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In [1], Henstock defined a Riemann-complete integral as follows..
A division of an interval [a, b], denoted by ([a, b], 2), consists of two
finite sequences {x;};_, and {z;}7_, with conditions ¢ =z, <z, < ... <,
=bandx;_, <2<z (j =1,...,n). If i(2) is a positive function defined.
in [a,b], ([a,b], 2, 6(z)) denotes a division ([a, b], 2) compactible with:
d(z). That is, in addition to the above-mentioned conditions, x; —2; < 6(2;)
and 2;—x;_, < 6(%;) for j =1,...,n. A real-valued function f is said
to be Riemann-complete integrable in [a, b] if there is a real number
I(f, [a,bd]), which is called the integral of f in [a, b], such that to each
e > 0 there corresponds a positive function 6(z) defined in [a, b] with
IS —I(f, [a, b])] < & for all sums

8 = N f(z)(@—a;_,)  over ([a, b, D, 8(2)),

where ({#;}]_o, {2;};_,) forms the division ([a, b], 2, 6(2)). Henstock
pointed out that this integral is equivalent to the Perron integral. It
follows that the theorem stated below holds. However, we shall prove
it in this paper without using the Perron integral.

THEOREM. If f is Riemann-complete integrable in [a, b], then its indef-
inite integral I(f, [a, x]) has a derivative and the derivative DI (f, [a, x]) =
= f(x) for almost all x of [a, b}, and f(x) is measurable in [a, b].

The proof for the theorem is based on several lemmas. These lemmas
" can be found in [1] and [3] if they are stated without proof.

LemMMA 1 (cf. [3]). If f and g are Riemann-complete integrable in
[a, b] and a, B are real numbers, then af+fBg is also Riemann-complete
tntegrable, and

I(af +Bg, [a, b]) = al(f, [a, b])+BL(g, [a,b]).

LEMMA 2 (cf. [3]). A real-valued function fis Riemann-complete integ-
rable in [a, b] if and only if, for ¢ > 0, there corresponds a function &(z) > ¢
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defined in [a, b] with |8’ —8"'| < ¢ whenever 8’ and 8" are sums over
{[a, b], D', 6(2)) and ([a, b], D", 6(2)), respectively.

LeEMMA 3. If f is Riemann-complete integrable in [a, b] and ce(a, b),
then f is Riemann-complete integrable in both [a, ¢] and [¢c, b], and

I(f, [a, b]) = I(f, [a, c])+I({, [c, b]).

Proof. The integrability of f in both [a, ¢] and [c, b] follows from
Lemma 2. By definition of integrability, for ¢ > 0, there are three positive
functions 6§,(z), 6,(?), 6,(2) defined in [a, b], [a,c], [¢, b], respectively,
such that

IS —1I(f, [a, b]) < g for sum 8 over any ([a, b], 2, 6,(2)),
IS, —I(f, [a, c])| <§ for sum 8, over any ([a, cl, 2,, 61(z)),

18, —I(f, [c, b])| <§ for sum 8, over any ([¢, b], 9,, 6,(2)).

Let 4(2) be defined as dy(2)A 6,(2) if ze[a, ¢), 8y(2)A 0,(2) if ze(e, b]
and d(¢) = dy(¢)A 6,(¢)A d5(c); then the above-mentioned three inequal-
ities hold if J,(2), 6,(2) and J,(z) are replaced by 6(z). If S, and S, are
sums over two fixed divisions ([a,c], 2y, 6(2)) and ([¢, bl, 2, 6(2)),
respectively, then 8,+ 8, is the sum over ([a, b], 2, 6(2)) which is the
union of our two fixed divisions. Hence

]I(f, [a, b])_(I(f7 [a, c]) + L(f, [e, b]))'
< ]I(fa [a'y b])_(Sl+Sz)| + ISI—I(f7 [ay 0])|+ |’S2_I(f7 [07 b])l

<8—|~£‘+8
3 T3 T3¢

The equality follows clearly.

LeMMA 4 (cf. [1]). Let f be Riemann-complete integrable in [a, b] and
£> 0 be given, let 6(2) > 0 be defined in [a, b] such that |S—I(f, [a, b])|
< & for all sums S over ([a,d), 2, 8(2)). If pis any partial sum of terms
{f(z)(v—u)—I(f, [w,v])} corresponding to distinct intervals [u,v] of
'([a’y b], 2, 6(2))7 then |p| < e.

LeMMA 5. If f is Riemann-complete integrable in [a, b], then I(f, [a, x])
is a continuous real-valued function in [a, b].

Proof. By Lemma 3, I(f, [a, x]) is defined in [a, b]. Let 2, be a fixed
point with a <z, <b. Given &> 0, choose & such that

&
0<ée <— .
14 [f(20)]
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Since f is Riemann-complete integrable in [a, b], for & > 0, there
is 6(2) > 0 defined in [a,b] such that

(i) I8 —I(f, [a, b])] < &

for all sums § over ([a, b, 2, d(2)). Let & be such that 0 < 6 < &' A 8(2,)
and let x be any point with 0 < z—2z, < é.

Case 1. 2, = a. Let 8 be the sum over ([, b], 2', (2)), ([a, b], 2, d(2))
be the union of ([z, b], 2, 4(2)) and the division of [a, x] consisting of
{a, 2} and {2, = a}; then 8+ f(2,)(z —2,) is the sum over ([a, b, 2, 6(2)).
By (i), we have

I8 + f(20) (# — 20) — I (f, [a, b])| < &'
Then, by Lemma 4,

|f(20) (¢ — 20) — L(f, [, ®]] < &’

Case 2. & < 2, < b. Let §, and 8, be the sums over ([a, 2,], 9, d(2))
and ([z, b], 2,, é(2)), respectively, let ([a, b], D, 6(z)) be the union of
{[a, 2], 21, 6(2)), ([, b), D,, 6(2)) and the division of [z, 2] consisting
of {2y, «} and {z,}; then 8; + f(2,) (x — 2,) + S, is the sum over ([a, b], 2, 6(2)).
Consequently,

181+ f(20) (% —20) + 82— I(f, [a, B])| < &’
By Lemma 4 again,

|f (20) (¢ — 20) — I (f, [20, #])] < &’
In cither case, we have
IL(fy [20y 2])1 < &'+ 1f(20)] |& — 2|
< & +1f(2)l8 < & (L+1f(20)l) < e

Thus I(f, [a, #]) is right continuous at z,. Similarly, we can prove
that I(f, [@, z]) is left continuous at 2, if a < 2, << b. Hence, I(f, [a, x])
is continuous in [a, b].

LEMMA 6. If f is Riemann-complete integrable in [a, b], then, for
€ > 0, there is a monotone increasing function G defined in [a, b] such that
"0 G(b)< e and the upper derivate

D(I(f, [a,2]) —G(2)) < f(x) in [a,b].

Proof. By hypothesis, there is a 6(z) > 0 defined in [a, b] such that
(S —I(f, [@, b])l < &/2 for all sums S over ([a, b], 9, 6(2)). Let

8 = D'f(z) (@ —x;_y)
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be a sum over ([a, b], 2, 6(2)); then, by Lemma 4, we have
D5 (2) (@5 —a20) — L(f, [25_1, %;])]:

Fep @ =) = 1(f, @5, ,0) > 0} <
and
D) @— i) — Iy [25_0, 2]
Fle) (g —ay0) = L(f, [2y0, 7)) < 0} <=

Hence we have

D) @ — i) = 1(fy [0, ) < e

for the sum 8 over ([a, b], 2, 6(2)).
For I = [u,v] < [a,b], we write
@(I) = sup{ D)If(2) (@ — ;) — I(f, [@5-1, 3,13
({210, {7}02)) is a division ([u, v], @, 6(z)}}.
Clearly, G(I)<e. Also if I, =[u,t], I, =[t,v] and I =1,VUl,,
then G (I,)+G(I,) < G(I).

Let G(z) = G([a, 2]) for a < < b and G(a) = 0; then G(zx) in [a, b]
is, clearly, non-negative, monotone increasing and G(b) < e. To show that
D(I(f, [a, ) —G(2)) < f(») in [a,d],
we fix 2z,e[a, b]. Consider z with 0 < |[r—2,| < 6(2,). If 0 < 2p— 2 < 6(2),

then ({z, 2}, {2,}) is a division ([, 2], 2, 6(2)) and
G ([@, 20]) = |f(20) (20— @) — L(f, [, 2])I.
It follows that
(L(f, [a, ®]) — G (2)) — (1 (f, [a, 2]) — G (%))

.CU—ZO

< f(z)-
Similarly, the same inequality holds if 0 < #—2, < 6(%). Thus we

have this inequality for 0 < | —2,| < 6(2). Consequently,
D(I(f, (@ 2]) —G(20)) < f(20)-

The proof of the lemma is complete.
Proof of the theorem. Let

A = {te[a, b]: DI(f, [a, t]) > f(1)}.
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We want to show that m,(A4) = 0, where m, is the Lebesgue outer
measure. If m,(4) > 0, then there is an r > 0 and a set 4, with m,(4,)
= u > 0 in which DI(f, [a,t])—f(¢) > r. Let ¢ be such that 0 < & < }pur
and @G be a function in [a, b] as stated in Lemma 6; then

b
(2) [ ¢ <G()—6(a) = G <.
Set B = {we[a, b]: G'(x) > }r}. Since G is monotone increasing,
b
G@>0 and (2) [¢<(2) [¢<e..
B a

It follows that m,(B) < u. Thus there exists te A, with 0 < G’ (1) < }r.
For this ¢, we have

DI(f; [a'7 t])—%r I(f7 [a” t])_G’(t)

<D
< D(I(f, [a t]) —G (1)) < f(¥),
a contradiction to the fact that ted,. Therefore, m,(4) =0 and
DI(f, [a, #]) < f(z) for almost all # in [a, b].
Applying this fact to —f which, by Lemma 1, is Riemann-complete
integrable in [a, b] and I(—f, [a,2]) = —I(f, [a, #]), We have
DI(—f, [a,2]) < —f(z) for almost all # in [a, b].

Since

DI(f, [a, @]) = —D(—I(f, [a,2])) = —DI(—f, [a, z]),
‘we see that
DI(f, [a,x]) > f(x) for almost all z in [a, b].
Hence
f(x) < DI(f, [a, x]) < DI(f, [a, #]) < f()

or

DI(f, [a, «]) = f()

for almost all # in [a, b]. By Lemma 5 and a well-known theorem (cf. [2],
p. 194), f(z) = DI(f, [a, #]) is measurable in [a, b].
The author is indebted to Prof. R. Henstock for his suggestion.
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