CONFORMING FINITE ELEMENT APPROXIMATION
OF THE STOKES PROBLEM

MICHÁL KŘÍŽEK

MÚ ČSAV, Praha, Czechoslovakia

This paper considers a conforming finite element method for the stationary
Stokes problem in the plane. An easy way of generating continuous and
divergence-free FE-basis functions (e.g. piecewise linear) with small supports is
shown. The approximate solution can be obtained solving a system of linear
algebraic equations.

1. Introduction

The Stokes problem is usually solved by mixed (non-conforming) FE-methods
when the incompressibility condition \(\text{div} \, \mathbf{v} = 0 \) is satisfied only approximately.
Some benefits and also disadvantages of these methods can be found e.g. in
[1, 2, 3, 9, 10]. To fulfill the condition \(\text{div} \, \mathbf{v} = 0 \) exactly, conforming
FE-methods have to be employed (see [2, 4, 6, 10, 11]). Here we present
a conforming method mentioned in [6].

With the help of a stream function and \(C^1 \)-elements in \(\mathbb{R}^2 \), we shall
construct finite element spaces of continuous and divergence-free vector
functions. The method is applicable especially for polygonal domains, since
curved \(C^1 \)-elements are quite complicated [7, 12]. We shall deal with
approximation properties of the above-mentioned FE-spaces and apply them
to the stationary Stokes problem. However, these spaces may also be used for
the Navier–Stokes equations or non-stationary problems.

We denote by \(\Omega \) a bounded plane domain with a Lipschitz boundary \(\partial \Omega \).
The outward unit normal \(n = (n_1, n_2) \) to \(\partial \Omega \) exists almost everywhere (see [8],
p. 88). Let \((\cdot, \cdot)_0\) be the inner product in \((L^2(\Omega))^d \), \(d \geq 1 \). By \((H^k(\Omega))^d \), \(k = 0, 1, 2, \ldots \) we mean the Cartesian product of the Sobolev spaces \(H^k(\Omega) \) with the
standard norm \(\| \cdot \|_k \) and seminorm \(\cdot \cdot_k \). Further we define the linear operator
curl: \(H^1(\Omega) \to (L^2(\Omega))^2 \) by

\[
\text{curl} \, s = (\partial_2 s, -\partial_1 s), \quad s \in H^1(\Omega),
\]

[389]
where $\partial_i = \partial/\partial x_i$, and recall that

$$H_0^1(\Omega) = \{ v \in H^1(\Omega) | v = 0 \text{ on } \partial \Omega \}$$

and

$$H_0^2(\Omega) = \left\{ s \in H^2(\Omega) | s = \frac{\partial s}{\partial n} = 0 \text{ on } \partial \Omega \right\}.$$

The homogeneous stationary Stokes problem of the motion of an incompressible viscous fluid in Ω is classically formulated in the following way:

Given $f \in (L^2(\Omega))^2$ (volumic forces per unit mass) and a constant $\nu > 0$ (dynamic viscosity), find the velocity $u = (u_1, u_2)$ and the pressure p such that

(1) $$- \nu \Delta u + \text{grad } p = f \quad \text{in } \Omega,$$

(2) $$\text{div } u = 0 \quad \text{in } \Omega,$$

(3) $$u = 0 \quad \text{on } \partial \Omega,$$

where $\Delta u = (\Delta u_1, \Delta u_2)$.

We shall be not concerned with the way of finding p (for this see e.g. [1]).

We roughly outline a variational formulation of (1)–(3) to find the velocity $u = (u_1, u_2) \in V$, where

(4) $$V = \{ v \in (H_0^1(\Omega))^2 | \text{div } v = 0 \text{ in } \Omega \}$$

is the space of test functions which satisfy the conditions (2) and (3). Multiplying (1) by an arbitrary function $v \in V$ and integrating over Ω, we arrive at

$$- \nu (\Delta u, v)_0 + (\text{grad } p, v)_0 = (f, v)_0.$$

Now the Green formula yields

(5) $$\sum_{q=1}^{2} (\text{grad } u_q, \text{grad } v_q)_0 = (f, v)_0 \quad \forall v \in V.$$

It follows from the Lax–Milgram lemma that there exists a unique solution to the variational problem (5).

2. The case of simply connected domains

In this section we assume that Ω is simply connected.

Theorem 2.1. The linear mapping

(6) $$\text{curl}: H_0^2(\Omega) \to V$$

is bijective.

Proof. For $s \in H_0^2(\Omega)$ evidently $\text{curl } s \in (H_0^1(\Omega))^2$ and $\text{div } \text{curl } s = 0$ in Ω, i.e., $\text{curl } s \in V$ (cf. (4)).
Injectivity. Let \(s \in H_0^2(\Omega) \) be in the kernel of the mapping (6), i.e., \(\text{curl} \ s = 0 \). Since \(\partial_1 s = \partial_2 s = 0 \), the function \(s \) is constant in \(\Omega \), and due to the boundary condition \(s = 0 \) on \(\partial \Omega \), we see that \(s = 0 \) in the whole domain \(\Omega \).

Surjectivity. Let \(v \in V \) be arbitrary. Then by [3], p. 22, there exists the so-called stream function \(s \in H^1(\Omega) \) unique apart from an additive constant (this constant will be chosen later) such that

\[
 v = \text{curl} \ s.
\]

Since \(v \in V \), we find that \(\partial_1 s, \partial_2 s \in H^1(\Omega) \), i.e., \(s \in H^2(\Omega) \). However, \(\partial_1 s = \partial_2 s = 0 \) on \(\partial \Omega \) which implies that

\[
 \frac{\partial s}{\partial t} = \frac{\partial s}{\partial n} = 0 \quad \text{on} \quad \partial \Omega,
\]

where \(t = (n_2, -n_1) \) is the unit tangent vector to \(\partial \Omega \). Therefore, \(s \) is constant on \(\partial \Omega \) (as \(\partial \Omega \) is connected). Choosing \(s \) in (7) so that \(s = 0 \) on \(\partial \Omega \), we get that \(s \in H_0^2(\Omega) \).

Corollary 2.2. It is

\[
 V = \text{curl} \ H_0^2(\Omega),
\]

where the symbol \(\text{curl} \ H_0^2(\Omega) \) represents the space of the rotations of all functions from \(H_0^2(\Omega) \).

Now, let \(S_h \subset H_0^2(\Omega) \) be an arbitrary finite element space and let us define

\[
 V_h = \text{curl} \ S_h.
\]

From (8) we immediately see that \(V_h \subset V \) (i.e., \(\text{div} \ v_h = 0 \) whenever \(v_h \in V_h \)) and thus \(V_h \) is called the space of divergence-free (solenoidal) finite elements.

Corollary 2.3. We have

\[
 \dim V_h = \dim S_h.
\]

If \(\{ s^i \}_{i=1}^m \) is a basis in \(S_h \) and if we set

\[
 v^i = \text{curl} \ s^i, \quad i = 1, \ldots, m,
\]

then \(\{ v^i \}_{i=1}^m \) is a basis in \(V_h \).

The proof follows directly from (9) and Theorem 2.1. Moreover, from (10) we find that

\[
 \text{supp} \ v^i \subseteq \text{supp} \ s^i, \quad i = 1, \ldots, m,
\]

where \(\text{supp} \) denotes a support. Consequently, if the basis \(\{ s^i \}_{i=1}^m \) is generated by the standard \(C^1 \)-elements, then thanks to the definition formula (10), the basis functions \(v^i \) are continuous, exactly divergence-free and by (11) they have small supports (if \(\text{supp} \ s^i \) are small).
Remark 2.4. In [5], Heindel has presented a triangular composed piecewise quadratic \(C^1 \)-element (see fig.) with only 12 degrees of freedom (like the Hsieh–Clough–Tocher element [1]). Hence, the corresponding divergence-free basis functions \(v' = (v'_1, v'_2) \) satisfying (11) are piecewise linear (cf. [2]) as follows from (10). ■

A conforming FE-approximation of the problem (5) will consist in finding \(u_h = (u_{h1}, u_{h2}) \in V_h \subset V \) such that

\[
\sum_{q=1}^{2} \langle \text{grad } u_{hq}, \text{grad } v_{hq} \rangle_0 = \langle f, v_h \rangle_0 \quad \forall v_h \in V_h.
\]

Seeking \(u_h \) in the form

\[
u_h = \sum_{i=1}^{m} c^i v^i,
\]

we obtain from (12) a system of linear algebraic equations

\[
\sum_{q=1}^{2} \sum_{j=1}^{m} \langle \text{grad } v'_q, \text{grad } v'_j \rangle_0 c^i = \langle f, v^i \rangle_0, \quad i = 1, \ldots, m,
\]

for the unknowns \(c^1, \ldots, c^m \). The corresponding matrix is clearly symmetric positive definite and by (11) it can be band.

The next theorem states the convergence of \(u_h \) defined by (12) to the solution \(u \in V \) of the variational problem (5) without any regularity assumptions upon \(u \). However, to derive some rate of convergence, we shall later assume that \(u \) is smooth enough.

Theorem 2.5. Let \(\{ S_h \} \) be a system of finite element subspaces of \(H^2_0(\Omega) \) such that the union \(\bigcup_h S_h \) is dense in \(H^2_0(\Omega) \) (with the topology of \(H^2(\Omega) \)). Then

\[
\| u - u_h \|_1 \to 0 \quad \text{as } h \to 0.
\]

Proof. By Theorem 2.1 there exists \(z \in H^2_0(\Omega) \) such that

\[
u = \text{curl } z \quad \text{in } \Omega.
\]
Since the bilinear form corresponding to (5) is evidently continuous and L^2-elliptic, i.e.,

$$\nu \sum_{q=1}^{2} (\text{grad } v_q, \text{grad } v_q)_0 \geq c \|v\|_1^2 \quad \forall v \in V,$$

we may apply Céa's Lemma (see [1], p. 104). Thus there exists a constant $C > 0$ independent of V_h such that

$$\frac{1}{C} \|u - u_h\|_1 \leq \inf_{v_h \in V_h} \|u - v_h\|_1 = \inf_{s_h \in S_h} \|\text{curl } z - \text{curl } s_h\|_1$$

$$= \inf_{s_h \in S_h} \|\text{grad } (z - s_h)\|_1 \leq \inf_{s \in S} \|z - s\|_2 \to 0 \quad \text{when } h \to 0.$$

Remark 2.6. A sufficient condition for the density assumption in Theorem 2.5 can be found in [1], p. 354. Roughly speaking, this condition requires the regularity of a family $\{T_h\}$ of triangulations of a polygonal domain, the existence of a reference C^1-element to which all elements are almost-affine equivalent, and the validity of the inclusions

$$P_2(K) \subset P_K \subset H^2(K) \quad \forall K \in T_h,$$

where $P_2(K)$ is the space of quadratic polynomials defined on K, and P_K is the space of ansatz-functions of each element K (with appropriate degrees of freedom). The foregoing inclusions are valid e.g. for the Heindel element mentioned in Remark 2.4.

Remark 2.7. (The rate of convergence.) Suppose that for some integer $k \geq 1$ and for all $s \in H^k_0(\Omega) \cap H^{k+2}(\Omega)$, we can define an S_h-interpolant $\pi_h s \in S_h$ such that

$$\|s - \pi_h s\|_2 \leq c h^k |s|_{k+2},$$

where c is independent of h. Then for any $v \in V \cap (H^{k+1}(\Omega))^2$ we may define the V_h-interpolant $\Pi_h v \in V_h$ by

$$\Pi_h v = \text{curl } (\pi_h s),$$

where s corresponds to v by Theorem 2.1 and $s \in H^{k+2}(\Omega)$ as $\partial_1 s$, $\partial_2 s \in H^{k+1}(\Omega)$.

Let us suppose that the solution of (5) belongs to $V \cap (H^{k+1}(\Omega))^2$, and let $z \in H^k_0(\Omega) \cap H^{k+2}(\Omega)$ be the corresponding stream function, i.e.,

$$u = \text{curl } z.$$

Then by Céa's Lemma (cf. (13)), (16), (15) and (14), we obtain the following a priori error estimate

$$\frac{1}{C} \|u - u_h\|_1 \leq \inf_{v_h \in V_h} \|u - v_h\|_1 \leq \|u - \Pi_h u\|_1 = \|\text{curl } (z - \pi_h z)\|_1$$

$$\leq \|z - \pi_h z\|_2 \leq c h^k |z|_{k+2} = c h^k |\text{curl } z|_{k+1} = c h^k |u|_{k+1}.$$
Thus the rate of convergence is k and we get the same rate in the L^2-norm for the so-called vorticity \(\text{rot } u = \partial_1 u_2 - \partial_2 u_1 \).

3. The case of multiply connected domains

Let \(\Omega \subset \mathbb{R}^2 \) be a multiply connected domain with a Lipschitz boundary, let \(\Omega_1, \ldots, \Omega_r \) (\(1 \leq r < \infty \)) be all bounded components of the set \(\mathbb{R}^2 - \overline{\Omega} \) and let

\[
\Omega_0 = \Omega \cup \bigcup_{j=1}^{r} \overline{\Omega}_j,
\]

i.e., \(\partial \Omega = \partial \Omega_0 \cup \partial \Omega_1 \cup \ldots \cup \partial \Omega_r \), where \(r \) is the number of holes in \(\Omega \).

First of all we present an analogue of Theorem 2.1.

Theorem 3.1. There exist functions \(z^1, \ldots, z^r \in H^2(\Omega) - H^0_0(\Omega) \) such that the mapping

\[
\text{curl: } \mathcal{L}(H^2_0(\Omega) \cup \{z^1, \ldots, z^r\}) \to V,
\]

where \(\mathcal{L} \) denotes the linear span, is bijective.

Proof. Let \(z^j \in H^2(\Omega), j = 1, \ldots, r \), be arbitrary functions satisfying

\[
z^j = \delta_{ij} \quad \text{on } \partial \Omega_i, \quad i = 0, \ldots, r, \quad j = 1, \ldots, r,
\]

(\(\delta_{ij} \) is Kronecker's symbol) and

\[
\partial_1 z^j = \partial_2 z^j = 0 \quad \text{on } \partial \Omega, \quad j = 1, \ldots, r.
\]

Note that the distances of the boundaries \(\partial \Omega_j \) are positive because \(\partial \Omega \) is Lipschitz. By Theorem 2.1 we already know that \(\text{curl } H^2_0(\Omega) \subset V \) and due to (19), \(\text{curl } z^j \in V \), too.

Injectivity. According to (18), any \(z^j \) vanishes on \(\partial \Omega_0 \) and thus we may proceed as in Theorem 2.1.

Surjectivity. Let \(v \in V \) be arbitrary. Since \(v = 0 \) on each component \(\partial \Omega_i \), there exists (by [3], p. 22) a stream function \(s \in H^1(\Omega) \) (unique apart from an additive constant) such that

\[
v = \text{curl } s.
\]

As \(\partial_1 s, \partial_2 s \in H^1_0(\Omega) \), we observe again that \(s \in H^2(\Omega) \), \(\partial s / \partial n = 0 \) on \(\partial \Omega \) and that the tangential derivative of \(s \) vanishes on the boundary, i.e., \(\partial s / \partial t = 0 \) on \(\partial \Omega \). This implies that \(s \) equals to a constant \(c_j \) (\(j = 0, 1, \ldots, r \)) on each part \(\partial \Omega_j \).

Let \(s \) in (20) be chosen so that \(c_0 = 0 \), i.e., \(s|_{\partial \Omega_0} = 0 \). Putting

\[
z^0 = s - \sum_{j=1}^{r} c_j z^j,
\]

we find that \(z^0 \in H^2(\Omega) \) and by (18) and (19) it holds that \(z^0 = \partial_1 z^0 = \partial_2 z^0 \) on \(\partial \Omega \). Hence, \(z^0 \in H^2_0(\Omega) \) and the mapping (17) is due to (21) surjective.
COROLLARY 3.2. According to Theorem 3.1, it is

\[V = \text{curl } Z, \]

where

\[
Z = \mathcal{L} (H^2_0(\Omega) \cup \{z^1, \ldots, z^r\})
\]

\[
= \left\{ z \in H^2(\Omega) \left| \frac{\partial z}{\partial n} = 0 \text{ on } \partial \Omega, z|_{\partial \Omega^s} = 0, \exists c_1, \ldots, c_r \in \mathbb{R}^1; \right. \right.
\]

\[
\left. \left. z|_{\partial \Omega_j} = c_j, j = 1, \ldots, r \right\} \right. \]

We may therefore define the space of divergence-free finite elements as follows

\[V_h = \text{curl } Z_h, \]

where \(Z_h \) is an arbitrary finite element subspace of \(Z \).

Remark 3.3. Let us set

\[Z_h = \mathcal{L} (S_h \cup \{z^1, \ldots, z^r\}), \]

where \(z^j \) belong to a fixed finite element space \(X_{h_0} \subset H^2(\Omega) \) and satisfy (18) and (19),

\[S_h \supset X_{h_0} \cap H^2_0(\Omega), \]

and let the union \(\bigcup_h S_h \) be dense in \(H^2_0(\Omega) \) (with respect to the \(\| \cdot \|_2 \)-norm). Then we may again prove that

\[\| u - u_h \|_1 \to 0 \quad \text{as } h \to 0. \]

Assuming further (14), we can derive that the rate of convergence is \(k \) when \(u \) is sufficiently smooth. If \(\{s^j\}_{j=1}^r \) is a basis of \(S_h \) then

(22) \[\{ \text{curl } s^j \}_{j=1}^r \cup \{ \text{curl } z^j \}_{j=1}^r \]

is a basis of \(V_h \). The supports of the basis functions \(\text{curl } z^j \) may have, for instance, a circular shape around any hole \(\Omega_j, j = 1, \ldots, r \). Hence, to save computer memory, we should store only non-zero entries of the Gram matrix corresponding to the basis (22), and then use some iterative method for finding the discrete solution. For \(r \) fixed merely \(O(m) \) memory cells are needed.

References

Presented to the Semester

Numerical Analysis and Mathematical Modelling

February 25 - May 29, 1987