EN
CONTENTS
1. Introduction........................................................................................................ 5
1.1. Purpose and scope................................................................................. 5
1.2. Basic graphtheoretical terms................................................................ 6
2. Domination, independence and irredundance in graphs................................ 9
2.1. Introduction and preliminaries.............................................................. 9
2.2. Domination parameters of vertex and edgedeleted subgraphs..... 15
2.3. Packing and covering numbers............................................................ 25
2.4. Conditions for equalities of domination parameters........................ 35
3. Well covered graphs........................................................................................ 46
3.1. Introduction and preliminary results..................................................... 46
3.2. The well coveredness of products of graphs..................................... 55
3.3. Well covered simplicial and chordal graphs...................................... 67
3.4. Well covered line and total graphs....................................................... 73
3.5. Well covered generalized Petersen graphs........................................ 78
3.6. Well irredundant graphs......................................................................... 80
4. Graphical sequences and sets of integers......................................................... 85
4.1. Dominationfeasible sequences........................................................... 86
4.2. Interpolation properties of domination parameters.......................... 91
References.................................................................................................................... 94