Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Domination, independence and irredundance in graphs

Autorzy

Seria

Rozprawy Matematyczne tom/nr w serii: 342 wydano: 1995

Zawartość

Warianty tytułu

Abstrakty

EN
CONTENTS

1. Introduction........................................................................................................ 5
 1.1. Purpose and scope................................................................................. 5
 1.2. Basic graphtheoretical terms................................................................ 6
2. Domination, independence and irredundance in graphs................................ 9
 2.1. Introduction and preliminaries.............................................................. 9
 2.2. Domination parameters of vertex and edgedeleted subgraphs..... 15
 2.3. Packing and covering numbers............................................................ 25
 2.4. Conditions for equalities of domination parameters........................ 35

3. Well covered graphs........................................................................................ 46
 3.1. Introduction and preliminary results..................................................... 46
 3.2. The well coveredness of products of graphs..................................... 55
 3.3. Well covered simplicial and chordal graphs...................................... 67
 3.4. Well covered line and total graphs....................................................... 73
 3.5. Well covered generalized Petersen graphs........................................ 78
 3.6. Well irredundant graphs......................................................................... 80
4. Graphical sequences and sets of integers......................................................... 85
 4.1. Dominationfeasible sequences........................................................... 86
 4.2. Interpolation properties of domination parameters.......................... 91
References.................................................................................................................... 94

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 342

Liczba stron

99

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae , Tom CCCXLII

Daty

wydano
1995
otrzymano
1992-07-16
poprawiono
1994-11-14

Twórcy

autor
  • Faculty of Applied Physics and Mathematics, Gdańsk Technical University, Narutowicza 11/12, 80952 Gdańsk, Poland

Bibliografia

  • [1] B. D. Acharya, The strong domination number of a graph and related concepts, J. Math. Phys. Sci. 14 (1980), 471-475.
  • [2] B. D. Acharya and H. B. Walikar, On the graphs having unique minimum dominating sets, Abstract No. 2, Graph Theory Newsletter 8(15) (1979), 1.
  • [3] R. B. Allan and R. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978), 73-76.
  • [4] R. B. Allan and R. Laskar, On domination and some related topics in graph theory, in: Proc. of 9th Southeast Conference on Combinatorics, Graph Theory and Computing, Utilitas Math. 1979, 43-56.
  • [5] R. B. Allan, R. Laskar and S. Hedetniemi, A note on total domination, Discrete Math. 49 (1984), 7-13.
  • [6] R. Balakrishnan and P. Paulraja, Powers of chordal graphs, J. Austral. Math. Soc. Ser. A 35 (1983), 211-217.
  • [7] D. Bauer, F. Harary, J. Nieminen and C. L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983), 153-161.
  • [8] M. A. Benedetti and F. M. Mason, Sulla caratterizzazione dei grafi domistabili, Ann. Univ. Ferrara Sez. VII (N.S.) 27 (1981), 1-11.
  • [9] C. Benzaken and P. L. Hammer, Linear separation of dominating sets in graphs, Ann. Discrete Math. 3 (1978), 1-10.
  • [10] C. Berge, Théorie générale des jeux à n personnes, Mém. Sci. Math. 138, Paris, 1957.
  • [11] C. Berge, Théorie des graphes et ses applications, Dunod, Paris, 1958.
  • [12] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
  • [13] C. Berge, Regularisable graphs, Ann. Discrete Math. 3 (1978), 11-19.
  • [14] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, in: Lecture Notes in Comput. Sci. 108, Springer, 1981, 108-123.
  • [15] C. Berge, Graphs, North-Holland, Amsterdam, 1985.
  • [16] C. Berge, New classes of perfect graphs, Discrete Appl. Math. 15 (1986), 145-154.
  • [17] M. Bern, E. L. Lawler and A. Wong, Why certain subgraph computations require only linear time, in: Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, Portland, OR, 1985, 117-125.
  • [18] A. A. Bertossi, Dominating sets for split and bipartite graphs, Inform. Process. Lett. 9 (1984), 37-40.
  • [19] A. A. Bertossi and A. Gori, Total domination and irredundance in weighted interval graphs, SIAM J. Discrete Math. 1 (1988), 317-327.
  • [20] B. Bollobás and E. J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979), 241-249.
  • [21] B. Bollobás and E. J. Cockayne, The irredundance number and maximum degree of a graph, Discrete Math. 49 (1984), 197-199.
  • [22] M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975), 3-6.
  • [23] M. Borowiecki, Connected Bijection Method in Hypergraph Theory and Some Results Concerning the Structure of Graphs and Hypergraphs, Wyższa Szkoła Inżynierska w Zielonej Górze, Monografia 15, Wydawnictwo Uczelniane, Zielona Góra, 1979.
  • [24] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173-179.
  • [25] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Redwood City, 1990.
  • [26] S. R. Campbell, Some results on cubic well-covered graphs, Ph.D. Dissertation, Vanderbilt University, 1987.
  • [27] S. R. Campbell, M. N. Ellingham and G. F. Royle, A characterization of well-covered cubic graphs, J. Combin. Math. Combin. Comput. 13 (1993), 193-212.
  • [28] S. R. Campbell and M. D. Plummer, On well-covered 3-polytopes, Ars Combin. 25A (1988), 215-242.
  • [29] J. Carrington, F. Harary and T. W. Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Comput. 9 (1991), 57-63.
  • [30] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability problems on sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984), 332-345.
  • [31] G. J. Chang and G. L. Nemhauser, Covering, packing and generalized perfection, ibid. 6 (1985), 109-132.
  • [32] G. Chartrand, Problem, in: G. Chartrand et al. (eds.), The Theory and Applications of Graphs, Wiley, New York, 1981, 610.
  • [33] G. A. Cheston, E. O. Hare, S. T. Hedetniemi and R. C. Laskar, Simplicial graphs, Congr. Numer. 67 (1988), 105-113.
  • [34] E. J. Cockayne, Domination of undirected graphs--a survey, in: Lecture Notes in Math. 462, Springer, 1978, 141-147.
  • [35] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
  • [36] E. J. Cockayne, O. Favaron, C. Payan and A. G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1981), 249-258.
  • [37] E. J. Cockayne and S. T. Hedetniemi, Independence graphs, in: Proc. of 5th Southeast Conference on Combinatorics, Graph Theory and Computing, Utilitas Math. 1974, 471-491.
  • [38] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
  • [39] E. J. Cockayne, S. T. Hedetniemi and R. Laskar, Gallai theorems for graphs, hypergraphs, and set systems, Discrete Math. (1988), 35-47.
  • [40] E. J. Cockayne, S. T. Hedetniemi and D. J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978), 461-468.
  • [41] C. J. Colbourn, P. J. Slater and L. K. Stewart, Locating dominating sets in series parallel networks, Congr. Numer. 56 (1987), 135-162.
  • [42] D. G. Corneil and J. M. Keil, A dynamic programming approach to the dominating set problem on k-trees, SIAM J. Algebraic Discrete Methods 8 (1987), 535-543.
  • [43] D. G. Corneil and Y. Perl, Clustering and domination in perfect graphs, Discrete Appl. Math. 9 (1984), 27-39.
  • [44] D. G. Corneil and L. K. Stewart, Dominating sets in perfect graphs, Discrete Math. 86 (1990), 145-164.
  • [45] J. Currie and R. Nowakowski, A characterization of fractionally well-covered graphs, Ars Combin. 31 (1991), 93-96.
  • [46] A. K. Dewdney, Fast Turing reductions between problems in NP, Report no. 71, Department of Computer Science, University of Western Ontario, 1981.
  • [47] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
  • [48] G. S. Domke, S. T. Hedetniemi and R. C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988), 227-238.
  • [49] G. S. Domke, S. Hedetniemi, R. Laskar and R. Allan, Generalized packings and coverings of graphs, ibid. 62 (1988), 259-270.
  • [50] G. S. Domke, S. Hedetniemi, R. Laskar and G. Fricke, Relationships between integer and fractional parameters of graphs, in: Y. Alavi, G. Chartrand, O. R. Oellermann and A.~J.~Schwenk (eds.), Graph Theory, Combinatorics and Applications, Wiley, New York, 1991, 371-387.
  • [51] P. Duchet, Classical perfect graphs-an introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984), 67-96.
  • [52] R. D. Dutton and R. C. Brigham, An extremal problem for edge domination in sensitive graphs, Discrete Appl. Math. 20 (1988), 113-125.
  • [53] E. S. El-Mallah and Ch. J. Colbourn, On two dual classes of planar graphs, Discrete Math. 80 (1990), 21-40.
  • [54] M. Farber, Independent domination in chordal graphs, Oper. Res. Lett. 1 (1982), 134-138.
  • [55] M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984), 115-130.
  • [56] M. Farber, Bridged graphs and geodesic convexity, Discrete Math. 66 (1987), 249-257.
  • [57] M. Farber and J. M. Keil, Domination in permutation graphs, J. Algorithms 6 (1985), 309-321.
  • [58] A. M. Farley and N. Shacham, Senders in broadcast networks: open-irredundancy in graphs, Congr. Numer. 38 (1983), 47-57.
  • [59] O. Favaron, Very well covered graphs, Discrete Math. 42 (1982), 177-187.
  • [60] O. Favaron, Stability, domination and irredundance in a graph, J. Graph Theory 10 (1986), 429-438.
  • [61] O. Favaron, Equimatchable factor-critical graphs, ibid. 10 (1986), 439-448.
  • [62] O. Favaron, A note on the irredundance number after vertex deletion, Discrete Math. 121 (1993), 51-54.
  • [63] O. Favaron and B. L. Hartnell, On well-k-covered graphs, J. Combin. Math. Combin. Comput. 6 (1989), 199-205.
  • [64] A. Finbow and B. L. Hartnell, A game related to covering by stars, Ars Combin. 16A (1983), 189-198.
  • [65] A. Finbow and B. L. Hartnell, On locating dominating sets and well-covered graphs, Congr. Numer. 65 (1988), 191-200.
  • [66] A. Finbow, B. L. Hartnell and R. Nowakowski, Well-dominated graphs: a collection of well-covered ones, Ars Combin. 25A (1988), 5-10.
  • [67] A. Finbow, B. L. Hartnell and R. Nowakowski, A characterization of well covered graphs of girth 5 or greater, J. Combin. Theory B 57 (1993), 44-68.
  • [68] A. Finbow, B. L. Hartnell and R. Nowakowski, A characterization of well covered graphs that contain neither 4- nor 5-cycles, J. Graph Theory 18 (1994), 713-721.
  • [69] J. F. Fink and M. S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, 283-300.
  • [70] J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, 301-311.
  • [71] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985), 287-293.
  • [72] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990), 47-57.
  • [73] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979.
  • [74] S. L. Gasquoine, B. L. Hartnell, R. J. Nowakowski, and C. A. Whitehead, Techniques for constructing well-covered graphs with no 4-cycles, manuscript, 1992.
  • [75] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
  • [76] M. C. Golumbic and R. C. Laskar, Irredundancy in circular arc graphs, Discrete Appl. Math. 44 (1993), 79-89.
  • [77] A. Hajnál and J. Suranýi, Über die Auflösung von Graphen in vollständige Teilgraphen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 113-121.
  • [78] F. Harary and J. A. Kabell, Monotone sequences of graphical invariants, Networks 10 (1980), 273-275.
  • [79] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986), 121-150.
  • [80] F. Harary and M. Livingston, Caterpillars with equal domination and independent domination numbers, in: Recent Studies in Graph Theory, Vishwa, Gulbarga, 1989, 149-154.
  • [81] F. Harary, R. J. Mokken and M. J. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems 30 (1983), 429-432.
  • [82] F. Harary and M. J. Plantholt, Classification of interpolation theorems for spanning trees and other families of spanning subgraphs, J. Graph Theory 13 (1989), 703-712.
  • [83] F. Harary and S. Schuster, Interpolation theorems for the independence and domination numbers of spanning trees, Ann. Discrete Math. 41 (1989), 221-228.
  • [84] F. Harary, S. Schuster and P. D. Vestergaard, Interpolation theorems for the invariants of spanning trees of a given graph: edge-covering, Congr. Numer. 59 (1987), 107-114.
  • [85] J. H. Hatting and M. A. Henning, A characterization of block graphs that are well-k-dominated, J. Combin. Math. Combin. Comput. 13 (1993), 33-38.
  • [86] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Congr. Numer. 72 (1990), 239-252.
  • [87] S. M. Hedetniemi, S. T. Hedetniemi and R. Laskar, Domination in trees: models and algorithms, in: Graph Theory with Applications to Algorithms and Computer Science, Kalamazoo, MI, 1984, Wiley, New York, 1985, 423-442.
  • [88] S. T. Hedetniemi and R. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math. 86 (1990), 257-277.
  • [89] S. T. Hedetniemi, R. Laskar and J. Pfaff, Irredundance in graphs: a survey, Congr. Numer. 48 (1985), 183-193.
  • [90] M. S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1990), 59-69.
  • [91] M. S. Jacobson and K. Peters, A note on graphs which have upper irredundance equal to independence, Discrete Appl. Math., to appear.
  • [92] M. S. Jacobson, K. Peters and D. F. Rall, On n-irredundance and n-domination, Ars Combin. 29B (1990), 151-160.
  • [93] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms 3 (1982), 182-195; 5 (1984), 147-160; 6 (1985), 434-451; 8 (1987), 438-448.
  • [94] T. Kikuno, N. Yoshida and Y. Kakuda, Linear algorithm for the domination number of a series-parallel graphs, Discrete Appl. Math. 5 (1983), 299-311.
  • [95] D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936.
  • [96] B. Kummer, Spiele auf Graphen, Deutscher Verlag Wiss., Berlin, 1979.
  • [97] R. Laskar and K. Peters, Vertex and edge domination parameters in graphs, Congr. Numer. 48 (1985), 291-305.
  • [98] R. Laskar and J. Pfaff, Domination and irredundance in split graphs, Tech. Rept. 430, Department of Mathematical Sciences, Clemson University, August 1983.
  • [99] R. Laskar and J. Pfaff, Domination and irredundance in graphs, Tech. Rept. 434, Department of Mathematical Sciences, Clemson University, September 1983.
  • [100] R. Laskar and H. B. Walikar, On domination related concepts in graph theory, in: Lecture Notes in Math. 885, Springer, 1981, 308-320.
  • [101] C. Lekkerkerker and J. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962), 45-64.
  • [102] M. Lesk, M. D. Plummer and W. R. Pulleyblank, Equi-matchable graphs, in: Graph Theory and Combinatorics, Academic Press, London, 1984, 239-254.
  • [103] M. Lewin, Matching-perfect and cover-perfect graphs, Israel J. Math. 18 (1974), 345-347.
  • [104] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
  • [105] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1979.
  • [106] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
  • [107] A. Meir and J. W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975), 225-233.
  • [108] S. Mitchell and S. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977), 489-509.
  • [109] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.
  • [110] J. Nieminen, Two bounds for the domination number of a graph, J. Inst. Math. Appl. 14 (1974), 183-187.
  • [111] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38, Amer. Math. Soc., Providence, Rhode Island, 1962.
  • [112] C. Payan and N. H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982), 23-32.
  • [113] M. R. Pinter, $W_2$ graphs and strongly well-covered graph subclasses, Ph.D. Dissertation, Vanderbilt University, 1991.
  • [114] M. D. Plummer, On a family of line critical graphs, Monatsh. Math. 71 (1967), 40-48.
  • [115] M. D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970), 91-98.
  • [116] M. D. Plummer, Well-covered graphs: a survey, Quaest. Math. 16 (1993), 253-287.
  • [117] E. Prisner, J. Topp and P. D. Vestergaard, Well covered simplicial, chordal and circular arc graphs, J. Graph Theory, to appear.
  • [118] G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977), 20-21.
  • [119] F. S. Roberts, Graph Theory and Its Applications to Problems of Society, SIAM, Philadelphia, 1978.
  • [120] D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970), 597-609.
  • [121] E. Sampathkumar, (1,k)-domination in a graph, J. Math. Phys. Sci. 22 (1988), 613-619.
  • [122] E. Sampathkumar, The global domination number of a graph, ibid. 23 (1988), 377-385.
  • [123] E. Sampathkumar, The least point covering and domination numbers of a graph, Discrete Math. 86 (1990), 137-142.
  • [124] E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979), 607-613.
  • [125] S. Schuster, Interpolation theorem for the number of end-vertices of spanning trees, J. Graph Theory 7 (1983), 203-208.
  • [126] W. Siemes, J. Topp and L. Volkmann, On unique independent sets in graphs, Discrete Math. 131 (1994), 279-285.
  • [127] P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach. 23 (1976), 446-450.
  • [128] P. J. Slater, Domination and location in acyclic graphs, Networks 17 (1987), 55-64.
  • [129] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988), 445-455.
  • [130] J. A. W. Staples, On some subclasses of well-covered graphs, Ph.D. Dissertation, Vanderbilt University, 1975.
  • [131] J. A. W. Staples, On some subclasses of well-covered graphs, J. Graph Theory 3 (1979), 197-204.
  • [132] D. P. Sumner, Randomly matchable graphs, ibid. 3 (1979), 183-186.
  • [133] D. P. Sumner, Critical concepts in domination, Discrete Math. 86 (1990), 33-46.
  • [134] D. P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983), 65-76.
  • [135] L. Szamkołowicz, Sur la classification des graphes en vue des propriétés de leurs noyaux, Prace Nauk. Inst. Mat. Politech. Wrocław. Ser. Stud. Materiały 3 (1970), 15-21.
  • [136] L. Szamkołowicz, Theory of Finite Graphs, Ossolineum, Wrocław, 1971 (in Polish).
  • [137] J. Topp, Games on Graphs, Ph.D. Dissertation, N. Copernicus University, Toruń, 1977.
  • [138] J. Topp, Grundy functions and games on digraphs, Zeszyty Nauk. Politech. Gdańsk. Mat. 12 (1982), 89-93
  • [139] J. Topp, Asymmetric games on digraphs, in: Lecture Notes in Math. 1018, Springer, 1983, 260-265.
  • [140] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, Discrete Math. 121 (1993), 199-210.
  • [141] J. Topp, The well coveredness of k-trees and $C_{(n)}$-trees, J. Combin. Inform. System Sci., to appear.
  • [142] J. Topp, Sequences of graphical invariants, Networks 25 (1995), 1-5.
  • [143] J. Topp, Interpolation theorems for domination numbers of a graph, manuscript.
  • [144] J. Topp, Interpolation theorem for the location domination number of spanning trees, manuscript.
  • [145] J. Topp, Interpolation theorems for the (r,s)-domination number of spanning trees, manuscript.
  • [146] J. Topp and P. D. Vestergaard, Well irredundant graphs, Discrete Appl. Math., to appear.
  • [147] J. Topp and P. D. Vestergaard, On numbers of vertices of maximum degree in the spanning trees of a graph, Discrete Math., to appear.
  • [148] J. Topp and P. D. Vestergaard, Some classes of well covered graphs, Report R-93-2009, Department of Mathematics and Computer Science, Aalborg University, 1993.
  • [149] J. Topp and L. Volkmann, On domination and independence numbers of graphs, Result. Math. 17(1990), 333-341.
  • [150] J. Topp and L. Volkmann, Well covered and well dominated block graphs and unicyclic graphs, Math. Pannonica 1/2 (1990), 55-66.
  • [151] J. Topp and L. Volkmann, On graphs with equal domination and independent domination numbers, Discrete Math. 96 (1991), 75-80.
  • [152] J. Topp and L. Volkmann, On packing and covering numbers of graphs, ibid. 96 (1991), 229-238.
  • [153] J. Topp and L. Volkmann, Characterization of unicyclic graphs with equal domination and independence numbers, Discuss. Math. 11 (1991), 27-34.
  • [154] J. Topp and L. Volkmann, On the well coveredness of products of graphs, Ars Combin. 33 (1992), 199-215.
  • [155] J. Topp and L. Volkmann, Some upper bounds for the product of the domination number and the chromatic number of a graph, Discrete Math. 118 (1993), 289-292.
  • [156] V. G. Vizing, A bound on the external stability number of a graph, Dokl. Akad. Nauk SSSR 164 (1965), 729-731.
  • [157] L. Volkmann, Graphen und Digraphen, Springer, Wien, 1991.
  • [158] H. B. Walikar and B. D. Acharya, Domination critical graphs, Nat. Acad. Sci. Lett. 2 (1979), 70-72.
  • [159] C. A. Whitehead, A characterization of well-covered claw-free graphs containing no 4-cycle, manuscript, 1993.
  • [160] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (1980), 345-372.
  • [161] I. E. Zverovich and V. E. Zverovich, A characterization of domination perfect graphs, J. Graph Theory 15 (1991), 109-114.
  • [162] A. A. Zykov, On some properties of linear complexes, Math. USSR-Sb. 24 (1949), 163-188.

Języki publikacji

EN

Uwagi

Identyfikator YADDA

bwmeta1.element.zamlynska-d220bf8e-049c-4cac-81bf-5d51e6340c28

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.