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§ 1. Introduction

I am going to explain how a number of recent papers can be interpreted as
relating ideas in shape theory to various questions in the homological theory
of groups. Up to now, the main serious application of shape theory has been
its clarifying role in geometric topology. 1 believe that the ideas discussed
here constitute another interesting application, since they provide the correct
geometric setting for a range of questions in homological group theory. Of
course, to be a successful application, there must be more than just a setting.
The results are not all in, but the reader may come to share my view that the
results already obtained make further study worthwhile.

I will assume a reasonable acquaintance with shape theory as described
in [DS] or [MS]. General references for homological group theory are [B],
[SW] and [HS], but I will not assume much knowledge of these.

My thanks to Gary O'Brien and Matt Brin for helping me sort out the
ideas 1n § 6.

§ 2. Geometric aspects of homology of groups

Let G be a group, and let X be a K(G, 1) complex. Assume X has just one
vertex. Let C*(}f’) be the chain complex of cellular chains in the universal
cover X [Co]. The covering transformations provide a free left action of G
on C,(X) making it a chain complex of free ZG-modules. Since X is
contractible, this chain complex 1s acyclic in positive dimensions. For any left
ZG-module M (the “coefficient module™), the cohomology groups H*(G; M)

* This paper is in fnal form and no version of it will be submitted for publication
elsewhere.

** Supported in parl by NSF Grant.
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can be calculated from the cochain complex Homz(,-((“*()?), M). However,
this abstraction hides the geometry.

Geometry enters when we make further assumptions on G. We say G is
of type .#(n) if X can be chosen to have finite n-skeleton, of rype #(x) if X
can be chosen to have finite skeleta, of type #7 if X can be chosen to be
finitely dominated, and of type .# if X can be chosen to be finite. These are
collectively known as finiteness conditions on G. .# (1) is “finitely generated”,
F(2) is “finitely presented”, so the others are higher-dimensional analogues
of these two familiar finiteness conditions; analogues of increasing strength.
It is a good open question whether .# & implies #. Finite groups are of type
Z () [B, p. 197], but no group having an element of finite order can be of
type #7 [B, p. 187]. Typical examples of groups of type .# are the
fundamental groups ol compact aspherical manifolds. For each n, there exist
groups of type .# (n) which are not of type #(n+1) [Bi; p. 37]. I will not
discuss the interplay between finiteness conditions on G and decomposability
of G as an extension, an amalgamated free product or an HNN extension: it
is covered in Chapter 2 of [Bi]. Note that he uses the algebraic condition
FP, rather than my .#(n); for n > 2 “FP,+ finitely presented” is equivalent
of .#(n), while FP, is equivalent to % (1).

Let G be of type .#(n), n< oo, and let X have finite n-skeleton.
Consider the case where the coefficient module is ZG itself. Then X" is a
locally compact complex, and, simply by looking at the definitions, one sees
that H*(G, ZG) = H*(X" for all k < n. (Here, H* denotes cohomology with
compact supports) When G is infinite, H*(X") measures k-dimensional
cohomology “at the end” of X". So this must be the geometrical meaning of
H*(G, ZG) — an object of algebraic interest. We now explore this idea.

§ 3. Connectedness at infinity of a locally finite complex

If Y is a countable, locally compact, finite-dimensional, infinite complex (I'm
thinking of ¥ = X" in § 2), one can pick finite subcomplexes K, = K, ...
whose unton is Y. (To avoid technicalities, I'll assume the attaching maps of
the cells of Y are PL, and that each |K,| is a compact subpolyhedron with
bicollared frontier: I'm going to omit such details from now on.) By the end
of Y, I mean the inverse sequence ¢Y = | Y\ K;! whose bonds are inclusions.
This should not be confused with the setr of ends of Y which is
lj31 imo(Y\K;)!, abbreviated l@ no(cY).

For our purpose, there is a better way of looking at the set of ends of Y.
Two proper maps f, g: X — Y between locally compact complexes are weakly
properly homotopic if, given a compact subset B of Y, there exist a compact
subset 4 of X and a homotopy H: f ~g such that H,(X\A4) < Y\B for
0 <t < L. If the same H works for all B, then fand g are properly homotopic.
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It is not hard to see that there is a “canonical” bijection from the set of ends
of Y, limny(¢Y), to the set of weak proper homotopy classes of proper maps
—

[0, 0v)— Y. Call a proper map [0, oc) — Y a proper ray. Then we will also
think of the set of ends of Y as being the set of equivalence classes of proper
rays under the equivalence relation of “weak proper homotopy”.

There are two other more delicate equivalence relations on the proper
rays in Y. “proper homology” and (already defined) “proper homotopy”.
Proper rays f and g are properly homologous , when f and g are oriented
towards infinity, there is a proper locally finite singular 2-chain, with Z
coefficients, whose boundary is f—g+c¢, where ¢ is a finite 1-chain. The ser of
strong ends of Y (resp. the set of strong homological ends of Y) is the set of
proper homotopy classes (resp. the set of proper homology classes) of
proper rays tn Y.

There are natural surjections

a . s
istrong ends of Y —» {strong homological ends of Y| - |ends of Y]

which in general are not bijections. Examples: embed the solenoid S and the
Case-Chamberlin continuum C in dB* If Y = B*\S, B is not a bijection. If
Y = B*\C, « is not a bijection.

Thus there are three kinds of connectedness at infinity for Y: (1) one
strong end, (2) many strong ends but one strong homological end, (3) many
strong homological ends but one end. (Actually, there is a fourth notion:
“weak proper homology classes of rays”; but this is easily seen to give back
the set of ends.)

§ 4. Connectedness for finitely presented groups

First, let G be infinite and finitely generated (i.e. of type % (1)). Let X be a
K(G, 1) complex with finite 1-skeleton. Then X! is locally compact and is in
fact the Cayley graph associated with a finite set of generators of G. The
cardinal number of the set of ends of X' depends only on G, and is 1, 2 or ¢
(see [SW1]).

Now, suppose G is infinite and finitely presented (#(2)). The set of
strong ends of X? and the set of strong homological ends of X2 depend (up
to canonical bijection) only on G (implicit in [Jo], [M,]). And the set of ends
of X2 “is” the set of ends of X' as above. So, fixing X, we will regard these
sets as invariants of G. We have surjections:

‘strong ends of G! - [strong homological ends of G) %, fends of Gj.

THeoreM 4.1 (see [M, ] or [EH]). The following are equivalent when G is
infinite and finitely presented:

(1) Box is a bijection;

18 — Banuch Center Publications
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() 'm (X2\K;.r)! is Mittag-Leffler for any proper base ray r:
[0, %) — X2

THEOREM 4.2 ([GM]). The following are equivalent when G is infinite and
finitely presented:

(1) B is a bijection;

(i) (H,(X?*\K,)! is Mittag Leffler;

(i) H3(G, ZG) is free abelian.

Compare these two theorems. Condition (it) shows that 4.2 is the
abelianization of 4.1. Condition (i) in 4.2 shows that 4.2 pertains to
homological group theory. I claim that 4.1 should be thought of as a
theorem in “shape theoretical group theory”, and that the absence of a
Condition 4.1 (iii) analogous to 4.2 (ii)) — 1 know of no suitable analogue —
shows the desirability of our approach. If this seems too grandiose a claim,
see below: here, I am only looking at connectedness of G, but in later
sections 1 will define and discuss the shape or the n-shape of groups G
satisfying appropriate finiteness conditions.

Returning to 4.1 and 4.2, 1 ask:

QuesTion 4.3. Do there exist finitely presented infinite groups G for which
(a) Poa is not a bijection, or (b) B is not u bijection?

As I write, the answers are unknown, but several remarks are needed.
First, il G has two ends, then G 1s a finite extension of Z (see [SW]) so a and
B are both bijections. Secondly, the question of whether H2(G, ZG) is always
free abelian is quite old. It is stated in [Bi], but I have been told that Hopf
conjectured a positive answer (see also [Fa]). By 4.2, this is equivalent (for
[.p. infinite G) to Question 4.3 (b). (I would guess that Hopf knew Theorem
4.2) Thirdly, the case of most interest is where G has one end. Then
Question 4.3 becomes:

QuEesTION 4.4. If G is a finitely presented one-ended group, is it true that
proper rays in X* are (a) always properly homotopic? (b) always properly
homologous?

Obviously, a positive answer 1o 4.4 (a) implies a positive answer to 4.4
(b). And here we see another advantage in our point of view. While
homological methods (e.g. the Hochschild-Serre spectral sequence when G i1s
a suitable extension of an infinite group by an infinite group) have proved to
be of limited use in getting positive answers to 4.4 (b) (see [GM]), a primitive
approach to 4.4 (a) has proved quite successful in many cases — see [Ja,],
[Ja,], (M,], [M;], [M;3], [M4], [Ms]: for many classes of one-ended finitely
presented groups G it has been shown that all proper rays in X? are
properly homotopic, hence properly homologous, hence H?(G, ZG) is free
abelian. By a “primitive approach”™ I mean: verifying Condition 4.1 (i1) by
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carefully pushing to infinity loops in the universal cover X2. In the language
of shape theory, one is verifying that the inverse sequence eX* = {X?\K;} of
CW complexes is “pointed 1-movable”.

§ 5. The (n—1)-shape of a group of type F#(n)

Let G be of type #(n) where n is a positive integer. Let X be a K (G, 1)
complex having one vertgx and finite n-skeleton. Then the proper (n—1)-type
of X" is an invariant of G: in other words, if X, and X, are two such, then

S
mutually inverse (cellular) pointed homotopy equivalences X, < X, induce
g

~ F - -~ o~

proper maps X7 = X% such that gof|X7 ' and fogiX%4 ' are properly
9

homotopic to the respective inclusions of (n—1)-skeleta into n-skeleta.

Because of this, I will call eX" = {X"\K;) the pro{(n—1)-type of G.

QUESTION 5.1. Is it always the case that there is a topological space E(X")
with which the sequence €¢X" is associated in the sense of shape theory? And if
E(X") exists, can it always be chosen to be a compact metric space?

In all known cases, the answer is yes to both questions, but little is
understood. For example, even the answer to the following question is
unknown:

QUESTION 5.2. For n =2, is n,(¢X? = {n,(X?\K;)} pro-isomorphic to an
inverse sequence of finitely generated groups? Is this true at least when G is of
type F?

A positive answer to Question 5.2 would imply, for example, that the
contractible open 3-manifolds described in [Mc] are not universal covers of
closed 3-manifolds; in [My] this was shown to be true for some of those
open 3-manifolds. In this connection see also [BT]. '

E (X", when it exists, should be called the (n — 1)-shape of G. At any rate,
its pro{n— 1)-type X" exists, and its relation to homological group theory is
contained in the following generalization of Theorem 4.2 ((GM], [GM,]):

THEOREM 5.3. Let G and X be as above. (i) for k <n HYG, ZG)
mod torsion is free abelian if and only if H,‘,l(sf(") is Mittag--Leffler; (ii) for
k < n, H*(G, ZG) is torsion free if and only if Hk_z(s)?") is pro-torsion free;
(i) for G infinite and k < n, H*(G, ZG) is a torsion group if and only if
H,_,(eX") is pro-finite; (iv) for G infinite and k < n, H*(G, ZG) mod torsion is
free abelian of finite rank ¢ if and only if H,_,(eX") mod torsion is stable with
free abelian inverse limit of finite ruank o.

(Here H, is reduced homology.)

Thus H*(G, ZG) is entirely reflected in the pro-homology of E(X") or



276 R. GEOGHEGAN

eX" through dimension n. An example of information about E(X" or ¢X"
which can be obtained from the Hochschild-Serre spectral sequence is:

THEOREM 5.4 ([GM]). Let H— G—=L be a short exact sequence of
infinite groups, where L is of type &, while H and G are of type F,,,. Let
(Xg, Xp, X1) be (K (G, 1), K(H, 1), K(L, 1)) complexes having finite skeleta
in dimensions (m+n, m+n, n). Let H;(cX}) be pro-trivial for i <n—2 and
Mittag-Leffler for i=n—1; let H;(eXF) be pro-trivial for i<m-2 and
Mittag-Leffler for i =m—1. Then H,(eX5*") is pro-trivial for i < m+n-2
and Mittag- Leffler for i = m+n—1.

If H or L, in 54, is one-ended, then it follows [rom [Ja] or [Ho] that
7, (eXT*") is pro-trivial. In that case, the pro-Hurewicz Theorem makes it
possible to replace H; by =; in the conclusion of Theorem 5.4 (assuming m
+n > 2). Under much less stringent assumptions it is shown in [M;—Mj]
that 7, (eX2*™ is Mittag-Leffler. Then the one-point compactification of
X7t is locally (m+ n—1)-connected [GM].

In the opposite direction (using knowledge of the n-shape of a group to
get cohomological information about the group in situations where
homological methods fail) there are some results in {GM]. I refer here to
higher dimensional versions of what in §4 was called the “primitive
approach™.

The whole story is clearer for groups of type .#, as I shall now explain.

§ 6. The shape of a group of type #

Let G be of type .# and let X be a finite K (G, 1) complex having one vertex.
Then the proper homotopy type of X is an invariant of G: in other words, if
X, and X, are two such, then mutually inverse pointed homotopy
equivalences lift to mutually inverse proper homotopy equivalences between
X, and X,. Because of this 1 will call the contractible infinite locally
compact complex X the proper homotopy type of G. As before, I pick an
exhausting sequence {K;} of nice finite subcomplexes. All the proper
homotopy information is contained in the pro-homotopy theory of ¢X
= !X \K;} which I call the pro-homotopy type of G.

QUuEsTION 6.1. Is it always the case that there is a topological space E(X)
with which the sequence {X\K,-} is associated in the sense of shape theory?
And if E(X) exists, can it always be chosen to be a compact metric space?

In all known examples, the answer is yes to both questions. E(X), when
it exists, should be called the shape of G.

ExampLEs. Let G be the fundamental group of the closed aspherical n-
manifold M. Then M is contractible. In the most familiar cases, M is
homeomorphic to R", so the shape of G is §" '. M. Davis [Da] has given
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examples of groups G and aspherical K (G, 1) closed manifolds M such that
the shape of G is not $"~! (n = 4). In the Davis examples, the shape of G is

E(M)=(# X" ')* where "~ ' is an homology (n— 1)-sphere which bounds

i=1
B0
a compact contractible n-manifold, # X' ! is the one-ended'® countably

i=1
infinite connected sum of copies of "', and ()* denotes one-point-
compactification. The inverse system is

eM = (X7 S g D I 2 # I

where each bond maps the last summand to a ball and is the “identity” on
the rest of the space. This compactum is quite interesting. Its pro-homology
is that of $"'. Its pro-m, is Mittag-Leffler: in fact each bond is a split

m+ 1 m

epimorphism % I'; - x I'; where * denotes free product and ;=T
i=1 i=1
=n,(2) for each i (the bond kills the last free factor).
Proposition 6.2. When X"~ ' is not simply connected, E(M) is not
movable.

Proof. Suppose there were a map f making the following diagram
commute up to homotopy

m - r -
WSS
=t i=1
s -1
#5"
iz1 !

where m <r <s and the unmarked arrows are bonds. The bonds have
degree 1, so f has degree 1. As is well-known, this implies f, is an
epimorphism on m,, contradicting Grushko's Theorem [SW].

Since each bond in pro-m, (M) is a split epimorphism, the induced
inverse sequence of Whitehead groups is Mittag—Leffler. Hence, by [CS], if Q
denotes the Hilbert Cube, M x Q is homeomorphic to Q\Z where Z is a Z-
set copy of E(M) in Q. Thus G acts freely and properly discontinuously, with
compact Q-manifold quotient, on the complement of a Z-set in Q.

If pro-m, (eM) is stable, one can do better, actually sewing a manifold
boundary to M. See [S].

The question arises of what variety of examples can occur in the Davis
setting. A finitely presented group I is the fundamental group of a homology

' The end-point compactifications of all countably infinite connected sums of copies of 2
are shape equivalent.
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5-sphere which bounds a compact contractible 6-manifold if and only if
H,(I', Z)=0= H,(I', Z). A particular case of this is the group of order 120
which is the fundamental group of the Poincaré homology 3-sphere, P. Since
P is S, P is the 3-skeleton of K (n, (P), 1), so n,(P) has H, = 0 = H,, even
though P itsell does not bound a compact contractible 4-manifold. Thus we
get an example of the shape of a group for which pro-n, is not pro-torsion-free.
Before [Da], no such example was known.

§ 7. Pseudo-proper homotopy

Let Y be a countable complex each skeleton of which is locally compact.
Well-order the vertices of Y. Let K; be the largest subcomplex of ¥ whose 0-
skeleton consists of the first i vertices in the ordering. I call [K;} a pseudo-
proper filtration of Y. If {K;} is a pseudo-proper filtration based on a different
ordering of the vertices of Y, it is clear that for each i there exists j(i) such
that K; < Kj;. Thus, for my purposes, {K;} and {K;} will be equivalent.
Note that each K; has finite type.

Let ¥, and Y, have the properties of Y, above, let {K;! and {L;} be
pseudo-proper filtrations of Y; and Y, respectively. One readily proves:

Lemma 7.1. For a cellular map f: Y, — Y,, the following are equivalent: (a)
f1Y2: Y2 = YD is proper: (b) f|Y[: Y] — Y7 is proper for all n; (c) for each i,
there exists j(i) such that f~'(L) < K.

A map satislying (a) or (b) or (c) of Lemma 7.1 is pseudo-proper. There is
an obvious pseudo-proper homotopy category whose objects are complexes
having the properties of Y, above.

Il /2 X, = X, is a cellular map, where X, and X, are ol finite type, and
il ker(f,: m,(X,) = m, (X)) is finite, then f* X, — X, is pseudo-proper. If [ is
a homoltopy equivalence, f is a pseudo-proper homotopy equivalence.

If |K;} is a pseudo-proper filtration of Y, I define the end of Y to be the
inverse sequence ¢Y = |Y\K;}. Its pro-homotopy type is an invariant of
pseudo-proper homotopy.

These notions arise naturally in studying groups of type .# (coc).

§ 8. The shape of a group of type .7 (x0)

Let G be of type #(oc) and let X be a K(G, 1) complex of finite type,
having one vertex. For example, G could be a finite group, but in that case
X would also be of finite type, and the shape of G, in any reasonable
definition, would be represented by the empty space.

Of more interest are the groups of type # (oo} discussed in [BG,],
[BG,] and [BG;]. These are groups F and T which are of type 4 (o0), but
not of type #, for which =;(¢eX") is pro-trivial whenever n >i > 0. (The
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group F is well-known to shape theorists in connection with the problem of
splitting homotopy idempotents (“every FANR 1s a pointed FANR™). See
[DS p. 82] and [HH].) It 1s tempting to consider those groups (and there are
lots more!) as having the shape of a point. But § § tells us less: it says that
these groups have trivial pro-n-type for each n.

Define the pro-homotopy type of G to be ¢X, as defined in § 7. As before,
we can ask if there is always a space E(X) represented in shape by ¢ X, and if
it can always be chosen to be a compact metric space. Here is another
interesting question whose answer is unknown.

QUESTION 8.1. Does there exist a group of type .7 (o) having trivial pro-
homotopy type (i.e. whose shape is a point)?

One might guess that the groups F and T have this property, but the
method of proof in [BG,] that the pro-n-type is trivial for all n does not
establish that {X\K;! is trivial in pro-homotopy, where K;! is a pseudo-
proper filtration of X. The issue is movability; {X\K;! is trivial in pro-
homotopy iff it is movable [MS p. 191].

§ 9. The shape theory of groups

The problem is no less than to describe for each group G of type F(ox) its
shape, and to say which shapes can occur? These are broad and difficult
questions, but their answers should yield important invariants of such
groups. Even the simplest kind of connectedness gives the theory of ends of
finitely generated groups, whose description by Hopf and Stallings has had
profound consequences.

As pointers along the way, the questions posed in this note deserve to
be answered: namely Questions 4.3, 44, 5.1, 5.2, 6.1 and 8.1. Some of these
questions are widely known. My aim in writing this note has been to give
them a context.
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