I. Axiom system and elementary consequences........................................... 6 1. Axioms........................................................................................................................ 6 2. Definitions and elementary consequences........................................................ 9
II. Principles of definitions by recursion........................................................... 12 3. Monotone operations.............................................................................................. 12 4. Recursion principles............................................................................................... 13 5. The rank function...................................................................................................... 15
III. Well-ordering relations................................................................................... 16 6. Well-ordering relations............................................................................................ 19 7. Ordinals and -well-order types.............................................................................. 20
IV. Models and satisfaction................................................................................. 25 8. Satisfaction................................................................................................................ 25 9. Absoluteness............................................................................................................ 29 10. Models of MT........................................................................................................... 31
V. The axiom of constructibility........................................................................... 32 11. The axiom of constructibility................................................................................. 32
VI. Ordined definability......................................................................................... 37 12. Existence of hierarchies of all classes and relative constructibility............. 37 13. Ordinal definability................................................................................................. 39
VII. Complexity of the axiom system.................................................................. 43 14. Non-finite axiomatizability and non-axiomatizability with sentences of bounded unrestricted quantifier depth.................. 43 15. Complexity of axioms for the predicative sentences....................................... 46
VIII. Forcing models............................................................................................. 47 10. Forcing..................................................................................................................... 47 17. Products of notions of forcing and coherent notions...................................... 55
IX. Independence of axioms of choico.............................................................. 59 18. Automorphisms of notions of forcing................................................................. 59 19. Independence of the local axiom of choico....................................................... 61 20. Independence of the global axiom of choico.................................................... 62
[1] R. Chuaqui, Forcing for the impredicative theory of classes, J. Symb. Logic 37 (1972), pp. 1-18.
[2] W. Easton, Powers of regular cardinals, Ph. D. Thesis, Princeton University, Princeton, N. J., 1964.
[3] K. Gödel, The consistency of the continuum hypothesis, Annals of Mathematical Studies, Princeton, N. J., 1940.
[4] J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1955.
[5] G. Kreisel and A. Lévy, Reflection principles and their use for establishing the complexity of axiomatic sytems, Z. Math. Logik Grundlagen Math. 14 (1968), pp. 97-142.
[6] K. Kuratowski and A. Mostowski, Set Theory, North Holland, 1968.
[7] W. Marek, On the metamathematics of the impredicative set theory, Dissertationes Math. 98 (1973).
[8] W. Marek and P. Zbierski, Axioms of choice in impredicative set theory, Bull. Acad. Polon. Sci. 20 (1972), pp. 255-258.
[9] R. Montague, Semantical closure and non-finite axiomatizability I. Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics in Warsaw 1959, pp. 45-69, Państwowe Wydawnictwo Naukowe, Warsaw 1961.
[10] A. Morse, A theory of sets, Academic Press, New York 1965.
[11] A. Mostowski, Constructible sets with applications, North Holland, Amsterdam 1969.
[12] J. Myhill and D. Scott, Ordinal definability, Proceedings of Symposia in Pure Mathematics, Vol. 13, Part I, American Mathematical Society, Providence, R. I., 1971, pp. 271-278.
[13] J. Shoenfield, Unramified forcing, Proceedings of Symposia in Pure Mathematics, vol. 13, Part I, American Mathematical Society, Providence, R. I., 1971, pp. 357-382.
[14] J. Shoenfield, Mathematical Logic, Addison-Wesley 1967.
[15] R. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), pp. 1-56.
[16] A. Tarski, A lattice-theoretical fixed point theorem and Us applications Pacific J. Math. 5 (1955), pp. 285-309.
[17] L. Tharp, Consistency and independence of GCH for Morse's set theory, Ph. D. Thesis M. I. T. (1965).