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The main purpose of this paper is to discuss some relations satisfied by
Fourier coefficients of automorphic forms. The most important one of those
relations is the sum formula of Kuznetsov ('), relating Fourier coefficients of
automorphic forms and Kloosterman sums. This sum formula is the subject
of part II. Two other relations are discussed in part III. Part I serves to
introduce the concept of automorphic form, and to state results which are
needed later on.

These notes are an expanded version of the lectures I have given in
September 1982 at the Banach Center, Warsaw. I am grateful for the
invitation to participate in the semester on Number Theory.

I thank Jeannette Guilliamse of the Mathematics Department of Utrecht
University for the typing of these notes.

1. AUTOMORPHIC FORMS AND AUTOMORPHIC MODELS

L0

For those who are new to this subject we discuss first the upper half plane
and the modular group, and give examples of automorphic forms.

In Part II we shall want to consider spaces of automorphic forms in
which a certain Lie algebra acts; for that purpose the language of “automor-

phic models” is convenient. Here we introduce this language and state results
needed in Part II

(') The formula in question in a slightly different form was found independently by the
author of this article, c[. [1] and [2], (editor’s remark).

[31]
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1.1. Introduction

1.1. The upper half plane

The upper hall plane h = {ze C| Im z > 0} is a model for the hyperbolic
non-euclidean planar geometry. The non-euclidean lines are:

(1) the intersections with b of the circles with center on the real axis,

(i) the vertical lines in f.

The group G of orientation-preserving non-euclidean motions consists of
the transformations

az+b
cz+d

with g=-i_-(j Z)eSlz(R)/{iI}.

Zbgrz =

(S1, (R) consists of the real 2 x 2 matrices with determinant one.) We identify
G and S, (R)/{+1I}.

On ) one has the G-invariant measure du(z) = y~ 2dxdy; here and later
on zeb is written as z = x+1iy, x, yeR.

Remark that G also acts in Ry {0}, the “boundary” of b

1.2. The modular group

1.2.1. Let us first consider P = R%, as a model of the euclidean planar
geometry. Its group of orientation-preserving motions is

SO,(R):T (semi-direct product),

with SO, (R) the group of rotations around the origin and T the group of
translations.

In T = R* we may consider the discrete subgroup 4 = Z2 generated by
(x, y)—(x+1, y) and (x, y)—(x, y+1). Each point pe P may be moved into
the region D (see Fig. 1) by some element of 4. A A-invariant function on P
is known as soon as we know its values on D.

. (0,1) - (1,1}

(0,0) (1,0

Fig. 1
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The quotient space 4\ P is a torus; it is compact. One may view it as D
with its boundaries glued together.

4 is just one easy example of a discrete subgroup of SO, (R)' T; there
are many more, some¢ not contained in T.

1.2.2. In the hyperbolic case one may also look for discrete subgroups I”
of G and consider the quotient space I'\}. There are a lot of possibilities.
Most things in these lectures hold for rather general I' (it should be discrete
in G, and I'\h should have finite volume with respect to du(z)). In order not
to complicate the exposition we work with one example, the full modular

. : b .
group: I' = Sl,(Z)/{ £ 1}, consisting of the transformations z+ ZI 7 with

a, b, ¢c,,deZ, ad—bc = 1. For number theory this group and some of its
subgroups are the most interesting ones.

1.23, Each zeh may be moved into
F=/{zel| |[Rezl <4,lz| = 1}

by an element of TI.

A0

-1 -2 0 112 1

Fig. 2

By glueing the boundaries of F in the way indicated in Figure 2, one
obtains the quotient space I'\h. This space has finite volume with respect to
the measure coming from du(z), but it is not compact. If one looks at it
through differential-geometrical spectacles one sees a spherical surface, with
an infinitely long tentacle. (The metric (ds)® = y~2(dx)®+y~ *(dy)* on b gives
the non-euclidean distances; it gives also a metric on the quotient.)

Through algebraic-geometrical spectacles one does not see the tentacle.
One views I'\bh as the set of complex points of an affine curve, which is
completed to a projective curve X(I') by adding one point. The genus of
X (I is zero for the modular group. The set of points of X(I) may be
viewed as

r\p* with B*=huQu{oo}.

3 — Banach Center, 1. 17
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Fig. 3

The elements of Qu {0} are called parabolic points, they are elements of
Ru [oo} which are fixed by some non-trivial elements of I' with trace 2. The

In
subgroup I, = { i(O 1)
corresponding to Qu {oo} is called the cusp. (More general groups I' may have

more than one cusp; if there is no cusp at all, then I'\} itself is compact.)

neZ} of I' fixes oo. The point of X(I)

1.3. Invariant functions

1.3.1. In the example of 1.2.1 the functions on 4 \P correspond to the 4-
invariant functions on P. Fourier expansion expresses them as infinite sums
of multiples of (x, y)— ?™™**m™) with n, me Z. Those exponential functions

2 52
are the eigenfunctions of the euclidean Laplace operator — @+5F) So
they give the spectral decomposition of L?(4\P) for the Laplace operator.

13.2. The non-euclidean Laplace operator in b is

S 0% @2
L= -y (6x2+5'y—2')
It is invariant under the transformations of G.

One may try to expand “all” I-invariant functions on } in eigenfunc-
tions of L. As I'\ '} is not compact, this is bound to be a more difficult task
than in the situation of 1.3.1. .

Some eigenfunctions of L on I'\§ are easily found:

1.3.2.1. The constant functions.
1.3.2.2. The Eisenstein series:

e(z)= ) (Im(y-2)2*s;

yel g\l

this series converges uniformly on compact sets if Res > 1. (zryl/2*s js
clearly a I -invariant eigenfunction of L. As L is G-invariant, it follows that
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also e, is an eigenfunction with the same eigenvalue.) Actually, e, is an
Epstein-zeta function: _
2A(1+25)e(2) ={(1+25) Y. (Wlez+d>)2*s

c,deZ
(c,d)=1

=y1/2+s Z’ |nz+ml—l-23

nmeZ

= y2* 3 ((p? +x2) n? + 2x -mn+m?)

nmecZ

-1/2-¢

(Z' means: {n, m) # (0, 0).) So one probably is not surprised at s+—e,(z)
possessing a meromorphic continuation, giving more I'-invariant eigenfunc-
tions of L.

1.3.2.3. We have not exhausted the supply of eigenfunctions on I'\ . In
the modular case this is not too difficult to see, if one accepts the fact that
L*(I'\}) is “spanned” by eigenfunctions of L:

Define on F:
sin2nx  1if 3<y<4,
0 otherwise;

tp(2)={

extend @ to a I-invariant function on h. Clearly @el?(I'\b), but ¢ is
orthogonal to all functions mentioned in 1.3.2.1 and 1.3.2.2. So there should
be other eigenfunctions of L of which ¢ is a linear combination. We need
even infinitely many, for ¢ is not continuous, and each eigenfunction of L is
smooth. (L is an elliptic operator, hence all its eigenfunctions are real
analytic.)

None of these I'-invariant eigenfunctions of L is explicitly known;
compare [12] for some numerical results.

1.3.3. DeFnITION. 2 §— C is a real analytic modular form if

(i) Lf = Af for some AeC,

(ii) f(yz) = f(z) for all yeT,

(i) |f(z) <€ y* for y — oo, uniformly in x, for some aeR.

The last condition ensures that we exclude functions which grow too
fast at the cusp.

The first one who has studied these functions systematically is Maass,

[22].
1.4. Holomorphic modular forms

I'\h parametrizes the isomorphy classes of elliptic curves over C. Study
of elliptic functions soon leads to the holomorphic Eisenstein series:

G,(2)= Y (mz+m™* k>4, k even
m,neZ

(By Y is denoted the sum over all (m, n) except (0, 0).)
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1.4.1. DerINITION. f: h— C is a holomorphic modular form of weight k if
(i) f is holomorphic,

(i) £ (2) = (cz+ )" f (2) for all y = i(j Z)er,

(ii) f(z) =0(1) for y — o0.
Here we only consider even weights. The linear space of holomorphic
modular forms of weight k is denoted M,. Remark that G,e M,.

1.4.2. Each feM, satisfies f(z+1) = f(z). This implies that f has a
Fourier series expansion

f@ =3 aer
n=0

By condition (iii) there are no terms with n <O,
- One may show that

E (2):=

20 Gy(2) = 1 -(2k/B,) 'El Gy 1 (n) €377

with B, the kth Bernoulli number, and
Or-1 (n) = Z dk_ 1.

d|n

Multiplication gives bilinear maps M, xM;—> M,,,. As dimM, =1 for
4 <k<10and k = 14, we obtain e.g. E,, = E, E,. This implies relations for
63, a5 and g,.
Further dim M,, = 2. One may choose « and feC in such a way that
A = aE}+ BE? satisfies
o0

A(z) = Y t(n)e*™rm

n=1

with t(1) = 1. The numbers 7(n) are all integral and satisfy nice relations
amounting to

@

Y emn=[] Q-t(pp=*+p'1~%)""

n=1 pprime

for Res large.

1.4.3. A modular form like 4 for which the Fourier coefficient of order
zero vanishes is called a cusp form. M, = S, := {holomorphic cusp forms of
weight k}.

If feS, then z—¥?|f(z)] is a bounded, I'-invariant function. From
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this follows that the Fourier coefficients satisfy
la,] «n¥* for n- o,

Deligne [4] has proved that

la,| €« n*~ V2%t for n— o0, for each > 0.

1.5. Why study modular forms?

15.1. The holomorphic modular forms are very important for number
theory. In 1.4 this has barely been shown.

15.2. In 1.3 is mentioned the spectral decomposition of L in L?(I'\}).
Even when studying questions arising from holomorphic forms, one may
have to deal with functions on I'\h. For instance, if f € M, then z — y*|f(z)|?
is a function on I'\h. For example, in [10] Good, for more general I', uses
the spectral decomposition to prove an estimate for the Fourier coefficients
of holomorphic cusp forms.

1.5.3. The discrete spectrum of L in L2(I" \b) is interesting in itself. It is
connected to the geometric structure of X (I'). Here the central theorem is
Selberg’s trace formula, see e.g. [7], [34].

1.54. For 4 as in 14

L(s) = gd(iy)y“ldy

converges for all seC. For Res large:
xX

Lis)=(2m)~*L(s) ), t(mn~".
n=1
The equality 4(—1/z) = z'? A(z) implies a functional equation for L.
Hecke, [11], established in this way a correspondence between holomor-
phic automorphic forms and certain Dirichlet series with analytic continu-
ation and functional equation. Maass, [22], tried to extend this correspon-
dence to a wider class of Dirichlet series and arrived at real analytic forms.
Jacquet-Langlands, [13], show that the correspondence mentioned above
is in fact a correspondence between certain L-series and certain irreducible
representations of adele groups. From this point of view real analytic
modular forms are as natural as holomorphic ones.

1.5.5. Petersson, [25], has given an expression for the Fourier coefficients
of certain holomorphic cusp forms in terms of Kloosterman sums and Bessel
functions. The sum formula in part II may be seen as a generalization of
Petersson’s formula. This sum formula has turned out to be useful if one
wants to estimate sums of Kloosterman sums.
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1.6. Remarks

1.6.1. Holomorphic modular forms have been studied for a long time. Of
many possible references we mention [217, [33], [19].
For real analytic modular forms one might turn to [23], [31], [32],

[14], [34], [35].

1.6.2. One may define real analytic modular forms of arbitrary real
weight, [23], [31], [32]. The holomorphic forms may be considered as
special cases of real anpalytic ones.

One understands better what the weight of a modular form really is, if
one considers not functions on b, but on G. See 1.2,

1.6.3. In studying modular forms one may study forms of a fixed weight
or consider all weights simultaneously. The latter approach leads to the
study of representations of the Lie algebra of G in spaces of modular forms.

In the former approach some complications are avoided; this approach
is suitable for e.g. the trace formula of Selberg. On the other hand the
Jacquet—Langlands theory is highly representational.

These notes are moderately representational. In the second part we shall
see that all even weights crop up, even if one tries to derive the sum formula
in weight zero only.

1.64. In general one says “automorphic form” instead of “modular
form”. In “modular form” the discrete subgroup I' is understood to be the
modular group or a congruence subgroup of it. Although these lectures
discuss only the full modular group, we shall call the functions we study
“automorphic forms” from now on.

1.2. Automorphic forms on the group

We define automorphic forms as functions on the group, and show that the
functions discussed in I.1 all arise in this way.

The discrete group I' is Sl,(Z)/{ £1}; with minor modifications- every-
thing goes through for more general discrete subgroups of G.

2.1. Subgroups of G and notations
cosf sind
Let k(0)=-i_-( , ° , a(y) = + \/; 0 for y >0 and
—sinf cos @ 0 l/ﬁ
1
nix) = i(O ch) For zebh we put p(z) = n(x)a(y).

K=1{k(d)] 0<B<n} is a maximal compact subgroup of G
=SL(Ry{£1}.
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N ={n(x)] xeR}, A={a(y)| y>0}. The group A normalizes N:
a(y)n(x)a(y)"! = n(xy). P = NA is a subgroup of G; the map z+ p(z) gives
an isomorphism of real analytic varieties § — P.

By g+g-i, we get a map G — b, which gives an identification G/K — b.
A section of g—g-i is given by z p(z).

Topologically G = NxAxK, the Iwasawa decomposition. By g
= n(x)a(y)k(#) we get coordinates (x, y, 6) on G. The second order differen-
tial operator

2 2 2
0=yt o,
dx?  dy? 0x 86
the Casimir operator, is invariant under left and right translations. Moreover,
@ generates the ring of all left- and right-invariant differential operators.

(A differential operator D is right invariant if D(R, f) = R,(Df) for all
geG, feC®(G); R, f(x) = f(xg). Left-invariance is defined similarly.)

Fe=TInN={n(k) keZ}.
2.2. Weight functions
A function f on G has weight k if

f(gk(®)) = 1 (g) ™.

As k(m) = k(0) the weight has to be an even number.
Let W be the differential operator W = 9/06. Then f having weight k is
equivalent to

Wf = ikf.

Such functions we call weight functions.
A weight function is determined by its values on P. To a function f of
weight k we associate functions on b in two ways:

fR@) = f(p@),
M2 =y f(p(2).
Let g = ;t(j Z)e G, apd J1(x) = f(gx). Then

fhz)y=(cz+d)"* f"(g-2),
fl"(z} = (cz+d) *|ez+d* fR(g - 2).

2.3. Automorphic forms

2.3.1. DeFiniTION. A function f: G — C is called an automorphic form of
weight k and eigenvalue A if
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(i) Wf = ikf,
(ii) f(vg) = f (g) for all yeT,
(iii) wf =,

(iv) f(p(2)k) < y* for y = oo, uniformly in x and k for some acR.

The space of automorphic forms of weight k and eigenvalue 4 we denote
by Z.(A). . _ _ _

Remark that condition (iii) amounts to an elliptic differential equation
for f®; this implies that all automorphic forms are real analytic functions.

2.3,2. The map fr—f*® gives a bijection between F,(4) and the space of
real analytic modular forms defined in 1.3.3.

233. If feM, (see 14.1), then

F(p(2)k(8) = ¥ f (z) €™
defines Fe #,(3k—4k? such that F" = f.

2.3.4. So all modular forms considered in 1.1 correspond to automorphic
forms on G. For all weights k the map f +— f® identifies &, (4) with the space
of automorphic forms considered in [31], [32].

24. Examples

24.1. By 2.3.2 and 23.3 all examples in I.1 give examples of automor-
phic forms on G.

24.2. For k general one has the Eisenstein series of weight k. Put
H (p(2)k(6)) = y'/2* 5™ Then for Res >}

esxlg) = Y, H; (79

vel g\l

converges absolutely and defines e,, e %, (;—s?).

2.43 The Dedekind eta-function #(z) = e™*/'2 H ~e?™™) is a 24-th

root of the form 4 mentioned in 1.4. It satisfies

0 g,

7n(yz) n(z)

$c(cz+d).
Define
f (k) = (y %—ii)em;

then some computations show that € #,(0). So even this nearly automor-
phic form #'/y is included in definition 2.3.1.
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1.3. Differential operators and Lie algebra

Each Lie group has a Lie algebra, so G has one. See for instance Ch. VI § 1
of [18]. In these notes the Lie algebra of G is introduced as a space of
differential operators.

3.1. Left-invariant differential operators

Let L, f(x) =f (g7 " x) define the left translation L,, with ge G, acting
on functlons on G. A differential operator D is left-invariant if DL, = L, D
for all ge G. The left-invariant differential operators on G form an algebra w
over C, with composition as the product. One may show that % is generated
by the following three first order differential operators:

0
W =%
d d d
+ 2:0 —_
E (2ty . +2y 160)’

i 0 ) 0
- — p 20 _ 9, -
E”  =e ( 2iy 3x+2y ay+l 69)’

subject to the relations
WE* —E* W = 2JE”,
WE™—E~ W= —2E",
E*E-—E E* = —4iWw.
The Casimir operator w is left- and right-invariant, so we%. It is given

by w=—3E*E™ +% W"—% W. It generates the center of %.

3.2. The Lie algebra

Let g be the linear space in % spanned by W, E* and E~. One may
show that g is exactly the space of first order left-invariant differential
operators. In 3.1 we have seen that g is closed under the bilinear map
(X, Y)—[X, Y]=XY-YX. This “product” [.,.] is antisymmetric, non-
associative, but satisfies [[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y] = 0. A lin-
ear space equipped with this kind of product is called a Lie algebra. So g is
a Lie algebra. It could have been obtained by complexification of the Lie
algebra of the Lie group G.

9, as an abstract algebra, may be reconstructed from g. It is the so-
called universal enveloping algebra of g.
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3.3. The action of g on automorphic forms

3.3.1. A function FeC®(G) with weight k satisfies WF = ikF. For such
F:

W(EtF)=E* (WF)+[W, E']F =i(k+2)F.

So E* maps functions with weight k onto functions with weight k+2.
It is easily seen that the action of E¥ and E~ preserves conditions (ii)
and (iii) in 2.3.1. One may prove that condition (iv) is also respected. So

E*: F ()~ Fy12(4).

Up to a constant factor E* and E~ are the operators K, and A, introduced
by Maass; see [31].

33.2. As an example one may check that E* e, = (1+25+k)eg, +5, by
proving that the same relation holds for H,,, see 2.4.2. So if one knows e ,,
then one knows a lot about ¢, for all even k.

3.4, Representations of g in spaces of automorphic forms
Let #(1) = @ #,(4). We have seen that g acts in Z (4); so F () is a

keven

representation space of g. This means that we have got an additional
structure on the space of automorphic forms.

The action of g in & (4) extends to an action of the associative algebra
4. In general actions of % and of g amount to the same. As g is smaller, we
prefer to work with g. The representation space % (A) of g has two special
properties:

(i) The Casimir operator acts as multiplication by A.

(ii) All elements of the space are finite linear combinations of elements
of even weight (i.e. eigenvectors of W with eigenvalues in 2iZ).

Condition (i) is true for irreducible g-spaces, A depending on the space.
(A space V in which g acts is irreducible if {0} and V are the only g
invariant subspaces.) If we know which irreducible spaces occur in % (1) we
have got additional insight in this space of automorphic forms.

3.5. List of g-spaces

Now we enumerate some spaces in which g acts, satisfying the condi-
tions (i) and (i) in 3.4. All possible irreducible spaces occur in this list. These
spaces we consider as abstract spaces.

3.5.1. Non-unitary principal series. Let se C and put
H(s)= @ C-¢, with Wop, = ike,,

keven

E* o, =(1+25+k) @y +,.
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434. For the situation of s =4(k—1) one has the diagram

TeT,
SHE k=1 e (ke 1)
‘restricﬁon T<
& (D = -
(b T hin4.3.3 M

see 2.33.
The restriction map is injective for k > 4; for k = 2 one may take Top,

=1, Tp, =0 for r # 0, to get an element of the kernel. The restriction map

is not necessarily surjective.
For k >4 the map & (H (%(k—l)))ﬂé’ﬂ(%k—%kl) is surjective. The

function f in 2.4.3 is not in the image of & (H(3)).

4.4. Square integrable automorphic ‘models
4.4.1. An automorphic model T of W is called square integrable if

TW < L*(I'\G).
A trivial example is the model T of H(3) defined by Tp, =1, Te,=0

for r # 0, mentioned in 4.3.4.
44.2. On L?(I'\ G) we have the scalar product <{f, f;> = { f(9)/1(9)dg.

re

For f and f, differentiable and Xe g:
X Lo+, X*f15>=0.

(By X~ X* is denoted the antilinear map g — g for which W* =W, (E*)*

=E*)
If T is a non-zero square integrable automorphic model of W, then we

may define a scalar product on W by
<Ws wl> = <TW, Tw1>

Only a few of the g-spaces in 3.5 admit a non-trivial scalar product:'
“principal series”,
“complementary series”,
“discrete series”,
D, trivial g-space

of dimension one.

443. H(s) with Res =0
H(s) with 0 <|s| <4
Dt and D, with k even, k=2

(See [18], Ch. VI, § 6.
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4.4.4. The example of 44.1 is in fact the trivial model of Dy, composed
with H) = H#) mod(D; @D;) = D,.

In the case of the full modular group there are no square integrable
automorphic models of the complementary series.

445. For the decomposition of L2 (F'\G) it is important to know the
square integrable automorphic models, for they give irreducible subspaces of
L*(T'\G).

1.5. Fourier coefficients

5.1. The operators F,

5.1.1. For each feC*(I'\G) and geG the function x— f(n(x)g) has
period one and

1
f(n(x)g)= 3 &%= cf)f(n(u) g)e 2umdy,

neZ

Each term in this series is an element of C*(G) transforming according to
fo(n(x)g) = ™™ £,(9)

and f,(p(z) k) satisfies the same growth conditions for y — oo as f(p(z) k).
Moreover, the map f—/f, commutes with the action of g by differentiation.
So if Te o/ (W) for some g-space W, then Waw—»(Tw), is a model of W in
some specific space of functions on G.

5.1.2. If h satisfies h(n(x)g) =e"*h(g) then the function g+—rh(a()g)
satisfies the same relation with u replaced by ru. So in 5.1.1 are involved only
three different kind of models: u positive, u = 0, u negative. It will turn out
that ©u =0, u = +4 is a convenient choice.

5.1.3. We define for fe C“(F\G):

1
Fof(g) = gf(n(x)g)dx,

1

F,.f(g)=[f(n(x)a@dnIn))"'g)e~2""dx for n=0.

0

The operators F, are intertwining operators “taking the nth Fourier
coefficient™.

5.14. For each feC™(I'\G) we have the Fourier series expansion

S (p(2)k) =Fof(a()k)+ 3, e F, [ (a(dn|n| y) k).

n#*0
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5.15.If T is an automorphic model of W, then F, T is a model of W in
C*(N\G) if n=0;

the functions transforming on the left according to the
character n(x)i—¢** of N if en>0, ¢ = +1.
In both cases we have the growth condition

\F.To(p(z) k) <", y— oo for some aeR.

We turn now to the question how such models look like.

5.2. Models in C®(N\G) )

If T is a model of the g-space W in C®(N\G) and ¢,e W has weight r,
then

To, (p(2)k(9)) = f(y)e"

for some f,eC*(0, c0). If @ acts as multiplication by 4 in W, then wTep,
= AT, leads to a differential equation for /. The actions of E* and E™ give
relations between the f,. Some computations lead to the following results:

5.2.1. The standard model St(s): H(s) = C*(N\G) is given by
St(s) pu(p(2) k (6)) = y'/* 7™,
We have in fact already met it in 2.4.2:
St(s) r = Hy,

This is the model of the induced representation from NA to G. The definition
of H(s) is motivated by this model, hence the name standard model.

5.2.2. For s¢i+Z also St(—s)i(s) is a model of H(s) in C*(N\G).

5.2.3. For k even, k > 2, the standard model St(3(k—1)) by restriction
gives models of D and D; in C®(N\G); a model of D,_, is obtained by
restriction of St(—4(k—1)).

5.2.4. The models in 5.2.3 composed with the maps H(l(k—l))—sz .
and H(—4(k—1))— D; ® D, give models of H(—I—;(k—l)) in C*(N\G). The
first one may be described as

Stk—- res (St(—s)l(s))

—k-1)/2

5.2.5. Except for the case s = 0, the models given above span the spaces
of models in C®(N\G). They all satisfy the growth condition.



48 R. W. BRUGGEMAN

53. Whittaker models
53.1. For e=1 or —1 put

W, = (feC=G) f(n(x)g) = &2 £ (g)).

This is the space of functions used for the other terms in the Fourier
series. #", is a g-space. The choice of the factor } makes that the condition
“w—%+5? acts as 0” leads to the Whittaker differential equation. Here the
growth condition really restricts the possibilities,

53.2. For s¢4+2Z we find the Whittaker model
We(s): H(s)— ¥,

1.
We(s) e, (p(2)k(B) = ez I'(§—s—%er) Wa,,  (y) €.
)
533. For k= 2, k even:
We= res W) H(Fk—1)-> W,
s—'-;-(k—l)
is the Whittaker model. It vanishes on D, if e =1 and on D] if ¢ = —1.
1 L L ke
= 2 pl .
k-1~

5.3.4. Up to a constant factor these are the only models of H(s), D, and
Dy in W, satisfying the growth condition. The g-space D,_, has no
Whittaker models.

Wi o (p(2) k(6))

5.4. Fourier coefficients

54.1. Let s¢3+2Z, s#0. For each Tes/(H(s) there are complex
numbers a,(7T) and b,(T) such that

Fo T = ao(T)St(s)+bo (T)St(—s)1(s),
F,T=b,(T)W¥n(s), n#0.
54.2. Let k even, k> 2. Put for Te o (H(}(k-1)
Fo T = ao(T)St(3(k—1))+bo(T)St,,
F,T=b (T)Wi" nx0.
5.4.3. For k even, k> 2. For each Te & (D;):
Fo T = ao(T)St(z(k—1)),
F,T=b(T)W" n>0,
F,. T=0, n<0.
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5.4.4. The numbers aqy(T) and b,(T) are the Fourier coefficients of T.
Remark that they are associated to the automorphic model, not to the
individual automorphic forms.

5.5. Fourier coefficients of the Eisenstein model
55.1. For Res >}

E(s)p, = e

clearly defines a model of H (s), the Eisenstein model E (s) € o/ (H(s)). We now
show how computation of aq(E(s)) and b,(E(s)) leads to the Fourier series
expansions of several automorphic forms.

5.5.2. For feC®(N\G) define
Ooflg)= Y [f(v9

yel' AT
if this series converges absolutely. This is the case for feSt(s) H(s) with
Res > 4. Clearly E(s) = @,St(s).

553. If @, f is well defined, then the decomposition

a b
r=r r r,
m > cyl ® (C d)
(c,d}=1

leads to

a

Fo®ofl@)=f@+Y T [ f(nle/dalc™ )k n(d/dn(x)g)dx.

c=1 dmode -
(e, d)=1

So
Fo®g=1+3 0c)de(c™?
c=1

with
do() f(@) = [ fla)kGmn(x)g)dx

and ¢(c) the number of de[l, c¢] with (c, d) = L.
One may compute

dy (1) St(s) = 2! ~2¢1/2*# ' (25) cos s St(—s)1(s).
So

bo(E(s)) = 2!~ I'(2s)cos nts ). e(c)e~ 172,
1

o=

4 — Banach Center, (. 17
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In the modular case there are nicer expressions:
£(2s)
((2s+1)
55.4. For n# 0 similar computations lead to

bo(E(s)) = 2' "> I'(2s)cos s = 2 { (1 -25)/{ (1 +2s).

b,(E(s)) = n"%azs(lnn |n| '%_‘cos ns/C (1 +2s)
with
025(k) = Z d*,

dlk

Remark that b,(E(s)) has zeros at the places where W¥5""(s) has poles.

5.55. The Fourier coefficients of E(s) are meromorphic in s. With some
care this may be used to get a meromorphic extension of E(s) to the s-plane.
It has poles at s = and “around” the line Res = —%.

5.5.6. The Fourier series expansion of z+— e, o (p(z)) is now easily read off
from 5.1.4 and 5.5.3.4:

rg-s{(-2s) 1_,
TG+9)C(+2s) "

1
e.0(p(2)) =y2 " +n%

1 1
+ X nTZ 0 T oy () (L4 25) 7 T (3 +5)7 ! W s (4 in] y) e,

n#¥0

1 1
557. y ZEG*k-D)e(p@)=»"7" lim E(s)o(p(2))
s—'E{k-l)

=y‘%“[1 -y%“+bo(E(§(k—1)))-o+
% e (D
+ Y ¥ et a7 |n| T o (n) W @, (a(dnny)) |
e= 1 n=1 C(k)
— - — l" k __1__ ninz
—1+")=:,1( 1)2"(2m) Uk—l(”)(k_l)!g(k) g2minz,

for k even, k > 4, is the well known Fourier series expansion of E e M,.

558. The pole of E(s) at s=3% occurs only in weight zero. So

lim E(s)¢, is an element of %,(0) with Fourier series expansion:
s—1/2

-5

. i ()T (—4—5) 1
lim E = 1 1-2
sll;l}z (8)p2(p(2) y+s—1»1322 I'(2s)cos mis [ost DT (—179) y
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= 1 COS TS

1
+ Y ) lim (n“fah(n)n_i's’:(l_i_zs)

e=+1 n=1 s—+1j2

I (3—s—e) W, (4nny) e’“""")

T & ;
=y=3+ L 01(n) (~24) ye?
n=1

n > 2 ,
— __+y_ 24y Z Z anmamz
3 NS

T =S —1(d . .
= —— —24 N _ p2niaz __ p2niaz
3 Ty yagl 2mi (dz (1-e )) /(1 e

2 n)
T\ n(z)“‘)’

compare 2.4.3.

1.6. Cuspidal models

6.1.1. DeFiniTION. An automorphic model T of the g-space W is called a
cuspidal model if Fo T = 0.

The space of cuspidal models of W is denoted by «°(W).

6.1.2. One checks easily that under the map .«/(D;)— M, of the
proposition in 4.3.3 the cuspidal models of D, correspond to the holomor-
phic cusp forms in §,.

6.1.3. From the growth of Whittaker functions follows that all functions
in the image of a cuspidal model decrease rapidly at the cusp. This implies
that each cuspidal model is square integrable. So only the spaces in the list
in 44.3 may have non-zero cuspidal models.

The g-space Dy has no cuspidal models, as it has no Whittaker models.

For the modular group it is known that the complementary series has
no cuspidal models; see e.g. [23], Theorem 32, p. 203.

6.2. Dimensions of spaces of automorphic models

6.2.1. The space of models in C*(N\G) is finite-dimensional, so for Fo T
the possibilities are restricted. So «°(W) always has finite codimension in
& (W). In fact one may prove that the codimension is at most one (Maass—
Selberg relations, see e.g. [32], § 9).

6.2.2. ProrosiTion. For each W in the list of g-spaces in 4.4.3:
dim .&° (W) < co.

6.2.3. ProposiTioN. {se C| «°(H(s)) # {0}} is discrete.
These results are due to Selberg; for a proof see e.g. Ch. XII, § 4 of [18].
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6.3. Fourier coefficients of cospidal models |
6.3.1. From the boundedness of the functions in a cuspidal model one
derives

b,(T) <1 for jnj— 0

for each cuspidal model T
For Te.«/°(D;) this is the estimate |a,| < nz in 1.4.3. Deligne’s theorem
([4]), Theorem 8.2) amounts to:

6.3.2. THEOREM. Let k > 12, k even. For each Te o/°(Dy)

1
|bw(T) < n™2"* for  n— o0

for each £ > 0.

6.3.3. For Te .«/°(H (s)) the same assertion is only a conjecture. It is the
Ramanujan—Petersson conjecture for real analytic cusp forms.

I.7. Spectral decomposition

By right transiation one gets a unitary representation of G in L*(I'\ G). With
help of automorphic models one may describe how this representation is
built up from irreducible ones.

71. If Te &/°(W), T#0, then the closure of TW is a G-irreducible
subspace of L*(I'\G).

Let for each W for which .&°(W)# {0} a basis Ty, ..., Ty,, of
s7/°(W) be chosen. Then

w
"LHI\G) = D @ Ty, W
W =

i
describes the decomposition of the cuspidal part °L*(I'\G) of L*(I'\G).

7.2. The pole of E(s) at s = % has as residue a square integrable model of
D, in the constant functions. This gives a one-dimensional G-irreducible
subspace E of L*(I'\G).

For general I" the poles of E(s) in [0, 3] give square integrable non-
cuspidal models, and hence G-irreducible subspaces of L2(I"\G).

73. Finally one is left with the orthogonal complement ‘L2(I'\G) of
°L2(F'\GY®E in L*(I'\G). One may describe °L*(I'\G) as the direct

integral | E(ir) H (it) dt.
0
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74. To prove these results requires hard work. One needs the meromor-
phic continuation of E(s), which is obtained rather cheaply in the modular
case. As possible references we mention [14], [18] Ch. XIII or Ch. X1V, [35].

II. SUM FORMULA OF KUZNETSOV

I1.1. Introduction

We use the same notations as in part I. In particular, I" is the full modular
group.

1.1. Spectral decomposition of L?(I'\b)

1.1.1. The spectral decomposition in [.7 concerns L*(I'\G). If one
considers one particular weight r, one gets from each automorphic model the
component of weight r. So for weight zero one gets the spectral decomposi-
tion of L*(I'\b). As the discrete series does not posses a component in
weight zero, it does not occur in this case.

1.1.2. The cuspidal models of the principal series, on the other hand,
contribute to the spectral decomposition. Let T}, T, ... be an algebraic basis

of @  &°H() such that each Tes/°(H(s)) with Ims;>0, §—sf
#OHE) #(0) -
< +-s5}<... and such that T @, has length 1 in L*(Ir'\G) and such that

T, o orthogonal to Tjgp, if j# | Denote ;= T, ¢,.

1.1.3. The spectral decomposition may be written as

L(M\b) = B Y, ® | Ceo dt ®C-1.
J )]

For sufficiently well behaved f and ge L*(I'\D):

© 1 S 3
Srgdy =Y {fiv <Yy, g>+-2; J nf(S)ng(S)dHE 1), g)
J=1
0
with

—— dxdy

{f,9>= Jf(Z)g(Z) T

r\p

dxd
nf (s) = J f@esold) —’;—y

T\
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1.2. Convolution operators
1.2.1. Let e C=(K\ G/K). Then an operator 7 in L*(I" \b) is defined by

T,f(@=f*Y(g) = Ifgx ) () dx

(We identify right-K-invariant functions on G with functions on b.)
1.2.2. T, is described by a kernel:
k(z, 2) =Y ¥(p(2)" " yp(2)),
yel
dx’' dy’
v)?
r\b
1.2.3. One may also describe 7, as a multiplication operator in the

spectral decomposition: From y one may compute a holomorphic function
such that for sufficiently nice f, ge L*(I'\b):

L /(2= ff(Z’)k(z, z')

=0} N 1 n -
(L, f,9>= _Z w(s) S ) Yy, g>+ﬁj Y (s)nf (s)ng(s) ds+
Jj=1 Y '

PP 154, 9).

1.24. Selberg’s trace formula is obtained by restricting T, to °L2(I'\b)
= @ Cy; and computing its trace with help of 1.2.2 and of 1.2.3. See eg.

[14].

1.3. Sum formula

13.1. The kernel k satisfies k(z+1, z') = k(z, Z’+1) = k(z, Z), so one
may take double-sided Fourier coefficients

e ) | (x iy, X'+ i) dx dx.

[ Y ——

1
knm (¥, ¥) = |
0

Take n, m > 0; we may compute k,, in two ways, according to 1.2.2 and
1.23. So one obtains an equality. Considering the principal term in its
asymptotic expansion for y, ' — oo one obtains:

1.3.2. ProposiTioN (Sum formula). Let @ e C*(0, o0) and n, m = 1. Put

@0

d
J‘ J_ 2s(y)—J2s(J’))¢’(Y) —y}‘},
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r d
eu(M=0— Y 2(k—1)J-; (¥ J J,,_l(t)go(t)Tt_
]

For c 21
S(n m; C Z e21d(nx+mi)/c

xmod ¢

xX = l(modc); this is the well known Kloosterman sum.
Then

f (8)) bp(T)) b (T}) m(cos ms;) "2 +

im
1

A N
+2—m‘j Qe 2 M T (14 25)| 72 055 (n) 0. 5 (m) ds

0.

Op.m
P Z ¢~ 1S(n, m;c)go,,(4n,/nm/c)+4n;_mj¢(Y)Jo(Y)dY
e=1

1.3.3. This sum formula has first been published by Kuznetsov [15],
[17]. It is difficult to recognize the proof sketched in 1.3.1 in Kuznetsov’s
papers; he uses the scalar product of Poincaré series, which is in fact the
dual formulation of the double-sided Fourier coefficient.

1.34. In [1] a similar formula is given, except that the Bessel trans-
formation is not explicit and ¢ is the independent test function. The trans-
formation T is only described as multiplication operator on the spectrum.

1.35. As in [15] the Bessel transformation is explicit, its sum formula is
better than the one on [1]; so I like to attach Kuznetsov’s name to it.

1.3.6. The idea of the proof sketched in 1.3.1 is partly based on an
unpublished proof by D. Zagier.

1.3.7. In [15] and [1] the case nm < 0 has been considered too; another
Bessel transform turns up in this case.

Generalization to Fuchsian groups of the first kind with cusps is given
by Proskurin, [26]. For other weights than zero see [29] and [2].

1.3.8. In our sketch of the proof of the sum formula we have cheated a
bit. The test function ¢ is related to ¥ by the equation Y (s) = @ (s). It is not
true that compactly supported ¢ correspond to compactly supported ¥.

Actually, one may prove the sum formula for a wider class of test
functions, which is most easily characterized by imposing growth conditions

on y = @.
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1.4. Use of the sum formula, examples:

1.4.1. Information on the growth of the b,(T)) for n fixed: Kuznetsov
[17], Deshouillers-Iwaniec [5].

1.4.2. Eigenvalues of Hecke operators: [1], [27]

1.4.3. Estimates of Kloosterman sums; Kuznetsov [15], [17], Proskurin
[28], [29], Deshouillers-Iwaniec [5].

1.4.4. Arithmetical form of the Selberg trace formula: [16].

1.5. Questions

1.5.1. It would be nice if ¢ itself, instead of ¢y, would occur in the term
with Kloosterman sums. This may be arranged. With some care one may
sum the terms with J,., in the definition of ¢y separately and use the
formula for Fourier coefficients of holomorphic Poincaré series in [25]. Then
we obtain in the left-hand side of the sum formula an additional term

Tk
Y $Bk=D)a (4nSmn) (k= 1)! ¥ g, (m)a, (),

k=12 keven

(=]

where the f ;(z2) = 3 a,;(n)e*™ form an orthonormal basis of §, with
n=1

respect to the Petersson scalar product. The right-hand side of the sum

formula becomes

(2n /mn)™! f 1S (n, m; ¢) p(dn . /mnfc).

The é-term disappears for compactly supported ¢.

1.5.2. The appearance of the holomorphic cusp forms in a weight zero
situation is a signal that we do not understand what we are doing. Clearly
more of the spectrum is involved than the part which occurs in weight zero.
We should try to understand the sum formula in L*(I'\G).

1.5.3. The Bessel functions in the sum formula, and also in Petersson’s
formula, ask for an explanation.

The Whittaker functions in the Fourier series expansion of automorphic
forms arise naturally from the eigenfunction equation wf = (}—s?)f for f
with prescribed left-N- and right-K-behaviour.

Il we could interpret the test function ¢ as function on the group, the
Bessel differential equation might arise in a similar way.

1.54. In the next sections we give a proof of the sum formula along
representational lines, working in L?>(I'\ G). The principal objects in the
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spectral decomposition are automorphic models. This proof is discussed for
n, m >0 for the full modular group. For a more general case see [2].

I1.2. Test functions

The basic idea of the proof is to compute the scalar product of two Poincaré
series, as is done in Kuznetsov’s proof. To build Poincaré series we need a
set of auxiliary test functions which will be eliminated later on. The principal
test functions correspond to the function ¢ in 1.3.2.

2.1. Auxiliary test functions
2.1.1. Recall the space #°, of functions on G defined in 1.5.3.1. Let
So ={fe# | |fleC.(N\G), f is K-finite on the right};

the condition of K-finiteness means that f is a sum of weight functions. S, is
a g-space by differentiation.

2.1.2. One may define intertwining operators; for s¢3+Z:

w(s): Sq— H(s),
Q)(S)f= Z <f9 Wl(fg)qor)N\Gq)r

reven

and for k= 2, k even

m: So — DY,

1
mf = Z \/k_l (k;r"l)!( ) fy W;cl Or MG Prs
!

rzk r_k
reven
2

{.,.>mc means the scalar product obtained by integration over N\G with
respect to the quotient measure; similarly for other spaces.

2.1.3. ProrosiTioN (spectral decomposition of Sg). For f, geS,:
L @0, 000 —mt T (mfi mes)
S ome =5 OO T Ty B TR
0
(..., denotes the scalar product in H (s), for Res =0, and ¢.,.), one in Dy
This proposition is in fact an inversion theorem for Whittaker

transforms.

2.14. The space S, is too small for our purpose. The easiest way to
describe the desired extension, is to work with w(s) and m,. For [e S, we
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may view w(s) f as a meromorphic section on each strip {se C| |[Res| < g} of
the bundle of the H(s). By imposing some growth conditions on sections of
this bundle one may describe a larger space of functions S, contained in ¥,
and containing So.

For details see [2], § 13.5.

2.2. Principal test functions

221. @, = {qeC*(G)| g(n(x)gn(x)) = 62 4{(9). 19 € C.(N\G/N)} is
a space of functions, the elements of which are completely determined by
their values on the big cell NAk(3n) N in the Bruhat decomposition G

=NAUNAk(AmN:

i(x+ x)

qla(kEm) =y 2 @, (y'?

for some ¢, e CX(0, c0). This definition of ¢, seems needlessly complicated,
but it makes the equation wgq = (§—s?)q amount to the Bessel differential
equation for ¢,.

2.2.2, For geQ, and fe§S, we put
TLf@=q+f(g= [ q(x)f(x'g)dx.

G\N

This converges and T, fe¥,.
2.2.3.- ProposITION. For geQ, put

@

~1 d
4is) = —— j(st(y)—J-zs(y))qoq(y)?y;

0

then g extends to a holomorphic even function on C. For each f, geS,:

. L
X

j g) () f, @(8)g)s =57

0

(TS, 9> = E +

i

|\ ( )
+ Z 4( (k— 1))<7ka, T g k-

k=2,
keven

So T, corresponds to multiplication by § in the spectral decomposition
of So. Estimation of §(s) shows that T, may be extended to S and has its
values in S,

2.24. By imposing only |§(s) < (1 +|Ims|)~“ on some strip |Res| < o,
with ¢ >} fixed and a > 2 fixed and some condition on the §((k— 1)), we
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may enlarge Q, to a space of functions Q for which everything goes through.
The complicated details may be found in [2], § 14.4.

2.3. Bessel inversion

2.3.1. The correspondence g+ 7 may be extended still further. We may
replace ¢, by the distribution §(t), with ¢ > 0, given by

an ‘i)
f 5(H0) @) 7J = 2 (117,
0

Then T, corresponds to the operator d(t): § — S

01 () = Ie‘%" 7 (kG al")n(x) g)dx

In the spectral decomposition d(f) corresponds to multiplication by &(f)*:
1/2

5™ (8) = —— (Jas (1) =T _ 5, (£172).

23.2. ProrosiTiON (Kuznetsov). For geQ:

i

1
a(a(k zn))—z—fq(s)a(r "

0

— 2ssin 2nts
T ds+
14cos2ns

1
to= T k=13 (k-1)60)" Gk-1).
k22,
kcven

In fact this is the inversion theorem for the Bessel transform ¢+ @
occurring in the sum formula.

I1.3. Poincaré series

3.1. Poincaré operators
3.1.1. Let n > 1. We define a g-intertwining operator @,: § - L*(I'\ G) by

8.f(g)= 2 flal4nn)yg);
yel p\T
we call @, a Poincaré operator and @, f a Poincaré series. To get the absolute
convergence of the series on compact sets, one needs some estimate of f' (p(z) k)
for y|0. As g+ f(a(4nn)g) is left-I' -invariant it is clear that @,f is left-I'-
invariant. The boundedness of @,f follows from the boundedness of f (p(z)k)
for y— oo,
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3.1.2. @, is adjoint to F,: For feS, geC*(I'\G)n L*(I'\ G):
(B, f, g>r\¢ =4nn{f, Fygdne-

3.2. Petersson formula
3.2.1. The decomposition
L )
r=rpov U rIg . d)r“’

cz1,dmodc
{c.d)=1

leads to the formula of Petersson for the Fourier coefficients of holomorphic
Poincaré series, [25]. The same computations lead to:

3.2.2. ProrosiTioN (Petersson formula). For m,n= 1

F,0, = 5,,,,,1+—1— Y S(n, m; ¢)d(16n> nmjc?).
' 4mn =

This formula is a straightforward extension of Petersson’s result, so we
propose the name “Petersson formula”.

The S(n, m; ¢) are the Kloosterman sums. The operator d(tf) has been
described in 2.3.1.

The convergence of the series is meant in the following way: For each

f€S the series Y S(n, m;c)d (1672 nme™?) f converges uniformly on compact
e=1

sets.

33. Scalar product of Poincaré series 1

Take f, geS and m, n > 1. With help of the Petersson formula we get:

(B f, 00g> = dmnbn,(f, g5+ 3 S(n, m; &) <f, d (1672 nme=2) g,
c=1

(To interchange the integral and the sum over ¢ one has to use that the
Poincaré series are absolutely convergent and that the sum of the absolute
values i1s bounded.)

The expressions in the right-hand side may be expressed in w(s) f,
w(s)g, m f and m, g with use of Propositions 2.1.3 and 2.3.1.

34. Scalar product of Poincaré series 2

The scalar product (@, f, ©,g9) may also be computed with use of the
spectral decomposition of L2(I'\ G).

3.4.1. Let for instance Te &/°(H(s)). || To,ll = 1. The projection of @,¢
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onto TH(s) is given by

Z <9mf T(pr>T(Pr = 47["!2 <f F Tq’r)Tqu - 4nmzb T) (f W1 (S) (pr>T(Pr

reven

= 4nmb, (T) 0 (s) f.

As T preserves length the contribution of TH(s) to <@,f, ©@,g) is
1672 nmb, (T) b,.(T) w (s) f, w(5)g)..

34.2. In this way one obtains

{0

(O, @.,g>=16n2nm[2—i—i J ba(E () ba(E(5) <0 (5) f, ()9, ds+

=]

+ Z bu(T;) bu(T)) <0 (s)) £, (5, @5, +

"k

T 1
+keven§2 12 jgl b" (’I;‘J) bm (T;"j) m <nk -f’ Tck g)k:] .

The T, have been introduced in 1.1.2. The T, ; ¢, correspond to an orthonor-
mal basis of §,.

I1.4. Sum formula
4.1. Two expressions for (@, T 1, @,g9)
In the computations in 3.3 and 3.4 we may replace f by T, f with qeQ.

Put &(s) = 4(s) (w(s) f, @ (s)gD, P =g (k )<7ka mg>x- Then the

computations above yield:

16n2 nm [%J b, (E (5)) b (E (5)) @ (s) ds + f b, (T) b (T) B(s)) +
0

i J=1

b (T Vb (T, ;) —————
+k>122kcven jZl (70 bm (i) (k—=1)(k—1)!

iw

| ]
_4nn5,,,,,[2—J ®(s) Ir(zs)lﬁ > 45,.J+
0

2, keven
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(F- ]

© d
+ 5 soumia| 55 | g

| (25)|?
0

16m2 nm\* (k-1
L. () (5))
k3 2,keven c

Now take f, ge§ in such a way that

1
(o) f, o(s)gd; =37 (cosns)™*  and  (mf, mgh =5 (k—1).

Then the equality becomes:

4.2.1. SuM FORMULA. For each qeQ:

i

%t; _[ ba(E(8)) b (E(5))§(s) s+

(cos 7s)?
0
tL b..(mbm(m(sﬂm“L

Y Y hGhTY ] (" 1) 1

k212,keven j=1 ﬂ:(k"‘l)'

2 1

' lao X d k A k_l +
=5""”|i_n_m-2_{i g (s)stannsds+ Zk o q 3
0

1 1672
e — Z S(n, m; c)q( ( Tzznm)k(%n)).

In the last term we have used Proposition 2.3.2. To compare this result
with those in 1.3.2 and 1.5.1 use:

The expression for b,(E(s)) in 1.5.54.

The formula for W,! in 1.5.3.3, the Fourier series expansion in 1.5.1.4 and
the relation in 1.2.3.3 for the discrete series term

The definition of ¢, for the last term.

In general the 4, ,-term does not disappear; but if geQ,, then write

1 . | —1 dy
T f gls)stanmnsds = o j pr— j 25 (V) @5 (¥) v stan ns ds
0

Res=0 0

.

[ T2 () @, () 7 satisfies estimates permitting to move off the line of integra-
0
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tion to the right, to pick up the k-terms as residues and finally to obtain
ZErO0.

4.2.2. If there would be f, g € § with the properties given above, the proof
would be finished. As there are not, there is some non-trivial work left; see
[2], §1.4.8 or §16.2, §16.3. The idea is to approximate the desired properties.
The problem is to take the limit inside all integrals and infinite sums.

4.3. Comparison

The proof sketched in §1 uses a convolution operator T, in L*(I'\}),
which is multiplication by { on the spectrum of L?(I'\h).

In the proof in §2.4 we have a convolution operator T, in §, which is
multiplication by § on the spectrum of S. By means of the Poincaré operator
®,, it also gives an operator in L?(I"\ G), which is multiplication by § on the
spectrum of L?(r\G). If we restrict this operator to weight zero we may
relate T, and T, by ¥ (s) = §(s) for Res = 0. The use of T, instead of T, makes
clear where the Bessel functions come from.

The occurrence of the D, in the sum formula is a consequence of their
occurrence in the spectral decomposition of S.

4.4. Generalizations

44.1. If nm <0, one needs %, and # _,. In G these spaces are not

1 0
equivalent. In G U jG, with j = -i_-(o _1), one has

J: Wi-Ww_,, Jf@=r3g-

Working on G UG one may handle the cases mn > 0 and mn < 0 more or
less simultaneously. For mn < 0 the sum formula is

-

g J F(8)|m) =275 m) = 2T (14 25)| 7 2 cos ms o4 (|nl) 0 - 25(Im)) ds+

0 =]

+ 3, @(5) ba(T) ba(T)

= COs TLS;
S ¢S, m; Q) e(4n/Imnc?)
,/|mn c=1
with eg. e C2(0, o) and
o) ion
. 4 d —4 [ . _
p(s) = - j. @ (y) K25 () yy, ¢(Y)=% j 0 (s) K, (v)ssin 2ns ds
0 0

(Lebedev transform, see [8], Ch. XII).
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4.4.2. Generalization to Fuchsian groups of the first kind, with cusps,
meets no essential problem.

4.4.3. To generalize the sum formula to odd weights one has to work on

1 0
Sl, (R) or on S, (R)U(O -1

the universal covering group.

)Slz(R). For arbitrary real weights, one uses

IIl. BILINEAR RELATIONS

In this part we discuss two bilinear relations which are satisfied by the
Fourier coefficients of automorphic forms.

I11.1. Introduction

In the holomorphic case multiplication gives a bilinear map M, x M,
—+ M, ;. In this way one may, for instance, compute the Fourier coefficients
of

1
=178 ((E4)3 ~(Ee)*)e Sy,

Products of real analytic automorphic forms are not very nice functions.
But there are some ways of assigning bilinearly some other objects to pairs
of real analytic automorphic forms.

II1.2. Periods

2.1. Maass-Selberg relation
2.1.1. Let f, g be function on b satisfying Lf = Af and Lf = Ag. Then

i ms L apn 18 g
n=n(f,9)=g = dz+fafdz

is a closed differential form on ), and for yeG:

nf,9oy=n(foy,goy.

If f, ge #¢(4) then n is a closed IM-invariant 1-form on l); so we may view it
as a closed 1-form on I'\.

If we integrate n along the contour in the figure, we obtain zero. As the
integrals along a and b and along ¢ and d cancel each other, we are left with

fn=0.
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Ao

ay Ab

!

-1 1

Fig. 4

If one moves e towards the cusp, the integral [n tends to a bilinear

expression in the Fourier coefficients of order zero of f and g. The resulting
equation is the Maass—Selberg relation. (See eg. [20], p. 331-333 or [32],

§9)

2.1.2. One may view #n as a closed 1-form on X (I') with a singularity at
the cusp. Integrating around the cusp we obtain the residue of n at the cusp.
As the sum of all residues has to be zero, we obtain the Maass—Selberg
relation.

This procedure also applies to more general I’ and to exponentially
growing [-invariant eigenfunctions of L.

2.2. Periods

2.2.1. Now let at least one of f and g be a cusp form. The 1-form 7 on
X (I still has a singularity at the cusp, but it decreases quickly and the
residue vanishes. Moreover, for zeI'\b the integral

cusp u
{n=lim {gn
z U= Cusp z

uel\h

is well defined. So n determines an element of

H, (X (D), Cf* = H' (X (I, C).

2.2.2. For the full modular group I' it is known that H*(X(I'), C) =0.
As ficol U Q corresponds to the cusp we get

l]'un(f, g)=0 for all ce Q.

223, L th +(4 ) =yer Then p-(~24iy) =24
2.3, Let ¢ =afe, with + Cd)—ye. en vy . y = tay

5 — Banach Center, 1. 17
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Now
iw ia0
i of og
Jn(ﬂg)—i J (ga— ax)dy-
] ajfe

The values of g and Z—g on the line {‘—:-Hyl y > 0} are related to the values
X
on the line %—g+iy'l y > O}. Using the Fourier series expansion of f on
.

d _ .
g‘—‘+iy[ y > 0} and of g on { ——+iy y > 0} we arrive, for f and g both cusp
¢ c
forms, at.

2.2.4. PrOPOSITION. Let f, ge Fold—s%), ¢, 61, -1},
¢+

f@ =T a W, (dnny)(€r= +ce~2mm)

n=1

g(2) = Y. bn Wo,(4nmy)(e?™m+0e™ 2nm).

m=1

Then for all a, ¢, deZ, c 21, ad = 1 mod c:

Z (nm)lltt W0.2s (87t nme” l)a" bm(eZni(na—md)/c_seehi(md—na)/c) = (.

mmz 1

Remark that the operator T_,, defined by T., f(z) = f(—2), maps
Fy(h—s? into itself; so the restriction to eigenfunctions of 7T_, in the
proposition causes no loss of generality.

In the case that f is a cusp form and g =e,,, one obtains a more
complicated expression. This result is similar to Theorem 8 on p. 58 of [15].

i
2.2.5. Once one has defined 7 it seems obvious to consider | n for f and

ajc
¢ cusp forms and to arrive at Proposition 2.24. I do not know a reference

where it has been done.

2.2.6. For general I' one has H' (X (I), C) = S,®S,. So for each cusp o,
and »e
Yo ya. _
fn= [(hydz+h,dz)
with N1y, h,e€§,. The expression in Proposition 2.24 is a linear combination
of periods of cusp forms of weight 2 and their conjugates in this case,
[
provided (u ;)el".

¢
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If o and t© correspond to non-equivalent cusps one might want to use
T

the Manin—Drinfeld theorem that j' determines an element of H, (X (I), Q),

but n—h, dz—h—zdf=dqo for some unknown function ¢. (See [24], [6] or
[19], Ch. IV)

II11.3. Cohomology and automorphic models

In Section III.2 we worked with automorphic forms of weight zero only.
contrary to the representational viewpoint of parts I and II. Using automor-
phic models gives some additional insight.

3.1. Let U be a g-space; put U, = {ueU| Wu = iru}). Define a complex
C'(U) by

0-C°(U) = C'U)=C*(U)=0
d d
I |l I
Us U,@U_, Uop
d®vu=(E*u,E"w), d'(u,,u)=E u,—ETu_.
Put H'(U) = h'(C'(U)), the cohomology of the complex.

3.2. For each Te .o/ (U) one may define a map of complexes T": C'(U)
— Q' (I'\b), where Q(I'\b) is the De Rham complex.

T®u(z) = —4iTu(p(2)),
T (uq, u)(2) = Tu, (p(2)y~ ' dz—Tu_ (p(2))y ' &z,
T?u(z) = —4i Tu(p(2))y 2 dzdz.
This gives a map T: H(U)— H (I'\h, O).
33. Let s¢i+Z; take U = H(s) ®H(s), with g-action
X 0@y =(Xo)@Y+p®XY).

One may show that H'(H(s)®cH(s)) has dimension one; a generator is
represented by (¢, ® @g, 0o ®@-,). If T;, T,e.«/(H(s)) then

LLeT: ¢®@y—~T o Ly
defines an automorphic model of H(s)® H(s). A computation shows that
4j

(D) (92 @0, Po®P_3) = 132 1T, ®o, T 00).

So the cohomology class of #{f, g) only depends on the automorphic
models associated to f and g.



68 R. W. BRUGGEMAN

34. For more general I' one may find h, €S,, h,e§, for each pair Tj,
T,e o7 (H (s)) such that
I n(Ty 9o, T5 00) = j' (hy dz+h, d?)
pria yioo
for all yeI'. Let us identify S, and §,: with the corresponding subspaces of
L*(I'\G) of weight 2 resp. ~2. Then one may show that h, resp. h, are, up
to a constant factor, equal to the orthogonal projections of T, ¢, T, @, resp.

T T, 0., onto S, resp. S,.

I1L4. Extension of automorphic models

4.1. Introduction

In Section 3.4 we concerned ourselves with the projection of products of
two automorphic forms onto subspaces of L*(I'\G) of discrete series type.

We now ask whether discrete series subspaces of L?(I'\G) may actually
consist of linear combinations of products of automorphic forms. More
precisely: May T, ® To(H (s) ®¢H (s;)) contain a subspace of type D, for
Tieof (H(s), T,€57(H(s))?

In the L2-case we see in [30] that the tensor product of e.g. two unitary
principal series representations contains discrete series subspaces with multi-
plicity at most one. As H (s) contains only K-finite elements, H(s) ®H (s,) is
too small to contain such spaces.

To approach this question it is necessary to embed the g-space H(s) in
larger spaces in which G acts.

4.2. Extension of the standard model

4.2.1. The standard model St(s) represents H(s) as a space of functions
on G satislying

S (p(2) k) = yt2*s £ (k),

see 1.5.2.1. These functions are determined by their values on K. Let H, be
the space corresponding to L*(K). Clearly G acts in H, by right translation.
This representation is an induced one from P to G. On K it is described by

a:(9)- f (k) =j (0, )25 £ (k(© (8, 9))),

b
j(G, i(j d)) =(—asin0+ccos 0)* +(—bsind +dcos §)?,

b
@(0, J—“(? d)) =arg ((—bsinf+dcosb)+i(asinfd—ccosf)}.
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4.2.2. Let H_, be the subspace of H, the elements of which are C*-
functions of 0. It is clearly invariant under g,(G). The elements of H, are
C=-vectors for (g,, Hy), see [18], VI, § 5.

The derived action of ¢ in H, we denote also by g,. The K-finite
elements in H, are the polynomials in ¢*® and e~ 2. Let ¢, (k(0)) = "%, then
p,e H, corresponds to St(s)@,eSt(s) H(s). So the g-space H(s) may be
identified with the space H, of K-finite elements of (g,, H).

4.2.3. So we may consider an automorphic model Te.o/(H(s)) as a
linear map T: Hy — C®(I"\ G), intertwining the action of g,(q} in Hy and the
g-action in C®(I'\ G) by differentiation.

One may ask whether we may extend T to an intertwining operator H
— C®(I'\G) for the g-action, or even Hy— C’(I'\G) for g,(G) in H, and
right translation in C'(I"'\G).

4.3. Sobolev spaces

43.1. For r > 0, r integral, the Sobolev space H, is the space of those
elements in Hy, which posses derivatives up to order r in the L2-sense; se¢
[18], app. 4. Then H, = (Y H,and...c H,cH,_, c...c H, ¢ Hy. From

rz0

the formulas in 4.2.1 follows that ¢,(G)H, c H,.

4.3.2. PROPOSITION. For each Te of (H(s)) there is an r = 0 such that the
operator T: Hy — C®(I'\G) may be extended to an intertwining operator

T: (o,, H,) — (right translation, C°(I'\G)).

For cuspidal T one may take r = 3. For E(s) the number r depends on s.

433. A proof, using the Fourier series expansion of automorphic
models, is given in [3].

4.4. Invariant distributions

441, The dual space of H, is denoted H._,; one has
HicHycH_,<cH_,... The elements of H__ = {J H_, are called dis-

r20
tributions. See [18], app. 4. One may extend g, to an action of G on H_
such that (o, H_,) and (¢_,, H,) are contragradient.

44.2. Let T: H, —» C°(I'\G) be an extension of an automorphic model as
in Proposition 4.3.2, One may show that a: ¢ — Te(e) is an element of H_,.
Moreover, for yerT:

(@, 0-s(¥) o) = (2,0 " @, ) = To, ()" " @ (e)
=Tp(p™ ') = To(e) = (¢, a),
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so xe H_, is a g_ (I')-invariant distribution. Conversely, such distributions
always give automorphic models by

T o =(e(9) 0, 2).
So
A HE) =H_ )" ={aeH_,| 0-,()-a =« for all yeTI}.

4.4.3. This result is the duality theorem in [9]. Proposition 4.3.2 gives
for cusp forms the additional information that r may be taken to be 3.

IIL5. Tensor products of automorphic models

Now we return to the question posed in Section 4.1.

5.1. Tensor products

5.1.1. The tensor product of the representations {g,, Ho) and (g;,, Ho) of
G is realized in L*(X x K) by '

0 ®g;, () ¢ (k(6), k(n))
=j(0, )12 %j(n, g) > o{k (O (8, 9)), k(O (1, 9)))-

This formula makes sense not only for HY = L*(K x K), but for H® for all
r 2 0. Here H{¥ denotes the two-dimensional Sobolev space; see [18], app. 4.
For r £ 0 we define g,®g,, to be the contragradient of ¢, ®¢-,, as
we did in the one-dimensional case.
Remark that the action o;®g¢,, (g) on H is given by

@0, (X) @Y = (X) o ®Y+0 o, (X) .
5.1.2. Take r = 0 and k even, k > 2r+2Re(s+s;)+1, k= 2. Then

FG+s,+n
Q= ) COSTS, Gtsi+n)

= I-'(_%—S'I"n""'%k) q02n+k ®q)-2n

is an element of H;. It has weight k and it generates a g, @g,,(9)-subspace

of H?_ isomorphic to D;. Up to a scalar, g, is the only element of H®,
with this property.

5.1.3. The g, ®o,, (a)-space generated by g, is contained in H{%, if r > 4.
For the map F from G into the Banach space H(¥, given by F(g)

= 0; ®g;, (9) g, is differentiable and satisfies (w—% k+% kz)F =0.So F is
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an analytic map, as it satisfies an elliptic differential equation. So ¢, is an
analytic vector in (g, ®ae,, H?,), and 0s ®0;, (9) preserves analyticity.

5.2. The bilinear map
5.21. Let Tye/(H(s)) and T,e «/(H(s,)); take r > 0 such that the
corresponding distributions & and f are elements of H_,. Define

a®f = E @ @-m) (B, ©-0) On® @n,

m,neven

then a ® fe H?),. 1t is invariant under o_,®g_,, (I).

5.2.2. In the same way as in Section 4.4 the invariant distribution a ®f3
defines an intertwining operator T, ® T;: HY —» C°(I'\G) by

(T ® Ty 0){9) = (2. ®es, (9) 2, 2 ® B).

Let k be even, k > 4r+2Re(s+s5,)+9. If we restrict T, ® T, to the subspace
generated by g,, defined in 5.1.2 and in 5.1.3 shown to be included in HY.
we obtain a model of D in C®(I'\G). After checking the growth of the
functions involved, we see that it is an automorphic model. So this restriction
may be viewed as an element of (D).

5.2.3. In particular

1
hz) =y (T ®T; 4)(p(2)
is an holomorphic form of weight k; it even turns out to be a cusp form.

5.24.

1 rd
y2*h(z) = Y. cosms, Gtsi+n)

> TE—s+n+ik) T §Dzn+k(P(Z))7}§0_2,(p(z)),

so indeed k is an infinite sum of products of automorphic forms.

5.2.5. In another way, see [3], § 6, one may show that 5.2.4 defines
he M, already under the assumption k > 4r+2Re(s+s,).

5.2.6. So we have defined a bilinear map
M(H(S))X‘M(H(sl))—)'M,‘.

5.3. Fourier coefficients

5.3,1. One might want to describe the bilinear map in 5.2.6 in terms of
the Fourier coefficients of the automorphic models involved in it. In [3] this
led to some pages of explicit computations.












