about
the projective plane F. When F is a 2-disc, n, (Homeo(D?)= Z and f; is
called a rwist about the disc F. When F is a 2-sided annulus, torus, Mbius
band, or Klein bottle, f, is called a Dehn twist. All of these homeomorphisms
are said to be of Dehn type since they are 3-dimensional analogs of Dehn’s
generators for the orientation-preserving mapping class group of an orien-
table 2-manifold. The subgroup of # (M) generated by homeomorphism of
Dehn type is called the Johannson subgroup and is denoted by J(M).

Most results about the mapping class groups of 3-manifolds arc ol the
following three kinds:

(1) comparison of .# (M) with OQOut(n,(M)) under the natural
homomorphism that sends {(f> to f,;

(2) statements that most mapping classes arise from a small number of
geometrically-defined types of homeomorphisms;

(3) statements that various groups of mapping classes are finite, finitely
presented, or finitely generated.

For example, when M is P’-irreducible and sufficiently large, and oM is
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incompressible, # (M)— Out(n, (M)) is injective except for the trivial
exception of reflection in the fibers of I-bundles [W], [H7]. When the
boundary is compressible, the kernel of .# (M) — Qut (r, (M)) is generated by
twists about 2-discs for these manifolds, together with a reflection in the
I-bundle case [L2], [M-M]. Johannson [J2] proved that when M is
irreducible, orientable, sufficiently large, and has incompressible boundary,
J (M) has finite index in ¢ (M), and # (M) is finitely generated. These results
were extended to the boundary compressible case by McCullough and Miller
[M-M]. My doctoral student P. Grasse has proved that these mapping class
groups are fnitely presented.

In the case of non-sufficiently-large aspherical 3-manifolds, all known
examples have finitely presented groups of selfl homotopy equivalences.
Consequently, if homotopic homeomorphisms are tsotopic for these
manifolds (this has recently been proved for most of the Seifert examples by
P. Scott), then they will also have finitely presented mapping class groups.

For 3-manifolds with finite [undamental group, the mapping class group
has been calculated in many cases [B], [B-R], [H-R], [R]. It seems likely
that further progress can be made for the known 3-manifolds with finite
fundamental group, and unlikely that there will be any surprising results. In
particular, their mapping class groups will almost surely turn out to be finite.

We will now consider the reducible case. Let M =M, # M, # ...
M, #(#,S! x S§2) be a compact orientable 3-manifold with irreducible
oriented summands M,, M,, ..., M,. We regard M as constructed in the
following way. Take a 3-sphere and remove n+2g open discs to obtain a
punctured 3-cell W with boundary components S,,S,,...,S,, S.+1.0-
Swe1.15Sn+2,00-+» Sprga- In each M; choose a 3-ball D; and attach
M; = M;-int(D)) to S; along oD, for 1 i< n For n+1<j<n+g, let S;xI
be a copy of S*xI, attached to W by identifying S, x {0} with S;, and
S;x {1} to S, to form an S' x5? summand.

We will now describe four types of homeomorphisms of M. We remark
that two orientation-preserving homeomorphisms of W are isotopic if and

only if they induce the same permutation on the set boundary components
of W.

I. Homeomorphisms preserving summands. These are the homemorphisms
that restrict to the identity on W. They form a subgroup of Homeo (M)

n 9

isomorphic to [] Homeo(M; rel D) x || Homeo(S* x/ rel S$?xal). It is
i=1 j=1

known that Homeo ($% x I rel 82 x dI) has two path components: that of the

identity and that of a rotation about $*x 4.

2. Interchanges of homeomorphic summands. Suppose M, and M; are
homeomorphic by an orientation-preserving homeomorphism. Then we can
construct a homeomorphism of M fixing all other summands, leaving W
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invariant, and interchanging M; and M. Similarly we can interchange two
S! xS? summands, leaving W invariant.

3. Spins of S!'xS8? summands. For each n+1<j<n+g, we can
construct a homeomorphism of M fixing all other summands, leaving W
invariant, interchanging S;, and S;,, and restricting to an orientation-
preserving homeomorphism that interchanges the boundary components of

S; x1.

4. Slide homeomorphisms. For i <n, let M be obtained from M by
replacing M| with a 3-cell E. Let x be an arc in M meeting E only in its
endpoints. Choose an isotopy J, of M, with J, = 1y; and J,|, = 1, so that
J, moves E around «. By a slide homeomorphism that slides M; around o we
mean a homeomorphism h defined by hjy_y: =Jily-p and hly = 1y,
A change 1n the choice of J, changes h by isotopy and possibly by a rotation
about §;. Thus a choice of 2 might determine two isotopy classes of slide
homeomorphism. This ambiguity will cause no difficulties. It is interesting to
note that if 7 1s the frontier of a regular neighborhood of MU a in M, then
T 1s a compressible torus and h is isotopic to a certain Dehn twist about T.
Consequently, slide homeomorphisms lie in the Johannson subgroup of
H(M).

By a similar construction, we can slide either end of §; x I around an arc
in M —S§; x(0,1), obtaining an element in the Johannson subgroup.

It can be shown that if 2, and «, are two arcs meeting E only in their
endpoints, and « is an arc representing the product of a, and «, in 7, (M
—M))7, §;), then a slide of M, around 2 is isotopic to a composite of slides
around x, and «,. Similarly for sliding ends of S; xI's. It follows that the
subgroup of .# (M) generated by slide homeomorphisms is finitely generated.

Remark. It is possible to treat spins of S!xS? summands as
homeomorphisms preserving summands. We prefer, however, that our
homeomorphisms correspond to the generators of Aut(m, (M, x,)) given by
[F-R].

THEOREM. Let M be a compact connected orientable 3-manifold. Then any
orientation-preserving homeomorphism of M is isotopic to a composite of the
Jour types of homeomorphisms described above.

This implies:

CoRroOLLARY. Suppose each irreducible summand of M has finitely generated
mapping class group. Then the mapping class group of M is finitely generated.

The theorem appears without proof in the research announcement [C-R]
(see the next section for discussion of {C-R]) and it appeared earlier in the
thesis of César de Sa [C2], who gave an argument based on “partial slides.”
The proof we give here avoids the partial slide concept; it is based on an
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argument due to M. Scharlemann which appears in Appendix A of [B1].

Proof of the theorem. Let f be an orientation-preserving homeomorphism
of M. We will apply isotopies, slide homeomorphisms, interchanges, and
spins to change f to a homeomorphism preserving summands. The
intermediate composites will again be called f in order to avoid an excess of
notation.

n ntg
Let 2= |J S;u( U (S;0uS;;)) We may assume f(Z) is transverse

i=1 j=n+1
to 2. We will modifyfjto reduce the number of components of f(2)~Z. Let
C be a circle of intersection that is innermost on f(Z2), so that C bounds a
disc E, < f(X) with int(E,) disjoint from 2. If E; < M| or E, = §; x/ then
there is an isotopy pulling E; into W, eliminating C and possibly other
circles of intersection as well. Suppose now that JE, < §, for some 1 <i < n,
and E, = W. If the other disc that ¢E, bounds in f(2) has interior disjoint
from X, then it must lie in M and we can eliminate C by the preceding step.
So assume this 1s not the case. Then we can choose an arc a, in f(2) ~ M;
with one endpoint in C and the other endpoint in §;-C. Let E, be the disc in
S; which is the closure of the component of S;-C that does not contain the
other endpoint of a,. The 2-sphere E, w E, bounds a punctured 3-cell
W, < W. Suppose M, is attached to W, (k #i). There is an arc a with
endpoints in S, that travels in W, to §;, then through M;—f(2) emerging in
W— W, (i.e., follows along near a,), and then through W to S,. Such an arc
a is shown in Fig. 1. Slide M, around « (i.c, compose f with the slide

homeomorphism that slides M, around a). Repeating for each M, attached
to W;, and each end of an §; xI attached to W, we arrive at a situation
where E, U E, bounds a 3-ball in W so that C can be eliminated by isotopy.
Finally, suppose C lies on §;, (the case of S;, being similar). Try to find an
arc ag in f(Z) N (S; xI) with one end in C and the other end in §; ;. If this is
not possible, then C can be eliminated by isotopy, so assume o, is found.
This time, choose E; so that §;, is not a boundary component of W;. Then,
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proceed as before, sliding summands and ends of S, xI's over §; x I until C
can be eliminated by isotopy.

Repeating this process as far as possible, we reach the situation
fX)nX=0.

Since no component of f(Z) can bound a 3-ball in M, it is not hard to
show that f(W) is i1sotopic to W, so we may assume f (W)= W. Applying
interchanges of homeomorphic summands and spins of S' x$? summands,
we may assume f permutes the boundary components of W trivially. Since f is
orientation-preserving, f|, 1is isotopic to 1y, hence f is isotopic to a
homeomorphism preserving summands. This completes ‘the proof of the
theorem. =

The previous proof yields another result:

THEOREM. Suppose J(M;) has finite index in # (M;) for each irreducible
summand M; of M. Then J(M) has finite index in XK (M).

Proof. First, we note that # (M, rel D;) and the orientation-preserving
subgroup of .# (M,) differ only by homeomorphisms sliding D; around loops
in M;, which are Dehn twists about tori, hence the hypothesis implies J (M;
rel D;) has finite index in # (M, rel D,).

There is a finite collection of products of interchanges of homeomorphic
summands and spins of S' xS? summands that suffices to carry out the
argument of the previous theorem. Thus that argument shows that for any
orientation-preserving homeomorphism f, there is a product k, of slide
homeomorphisms, and one of these finitely many products k,, so that ks &k, f
is isotopic to a homeomorphism preserving summands. So we can write

ko ky £ = (O <¢ky) where ¢j)>eimage (11[ J(M; rel D) — #(M)) and <k

i=1
n

is one of finitely many coset representatives of image ([] J(M; rel D))
i=1

— # (M) in

n g
image([[ # (M; rel D) x [ #(5* x1 rel §? xdl) — H#(M)).
i=1 i=1
Therefore (f> = <k k3 jk,)> <ky ks> Now (ki ks tjk,YeJ(M) and
there are only finitely many products of the form k;'k;. The result
follows. =

A proof that the mapping class group of M is finitely presented if the
same is true for its irreducible summands should be within range of current
techniques. In fact, it is not unreasonable to conjecture that the mapping
class group of any compact 3-manifold is finitely presented, and that the
Johannson subgroup always has finite index.
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4. The homotopy type of Homeo (M)

In Section 3 we considered the group of path components of the PL
homeomorphism group Homeo (M). Since Homeo (M) is a topological group,
its path components are homeomorphic, so to understand the homotopy
type of these components we need only consider the connected component of
the identity map 1,. In the closed P*-irreducible sufficiently large case, we
have a very strong result due to Laudenbach and Hatcher:

Tueorem ([L1], [H4]). For ¢ = 1, n,(Homeo (M)) — n, (Equiv(M)) is an
isomorphism.

Thus the Waldhausen—Heil isomorphism at the = level extends to all
higher homotopy groups. The group =, (Equiv(M)) is easy to compute since
M is aspherical; for g = 1, n, (Equiv(M)) = center(r, (M)) while for q > 2,
n,(Equiv(M)) = 0. For non-sufficiently-large aspherical 3-manifolds, we
would hope for the same result.

When M is reducible, even with nice summands, the homotopy type of
Homeo (M) is much more complicated. We have:

THEOREM ([MI1]). Let M be a connected sum of at least three closed
aspherical 3-manifolds. Then n,(Homeo(M)) is not finitely generated.

In the proof of this theorem, a single geometric construction leads to
many elements of n,(Homeo(M)) (ie, isotopies from 1,, to 1,). The proof
that they are not in any finitely generated subgroup is by very explicit
obstruction-theoretic calculations that do not give direct insight into the
structure of Homeo (M).

For the reducible case, the theorem of Laudenbach and Hatcher fails
drastically. In fact, we have:

Tueorem ([J1])). Let M, and M, be closed orientable irreducible
sufficiently large 3-manifolds. Then n, (Homeo (M, # M,))
— 7ty (Equiv(M, # M,)} is not an isomorphism.

In [J1], Jahren proves much more, but this particular statement is
immediate from later work: by [H5], =, (Homeo(M, # M,))= {1} while
from [M1], =, (Equiv(M, # M,)) is not finitely generated.

Although these results might seem rather discouraging, an innovative
new idea for studying Homeo (M) in the reducible case is leading to a greatly
increased understanding of its homotopy type. In [C-R], César de S3 and
Rourke gave a description of Homeo(M) making use of a “configuration
space” C whose loop space is a direct factor of Homeo(M) up to weak
homotopy. They were later unable to give complete proofs for the announced
results, but Hendnks and Laudenbach [H-L2] overcame formidable
technical obstacles and made the basic ideas of [C-R] go through in the
orientable case. In order to give the result, a bit of notation will be needed.
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We will work with the group of difftomorphisms; analogous results hold for
PL homeomorphisms. Suppose M is a connected compact orientable 3-
manifold with a 2-sphere boundary component S,. Then we may construct
M as a connected sum of a 3-ball P,, having boundary S,, with #n irreducible
3-manifolds P,, P, ..., P, (P; # S°) and g copies of S! xS2. Let D; be the
connected sum 3-ball in P;. There is a compact codimenston-zero
submanifold B of M, diffeomorphic to the complement of n+2g disjointly
imbedded 3-balls in P, so that

(a) Sy =B M

(b) M—B is the disjoint union of P,—D;, 1 <i<n, and g copies of
(0,1) x 2.

In [H-L2] is constructed a configuration space C, so that there are
three H-space homomorphisms:

a: (F )" — Diff(M rel ¢M),

p: QC, — Diff(M rel ¢M),

n ]
y: [] Diff(P; rel &P, w D) x [] 20(3) = Diff(M rel éM).

=1 ji=1
Here, F, the free group on g generators, corresponding to the subgroup
of m, (M) coming from the S' x S§* summands. For x = (x, x;, ..., x,)e(F )",

a(x) corresponds to the composition of slide homeomorphisms of the
summands P; around loops representing x;. The Q0 (3) factors correspond to
Diff([0,1] x S% rel {0,1! x §%) by the Smale Conjecture [H6]. The main result
of [H-L2] is:

THEOREM. The map

n g
h: (F,)"xQC, x [ | Diff(P; rel 0P, u D) x [] 20(3) - Diff(M rel oM)
i=1 j=1
defined by h(x, y, z) =2(x)B(y)y(z) is a homotopy equivalence.

The map h i1s not an H-space homomorphism.

Although the construction of the configuration space C, is quite
difficult, C, can be identified with a much more concrete object. Let
Imb(B, M rel S;y) be the space of smooth imbeddings of B into M that
restrict to the inclusion on S,, and let Imby(B, M rel S;) be the subspace
consisting of those imbeddings that extend to diffeomorphisms of M. Then
we have the following results from [H-M], which actually [ollow rather
eastly from [H-L2]:

THEOREM. The restriction map p: Diff(M rel M) — Imby (B, M rel S,),
which is a principal fibre bundle with fibre

n 4
[] Diff(P; ret 8P, L D)) x n Diff([0,1] x §% rel 0,1} xS?),

i=1 Jj=1
is a product fibration.
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THeoreM. The composition po(af): (F,)" xQC, — Diff(M rel M) —
Imb, (B, M rel S,) is a homotopy equivalence.

As (nonimmediate) applications of the first of these two theorems, we
have:

THeoReM. Ler Diff (M, B rel 6M) be the group of diffeomorphisms of M,
fixed on ¢M, that take B to B. Suppose none of the irreducible summands
P, has universal cover homotopy equivalent to S*. Then the inclusion map
Diff(M, B rel dM)— Diff(M rel ¢M) induces injective homomorphisms on
homotopy groups.

THEOREM. Let Q be the 1-point union of n+2g—1 2-spheres. Suppose none
of the irreducible summands P, has universal cover homotopy equivalent to S3.
Then for all q = 1, there is an injective homomorphism

n,(2Q) — n, (Diff (M rel ¢M)).

This shows that =, (Diff (M rel 8M)) contains torsion of all orders, as long as
n+2g—12>= 1. I hope that further investigation of Imbg(B, M rel S,) will
yield a much better understanding of Diff(M rel éM).

5. Other topics

Here we briefly mention some other results. One natural question which has
an interesting answer for reducible 3-manifolds is the following. Suppose
f: (M, dM) - (N, 6N) is a proper map inducing an isomorphism on
fundamental groups. Is f a proper homotopy equivalence? It turns out that
the presence of a “good™ summand forces an affirmative answer:

THEOREM ([S1]). Let f: M — N be a map between closed orientable 3-
manifolds which induces an isomorphism on fundamental groups. If one of the
Jree factors of m, (M) is infinite but not cyclic, then f is a homotopy equivalence.

In the bounded case, we have:

Theorem ([K-M]). Ler f: (M, M) — (N, éN) be a proper map between
compact 3-manifolds which induces an isomorphism on fundamental groups.
Suppose M has no more 2-sphere boundary components than N has. If M has
an irreducible aspherical summand which is not an I-bundle, or N has an
irreducible aspherical summand which is not a product-with-handles, then f is a
proper homotopy equivalence.

A closely related problem is the determunation of which isomorphisms
on fundamental groups can be induced by homotopy equivalences. This has
been studied by Swarup. He associates to a closed oriented n-manifold with
basepoint an invariant t(M, m)e H,(n,{M, m);Z) and proves the following
results:

THEOREM ([S1]). Let (M,, m,) and (M,, m;) be two closed oriented 3-
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manifolds and let 6: n,(M,, m;) — n,(M,, m,) be an isomorphism. Then there
is a continuous map [ (M;, m))—(M,, my) with f, =6 if and only if
0, (t(M,, my)) = de(M,, m,y) for some integer d. Moreover, when this condition
is satisfied, we can realize an f of degree d.

THeoREM ([S1]). With hypotheses as in the previous theorem, there is an
oriented homotopy equivalence - (M,, m;) — (M,, my) with f, = 0 if and only
if 0* (T(Ml, ml)) = 1(M,, m,).

These two theorems are generalized to not necessarily orientable
Poincaré pairs in [H12].

Group actions on reducible 3-manifolds are quite well-understood due
to the development of minimal surface techniques by Meeks and Yau. We
refer the reader to [P] for the most general result to date.
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