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1. Introduction

1.1. Purpose and scope. The study of graphs and their various theoretical
and real-world applications have led to the study and development of the theory
of independence and domination in graphs. In fact, graph theorists have studied
independent sets in graphs for a long time, especially in view of their relation-
ships to colorings in graphs. The mathematical study of domination in graphs
was begun by König [95], Berge [10, 11, 12] and Ore [111]. Their text-books,
the paper by Vizing [156], and the survey papers by Cockayne [34], Cockayne
and Hedetniemi [38], Laskar and Walikar [100], and Hedetniemi, Laskar and Pfaff
[89] provided the inspiration for many mathematicians working in this field. The
concept of irredundance in graphs was first introduced by Cockayne, Hedetniemi
and Miller [40] while studying domination in graphs. A firm foundation to the
development of irredundance gave Bollobás and Cockayne [20]. During the past
30 years the study of domination has become a significant area of research in
graph theory. Currently the domination theory includes a few hundred papers
written on domination related problems (for example, the recent domination bib-
liography compiled by Hedetniemi and Laskar [88] contains 402 citations) and
over 70 different types of domination related parameters of graphs have been
studied (for example, the paper by Hedetniemi, Hedetniemi and Laskar [87] con-
tains the definitions of 30 domination parameters and some other of them can
be found in “Topics on Domination”, Discrete Mathematics 86 (1990), edited by
S. T. Hedetniemi and R. C. Laskar).

This paper is not a survey paper on domination, independence and irredun-
dance in graphs. Rather, it deals with aspects of the classical cases of domination,
independence and irredundance of particular interest to the author. This paper
was based on the author’s papers [140]–[145] and the papers [117], [126], and
[146]–[155] which the author wrote together with E. Prisner of the Hamburg Uni-
versity, P. D. Vestergaard of the Aalborg University, and L. Volkmann of the
Technical University of Aachen. The work contains also some new results which
have never been published and it includes various references to publications which
are beyond the mainstream development. The paper is organized as follows:

Chapter 1 contains some basic graph-theoretic terms used in this paper. Other
graph-theoretic terms which are not included in this section will be defined when
they are needed (or can be found in [15], [75] or [157]).

In Chapter 2, we introduce the notion of domination, independence and ir-
redundance in graphs. We then give the main properties of independent, domina-
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ting and irredundant sets, and general relationships between the independence,
domination and irredundance numbers of a graph. The principal results of this
chapter are some sufficient conditions for two or more of the domination related
parameters to be equal (Sections 2.3 and 2.4).

Chapter 3 deals with graphs in which every maximal independent set of ver-
tices is maximum. Such graphs are called well covered. This chapter offers some
general properties of the well covered graphs and characterizations of several sub-
classes of the well covered graphs.

In Chapter 4, we investigate sequences and sets of integers which are formed
for a given graph and a domination related parameter.

1.2. Basic graph-theoretical terms. A simple graph G (a graph for short)
is an ordered pair (V (G), E(G)), where V (G) is a finite set and E(G) is a set of
two-element subsets of V (G). The set V (G) is the set of vertices of G and E(G)
is the set of edges of G. The cardinality of the vertex set of a graph G is called the
order of G, while the cardinality of its edge set is the size of G. An edge {u, v} of G
is said to join the vertex u to the vertex v and is denoted by uv. We also say that
the vertices u and v are adjacent and that each of them is incident with the edge
uv. Two distinct edges are adjacent if they are incident with a common vertex;
otherwise they are nonadjacent. If uv ∈ E(G), then we say that v is a neighbour

of u. The set of all neighbours of u is called the neighbourhood of u and is denoted
by NG(u). We write NG[u] instead of NG(u) ∪ {u}. For a subset X of V (G), we
write NG(X) and NG[X] instead of

⋃

u∈X NG(u) and
⋃

u∈X NG[u], respectively.
The degree of a vertex u is |NG(u)| and is denoted by dG(u). The maximum
(resp. minimum) of the degrees of the vertices of G is called the maximum (resp.
minimum) degree of G. A vertex of degree zero (one or at least two, resp.) in G is
referred to as an isolated (end or interior, resp.) vertex of G. An edge uv is an end

edge of G if u or v is an end vertex of G; otherwise it is an interior edge of G. If
all the vertices of G have the same degree, say d, then we say that G is regular of

degree d. A regular graph of degree 3 is called a cubic graph. A graph is complete

if any two of its vertices are adjacent. A complete graph of order n is therefore a
regular graph of degree n − 1 and size n(n − 1)/2; we denote this graph by Kn.
The complete graph having vertex set V is denoted by K[V ]. The complement
G of a graph G is the graph with vertex set V (G) and such that two vertices are
adjacent in G if and only if these vertices are not adjacent in G. The complement
Kn of the complete graph Kn has n vertices and no edges and is referred to as
the totally disconnected graph of order n.

A graph G1 is isomorphic to a graph G2 if there exists a bijection ϕ : V (G1) →
V (G2), called an isomorphism, which preserves adjacency, that is, for all v, u ∈
V (G1), vu ∈ E(G1) if and only if ϕ(v)ϕ(u) ∈ E(G2). It is easy to see that “is
isomorphic to” is an equivalence relation on graphs. Therefore, if G1 is isomorphic
to G2, we may say that G1 and G2 are isomorphic. If G1 and G2 are isomorphic,
we write G1

∼= G2 or simply G1 = G2 if there is no danger of confusion. By a
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copy of a graph G we mean a graph isomorphic to G. Two graphs G1 and G2 are
disjoint or vertex-disjoint (resp. edge-disjoint) if their vertex sets (resp. edge sets)
are disjoint.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G); in
such a case, we also say that G is a supergraph of H. Any graph isomorphic to a
subgraph of G is also referred to as a subgraph of G. A spanning subgraph of a
graph G is a subgraph containing all the vertices of G. If M is a subset of edges
of G, then G−M denotes a spanning subgraph of G with edge set E(G)−M . In
particular, if vu ∈ E(G), then G − {vu} is called an edge-deleted subgraph of G
and we write G−vu instead of G−{vu}. If u and v are nonadjacent vertices of G,
then G + uv denotes the graph with vertex set V (G) and edge set E(G) ∪ {uv}.
For any set X of vertices of G, the induced subgraph G[X] of G is the maximal
subgraph of G with vertex set X. For a subset X of V (G) and a vertex v ∈ V (G),
we also write G − X and G − v instead of G[V (G) − X] and G[V (G) − {v}],
respectively. For v ∈ V (G), G−v is called a vertex-deleted subgraph of G. For any
set M of edges of G, the generated subgraph G(M) of G is the minimal subgraph
of G with edge set M , the graph whose vertex set consists of those vertices of G
incident with at least one edge of M and whose edge set is M .

A set of pairwise nonadjacent edges of a graph G is called a matching in G.
If M is a matching in a graph G with the property that every vertex of G is
incident with an edge of M , then M is a perfect matching in G. Clearly, if G has
a perfect matching M , then G has an even order and G(M) is a regular spanning
subgraph of degree 1 of G. In a graph G, a nonempty subset X of V (G) is said to
be matched into a subset Y of V (G) −X if there exists a matching M in G such
that each edge of M is incident with a vertex of X and a vertex of Y and every
vertex of X is incident with an edge of M .

A path is a graph P having vertex set V (P ) = {v0, v1, . . . , vn} and edge set
E(P ) = {v0v1, v1v2, . . . , vn−1vn} if n ≥ 1 or E(P ) = ∅ if n = 0. This path P
is usually denoted by the sequence (v0, v1, . . . , vn) of consecutive vertices since
the edges present are then evident. The vertices v0 and vn are the end vertices
of P and n is the length of P . We say that P is a v0−vn path. Of course, P
is also a vn−v0 path. The symbol Pn denotes an arbitrary path of length n.
A vertex u is said to be joined to a vertex v in a graph G if there exists a
u − v path in G. A graph G is connected if any two of its vertices are joined.
A graph that is not connected is disconnected. A maximal connected subgraph
of G is called a connected component or simply a component of G. A connected
regular graph of degree 2 is called a cycle. Thus a cycle is a graph C of the form
V (C) ={v1, v2, . . . , vn} and E(C) ={v1v2, v2v3, . . . , vn−1vn, vnv1}. For simplicity
this cycle is also denoted by (v1, v2, . . . , vn), the sequence of consecutive vertices,
when it is clear from the context. The number n (n ≥ 3) is the length of C. The
symbol Cn denotes an arbitrary cycle of length n. A cycle is even if its length is
even; otherwise it is odd. A cycle of length n is an n-cycle; a 3-cycle is also called
a triangle. The girth of a graph G, denoted g(G), is the length of a shortest cycle
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in G if there is any; otherwise g(G) = ∞. A graph G of order at least three is
2-connected if and only if any two vertices of G lie on a common cycle. A unicyclic

graph is a connected graph that contains exactly one cycle. A tree is a connected
graph with no cycles.

The distance dG(u, v) between two vertices u and v in G is the length of
a shortest u−v path. If there is no u−v path, then dG(u, v) = ∞. If X is a
nonempty subset of V (G) and u ∈ V (G), we define dG(u,X) = minv∈X dG(u, v).
The diameter d(G) of a connected graph G is the maximum distance between two
vertices of G, d(G) = maxu,v∈V (G) dG(u, v).

A graph G is bipartite if its vertex set can be partitioned into two sets V1

and V2 (called partite sets) such that every edge of G joins a vertex of V1 to a
vertex of V2. A complete bipartite graph G is a bipartite graph with partite sets
V1 and V2 having the added property that if u ∈ V1 and v ∈ V2, then uv ∈ E(G).
A complete bipartite graph with partite sets V1 and V2, where |V1| = m and
|V2| = n, is denoted by Km,n. The graph K1,n is called a star; its vertex of degree
n is called the center of K1,n.

If G1 and G2 are two graphs, then their union, denoted by G1 ∪ G2, has
V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). The disjoint

union of graphs is the union of disjoint copies of the graphs. If a graph G consists
of n disjoint copies of a graph H, then we write G = nH. The corona G1 ◦G2 of
two graphs G1 and G2 is the graph obtained from the disjoint union of G1 and
nG2 (where n is the order of G1) by joining the ith vertex (of the copy) of G1 to
every vertex in the ith copy of G2 (see Section 3.2). The join G1 + G2 of graphs
G1 and G2 is obtained from their disjoint union by joining each vertex (of the
copy) of G1 to each vertex (of the copy) of G2.

The line graph L(G) of a graph G is the graph having vertex set E(G) such
that two vertices in L(G) are adjacent if and only if their corresponding edges in G
are adjacent. The total graph T (G) of G is the graph with vertex set V (G)∪E(G)
in which two vertices u and v are adjacent if and only if either u and v are adjacent
vertices of G, or u and v are adjacent edges of G, or u is a vertex of G and v is
an edge of G incident with u.

A vertex v of a graph G is called a simplicial vertex if any two vertices of
NG(v) are adjacent in G. Equivalently, a simplicial vertex is a vertex that ap-
pears in exactly one clique of a graph, where a clique of a graph G is a maximal
complete subgraph of G. A clique of a graph G containing at least one simplicial
vertex of G is called a simplex of G. Note that if v is a simplicial vertex of G,
then G[NG[v]] is the unique simplex of G containing v. A graph G is said to
be simplicial if every vertex of G is a simplicial vertex of G or is adjacent to a
simplicial vertex of G. Certainly, if G is a simplicial graph and S1, . . . , Sn are the
simplices of G, then V (G) =

⋃n
i=1 V (Si). A graph G is said to be chordal (or

triangulated ) if every cycle of G of length four or more contains a chord, i.e., an
edge joining two non-consecutive vertices of the cycle. In the literature there are
many characterizations of chordal graphs, see Berge [13]–[16], Duchet [51] and
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Golumbic [75]. Dirac [47], Lekkerkerker and Boland [101] and Rose [120] have
proved that a graph G is chordal if and only if every induced subgraph of G
has a simplicial vertex. Certainly, every induced subgraph of a chordal graph is
chordal.

A vertex v of a graph G is called a cut vertex of G if G − v has more compo-
nents than G. A connected graph with no cut vertices is called a block. A block

of a graph G is a subgraph of G which is a block itself and which is maximal
with respect to that property. A block H of a graph G is called an end block of
G if H has at most one cut vertex of G. A graph G is called a block graph if
every block of G is a complete graph. Note that every block graph is a chordal
graph.

The words maximal and minimal refer as usual to sets with respect to a
prescribed property. Also as usual, the words maximum and minimum refer to
the cardinality of a set with a prescribed property.

2. Domination, independence and irredundance in graphs

2.1. Introduction and preliminaries. First we give a few definitions. Let
G be a graph and let X be a subset of the vertex set V (G) of G. For every x in
X, define

IG(x,X) = NG[x] − NG[X − {x}],

the set of private neighbours of the vertex x relative to the set X. If IG(x,X) = ∅,
then x is said to be redundant in X. A set X of vertices containing no redundant
vertex is called irredundant. It is apparent that irredundance is a hereditary prop-
erty. The quantities concerning irredundance are the lower and upper irredundance

numbers ir(G) and IR(G) of a graph G which are respectively the minimum and
maximum cardinalities of maximal irredundant sets of vertices of G.

If X and Y are subsets of V (G), X dominates Y if Y ⊆ NG[X]. In particu-
lar, if X dominates V (G), then X is called a dominating set of G. Equivalently,
X ⊆ V (G) is a dominating set of G if any vertex x ∈ V (G) −X is adjacent to at
least one vertex y ∈ X. Certainly, every set containing a dominating set is domi-
nating. The lower and upper domination numbers γ(G) and Γ (G) of G are respec-
tively the minimum and maximum cardinalities of minimal dominating sets of G.

A set X of vertices of G is said to be independent if no two vertices of X
are adjacent in G. Note that every subset of an independent set is independent.
The lower and upper independence numbers i(G) and α(G) of G are respectively
the minimum and maximum cardinalities of maximal independent sets of vertices
of G.

The parameters ir(G), γ(G), i(G) and α(G) are sometimes referred to as the
irredundance, domination, independent domination and independence numbers of
G, respectively.
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The concepts of domination and independence in graphs have existed in the
literature for a long time. The modern study of domination and independence can
be attributed initially to König [95], Berge [10, 11, 12], Ore [111], Liu [104] and
Vizing [156]. The independent domination number was introduced by Cockayne
and Hedetniemi [37]. The invariants γ and α are well known and they have many
applications not only in graph theory, but in game theory, computer science, po-
litical science, safeguards analysis, transportation and communication networks,
combinatorial optimization and analysis of algorithms as well. The literature in-
cludes many papers dealing with the theory of independent sets and the related
topics of coding theory (see Ore [111] and Roberts [119]) and graph colorings.
The notion of dominance is related to the theory of matchings because any max-
imal matching in a graph G corresponds to an independent dominating set in
the line graph L(G) of G. Applications of kernels (i.e. independent dominating
sets) to game theory have been presented in several papers, e.g. see König [95],
Neumann and Morgenstern [109], Berge [10, 11, 12, 15], Kummer [96] and Topp
[137, 138, 139], to quote a few.

One of the best known problems involving dominating sets is the Five Queens
Problem (e.g. see Berge [15] and Ore [111]) in which we are to determine the
minimum number of queens to be placed on the 8 × 8 chessboard so that every
square is either occupied by a queen or can be occupied in one move by at least
one of the queens. It is easy to see that solutions of this problem are dominating
sets in the graph whose vertices are the 64 squares of the chessboard and vertices
u and v are adjacent if a queen may move from u to v in one move.

The problem of determining the dominating sets has obvious applications to
the location of objects, safeguards or facilities on the vertices of a network, see
Roberts [119]. Berge [15] discusses the use of the notion of dominance in devising
optimal methods of radar surveillance. In a similar vein, Liu [104] discusses the
application of dominance to communication networks. Suppose we have commu-
nication links in use between cities, and we want to set up transmitting stations
in some of the cities so that every city can receive a message from at least one
of the transmitting stations. An acceptable set of locations in which to place
transmitting stations corresponds to a dominating set of the network. Irredun-
dant sets in graphs were first defined and studied by Cockayne, Hedetniemi and
Miller [40]. The notion of redundancy is also relevant in the context of com-
munication networks, since any redundant vertex in a set can be removed from
the set without affecting the totality of vertices that may receive communication
from some vertex in the set, see [20] and [89]. The invariants ir and IR seem to
have received less attention, although some significant results have been obtained
by Allan and Laskar [4], Bollobás and Cockayne [20, 21], Cheston, Hare, Hedet-
niemi and Laskar [33], Cockayne, Favaron, Payan and Thomason [36], Favaron
[60], Golumbic and Laskar [76], Jacobson and Peters [90, 91] and in a few other
papers. The bibliography compiled by Hedetniemi and Laskar [88] and survey
papers by Cockayne [34], Cockayne and Hedetniemi [38], Hedetniemi, Laskar and
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Pfaff [89] and Laskar and Walikar [100] are recommended for further information
on this topic.

We shall now briefly mention some results which are concerned with algo-
rithms for computing the lower (upper) irredundance, domination and indepen-
dence numbers and finding related sets of vertices. The questions how difficult it
is to find a minimum (maximum) maximal independent set, a minimum (maxi-
mum) maximal irredundant set, a minimum (maximum) minimal dominating set,
and the lower (upper) irredundance, domination and independence numbers of a
graph have been investigated extensively during the last fifteen years (e.g., see
[44], [73], [75] and [93] for extensive references). The problem of finding a minimum
cardinality dominating set has been discussed in a large number of papers and it
is NP-complete for arbitrary graphs [73]. The problem of determining a minimum
dominating set remains NP-complete for comparability graphs, bipartite graphs
[46] and split graphs [18, 43]. On the other hand, there are other classes, such as
series-parallel graphs [94], k-trees (fixed k) [42], strongly chordal graphs [55] and
permutation graphs [57] for which polynomial time algorithms have been designed
for solving the minimum cardinality dominating set problem. The minimum car-
dinality independent dominating set problem is NP-complete for the classes of
comparability graphs and bipartite graphs [43], but it can be solved in polyno-
mial time for a number of other classes of graphs, see [54, 55, 57]. The problem
of finding a minimum cardinality maximal irredundant set is NP-complete, even
for special classes of graphs, such as bipartite graphs [89] and chordal graphs
[98], and can be solved in linear time for trees [17] and in polynomial time for
weighted interval graphs [19]. It is well known that the problem of determining
the upper independence number is NP-complete even for planar graphs with no
vertex degree exceeding three [73], but very efficient algorithms for determining
the upper independence number have been devised for several classes of perfect
graphs [75] and for many other classes of graphs, see [93]. It appears difficult
to compute the upper domination and irredundance numbers in general, and we
suspect that both the problems are NP-complete. However, for some classes of
graphs their determination is reasonable. For example, if G is a circular arc graph,
a chordal graph or a bipartite graph, then the upper independence number α(G)
can be computed in polynomial time (see [73, 75, 93]) and therefore the upper
domination number Γ (G) and the upper irredundance number IR(G) can be de-
termined in polynomial time since IR(G) = Γ (G) = α(G) for such graphs (see
[36, 76, 90, 146]).

There are many generalizations of the independence, domination and irredun-
dance numbers of a graph, see survey papers [34, 38, 88, 89, 100] and papers
by Acharya [1], Chang and Nemhauser [30, 31], Cockayne, Dawes and Hedet-
niemi [35], Colbourn, Slater and Stewart [41], Domke, Hedetniemi and Laskar
[48], Domke, Hedetniemi, Laskar and Allan [49], Domke, Hedetniemi, Laskar and
Fricke [50], Farley and Shacham [58], Fink and Jacobson [69, 70], Golumbic and
Laskar [76], Hedetniemi, Hedetniemi and Laskar [87], Meir and Moon [107], Sam-
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pathkumar [121, 122, 123], Sampathkumar and Walikar [124], Siemes, Topp and
Volkmann [126], Slater [127, 128, 129]. In this paper we consider only some of
them. Here is a natural generalization of the concept of domination and indepen-
dence in graphs (some others will be defined when they are needed).

For a graph G and a positive integer k, a subset I ⊆ V (G) is a k-packing of G
if dG(v, u) > k for every pair v and u of distinct vertices from I. The k-packing

number of G is the number αk(G) of vertices in any maximum k-packing of G. A
subset C ⊆ V (G) is a k-covering of G if dG(v,C) ≤ k for every vertex v ∈ V (G)−
C. The k-covering number of G, denoted as γk(G), is the number of vertices in
any minimum k-covering of G. The k-packing number and the k-covering number
were first introduced by Meir and Moon in [107]. In that paper they studied the
k-packing and k-covering numbers of trees. Some generalizations of their results
and generalizations of the k-packing and k-covering numbers are given in the
excellent papers of Chang and Nemhauser [30, 31], Domke, Hedetniemi, Laskar
and Allan [49], and in a few other papers. Certainly, the 1-packing number α1(G)
and the 1-covering number γ1(G) are the upper independence number and the
lower domination number of a graph G, respectively.

In this section we present various general properties of independent, dominat-
ing and irredundant sets, and general relationships between the independence,
domination and irredundance numbers of a graph. All these results are very often
used in the subsequent sections of this paper. Our first proposition is a gener-
alization of the Berge theorem (see Corollary 2.1.3) and it relates k-packings to
k-coverings of a graph. Some other generalizations of the Berge theorem are given
by Siemes, Topp and Volkmann [126].

Proposition 2.1.1 [152]. For a graph G and a subset I of V (G), the following

conditions are equivalent :

(1) I is a maximal k-packing of G;

(2) I is a k-packing and a k-covering of G;

(3) I is both a maximal k-packing and a minimal k-covering of G.

P r o o f. Let I be a maximal k-packing of G. Clearly, I is a k-covering of G
(otherwise there would exist a vertex v ∈ V (G) − I such that dG(v, I) > k and
I ∪ {v} would be a k-packing in G).

Let I be a k-packing and a k-covering of G. Then I is a maximal k-packing
of G (otherwise I would not be a k-covering). Moreover, for every u ∈ I, the set
I ′ = I −{u} cannot be a k-covering of G because u 6∈ I ′ and dG(u, I ′) > k. Thus,
I is a minimal k-covering of G.

This suffices to complete the proof of the proposition.

The next three results are immediate consequences of Proposition 2.1.1.

Corollary 2.1.1. For every graph G, γk(G) ≤ αk(G).

Corollary 2.1.2. If G is a graph with γk(G) = αk(G), then every maximal

k-packing I of G is a maximum k-packing and a minimum k-covering.
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Corollary 2.1.3 [12, 15]. For a graph G and a subset I of V (G), the following

conditions are equivalent :

(1) I is a maximal independent set of G;
(2) I is an independent dominating set of G;
(3) I is both a maximal independent and a minimal dominating set of G.

Ore [111] has proved that a dominating set D in a graph G is minimal if and
only if for each vertex x ∈ D either (i) NG(x)∩D = ∅ or (ii) there exists a vertex
y ∈ V (G) − D such that NG(y) ∩ D = {x}. This characterization of minimal
dominating sets may also be stated in the following form.

Proposition 2.1.2. Let D be a dominating set in G. Then D is a minimal

dominating set in G if and only if IG(x,D) 6= ∅ for each x ∈ D.

P r o o f. If D is a minimal dominating set in G, then for each x ∈ D, NG[x] ∪
NG[D − {x}] = NG[D] = V (G), NG[D − {x}] is a proper subset of V (G) and
consequently IG(x,D) 6= ∅.

Assume D is dominating in G and IG(x,D) 6= ∅ for each x ∈ D. Suppose D
is not a minimal dominating set. Then for some x ∈ D, D − {x} is dominating
in G. Therefore NG[D − {x}] = V (G) and, since NG[x] ⊆ V (G), IG(x,D) = ∅,
contrary to the hypothesis.

It follows from the definition of an irredundant set and Proposition 2.1.2 that
minimal dominating and maximal irredundant sets are related by the following
result.

Corollary 2.1.4. Let X be a dominating set of a graph G. Then X is a

minimal dominating set of G if and only if X is a maximal irredundant set of G.

Since every maximal independent set of a graph is minimal dominating (Corol-
lary 2.1.3) and every minimal dominating set is maximal irredundant (Corollary
2.1.4), it follows immediately from the definition of independence, domination
and irredundance numbers that we have the following string of inequalities which
was first observed by Cockayne, Hedetniemi and Miller [40].

Proposition 2.1.3. For any graph G,

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G).

In general all the six parameters of Proposition 2.1.3 are distinct; Cockayne,
Favaron, Payan and Thomason [36] have constructed a graph G with ir(G) = 2,
γ(G) = 3, i(G) = 4, α(G) = 7, Γ (G) = 9 and IR(G) = 10. On the other hand,
for the corona of graphs G and K1 all the inequalities of Proposition 2.1.3 turn
out to be equalities.

Proposition 2.1.4. If G is a graph of order n, then

ir(G ◦K1) = γ(G ◦K1) = i(G ◦K1) = α(G ◦K1) = Γ (G ◦K1) = IR(G ◦K1) = n.

P r o o f. Suppose V (G) = {v1, . . . , vn} and V (G ◦ K1) = V (G) ∪ {v′1, . . . , v
′
n},

where vi is the unique neighbour of v′i in G ◦ K1 (i = 1, . . . , n). Let X be any
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maximal irredundant set of G ◦ K1. By virtue of Proposition 2.1.3, it suffices to
show that |X| = n. Since X is irredundant, at most one of the vertices vi and
v′i belongs to X for every i ∈ {1, . . . , n} (otherwise the set IG(v′i,X) would be
empty and X would not be irredundant). On the other hand, the maximality of
X implies that for every i ∈ {1, . . . , n}, vi or v′i belongs to X (otherwise X ∪{vi}
and X ∪ {v′i} would be greater irredundant sets). Consequently, |X| = n.

The next result, due to Bollobás and Cockayne [20], will enable us to obtain
a few new properties of the irredundant sets and the irredundance numbers of
graphs.

Theorem 2.1.1. Suppose that X is a maximal irredundant set of a graph G
and a vertex u of G is not dominated by X. Then for some x ∈ X,

(a) IG(x,X) ⊆ NG(u), and

(b) for x1, x2 ∈ IG(x,X) such that x1 6= x2, either x1x2 ∈ E(G) or there exist

y1, y2 ∈ X − {x} such that x1 is adjacent to each vertex of IG(y1,X) and x2 is

adjacent to each vertex of IG(y2,X).

P r o o f. (a) By maximality of X, X∪{u} is not irredundant in G, so IG(x,X∪
{u}) = ∅ for some x ∈ X∪{u}. Since u is not dominated by X, u ∈ IG(u,X∪{u})
and therefore x 6= u. Further, since IG(x,X ∪ {u}) = NG[x] − NG[X − {x}] −
NG[u] = ∅, IG(x,X) = NG[x] − NG[X − {x}] ⊆ NG[u] and therefore IG(x,X) ⊆
NG(u) as u 6∈ IG(x,X).

(b) Let x1, x2 be two nonadjacent vertices of IG(x,X) and suppose on the
contrary that for x1 or x2, say for x1, and for all yi ∈ X − {x}, there exists
zi ∈ IG(yi,X) which is not adjacent to x1. Then x2 ∈ IG(x,X ∪ {x1}), u ∈
IG(x1,X ∪ {x1}), zi ∈ IG(yi,X ∪ {x1}) for each yi ∈ X − {x} and therefore
X ∪ {x1} is irredundant in G, which contradicts the maximality of X.

By Proposition 2.1.3, ir(G) ≤ γ(G) for every graph G. The next theorem,
which improves a result of Allan, Laskar and Hedetniemi [5], gives another in-
equality relating γ(G) and ir(G).

Theorem 2.1.2. Let X be a minimum maximal irredundant set in G. If the

subgraph G[X] has k isolated vertices and k < |X|, then γ(G) ≤ 2 ir(G) − k − 1.

P r o o f. Let X0 be the set of isolated vertices of G[X]. Since |X0| = k < |X|,
X − X0 6= ∅, say X − X0 = {x1, . . . , xn}. For each xi ∈ X − X0, choose any
x′

i ∈ IG(xi,X) and form the set X ′ = X ∪ {x′
1, . . . , x

′
n}. Since xi 6∈ IG(xi,X),

x′
i 6= xi (for i = 1, . . . , n) and therefore X ′ is of cardinality 2 ir(G) − k. We

show that X ′ is a dominating set. Suppose that X ′ is not dominating and let
u ∈ V (G) −NG[X ′]. Thus, in particular, u is not dominated by X and it follows
from Theorem 2.1.1 that IG(x,X) ⊆ NG(u) for some x ∈ X. If x ∈ X0, then
x ∈ IG(x,X) and u is dominated by x, contrary to our supposition. If x ∈ X−X0,
then x = xi (for some i ∈ {1, . . . , n}) and u is dominated by x′

i, which again
contradicts our supposition. Therefore X ′ is a dominating set. Since X ′ properly
contains a maximal irredundant set X, it follows from Corollary 2.1.4 that X ′
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is not a minimal dominating set. Therefore, γ(G) < |X ′| = 2 ir(G) − k and
γ(G) ≤ 2 ir(G) − k − 1.

Corollary 2.1.5 [4, 5, 20]. For any graph G, γ(G) ≤ 2 ir(G) − 1.

P r o o f. Let X be a smallest maximal irredundant set in G. If X is indepen-
dent, then γ(G) = ir(G) (by Proposition 2.1.3) and therefore γ(G) ≤ 2 ir(G) − 1.
If X is not independent and G[X] has k isolated vertices, then k < |X| and it
follows from Theorem 2.1.2 that γ(G) ≤ 2 ir(G) − k − 1 ≤ 2 ir(G) − 1.

We now give a brief summary of the main results of this chapter.

In §2.2, we study some relationships between the independence, domination
and irredundance numbers of a graph and the independence, domination and
irredundance numbers of its vertex- and edge-deleted subgraphs. These results are
frequently applied in this paper, particularly in the study of feasible sequences of
integers in §4.1 and in the study of interpolation properties of the independence,
domination and irredundance numbers of a graph.

In §2.3, we analyze some properties of the k-packing and k-covering numbers
of a graph. The main result of this section is a characterization of graphs G of
order (k + 1)n with γk(G) = n. We also characterize bipartite graphs G with
γ(G) = α(G) and trees T with γk(T ) = αk(T ). We show that αk(G) = sk(G) and
γk(G) = s2k(G) for any block graph G, where sk(G) denotes the smallest integer
n for which there exists a partition V1, . . . , Vn of the vertex set V (G) in which
each set Vi induces a subgraph of diameter at most k.

In §2.4, we briefly mention some sufficient conditions for two or more of the
lower and upper independence, domination and irredundance numbers of a graph
to be equal. We also give a list of forbidden subgraphs that is sufficient for the
equality of γ(G) and i(G). Then we show that ir(G) = γ(G) = i(G) for domistable
graphs. Finally, we prove that α(G) = Γ (G) = IR(G) for all chordal, bipartite
and unicyclic graphs.

2.2. Domination parameters of vertex- and edge-deleted subgraphs.

In this part of the text we investigate the extent to which the lower and upper
irredundance (domination and independence, resp.) number of a graph can vary
when an arbitrary vertex or edge of the graph is removed. Such knowledge is not
only important in its own right, but also if some results are proven by induction.
Consequently, it is desirable to learn as much as possible about such properties.
In fact, the main results of this section are required later to prove some of our
theorems. The behaviour of some of the independence, domination and irredun-
dance parameters after the removal (or addition) of an edge or a vertex from (to)
a graph has already been studied in the existing literature. For example, the
graphs G in which α(G − e) > α(G) for any edge e of G have been extensively
studied, in particular by Plummer [114], Berge [13, 14, 15], Zykov [162], and
others. Harary and Schuster [83] have studied changes of the lower domination
number and the lower and upper independence numbers after removal (and addi-
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tion) of any edge from (to) a graph. Bauer, Harary, Nieminen and Suffel [7], Fink,
Jacobson, Kinch and Roberts [72], and Walikar and Acharya [158] have studied
the smallest number of edges whose removal renders every minimum dominating
set in G a nondominating set in the resulting spanning subgraph. Sumner [133]
and Sumner and Blitch [134] have worked on closely related problems and, among
other things, they studied graphs G in which γ(G + e) < γ(G) for any edge e
from the complement G of G. Brigham, Chinn and Dutton [24] analyze graphs
G in which γ(G− v) < γ(G) for any vertex v of G. In [52], Brigham and Dutton
study graphs in which γ(G − e) = γ(G) for any edge e of G. Recently Haynes,
Lawson, Brigham and Dutton [86], among other things, have investigated the
changing and unchanging of the upper independence number of a graph G under
three different situations: deleting an arbitrary vertex, deleting an arbitrary edge
and adding an arbitrary edge from the complement of G. Carrington, Harary
and Haynes [29] have investigated similar problems for the lower domination
number. Some relationships between the independence, domination and irredun-
dance parameters of a graph and the independence, domination and irredundance
parameters of its vertex- and edge-deleted subgraphs were also studied in [62]
and [142].

We first focus our attention on vertex-deleted subgraphs of a graph. First of
all let us observe that if G is a star of order n+1, G = K1,n, and if v is the center
of G, then ir(G) = γ(G) = i(G) = 1 and ir(G − v) = γ(G − v) = i(G − v) = n.
Consequently, if we delete a vertex v from a graph G, the lower irredundance
(domination and independence, resp.) number can increase dramatically and it is
impossible to give an upper bound on ir(G−v) (γ(G−v) and i(G−v), resp.) only
in terms of ir(G) (γ(G) and i(G), resp.). Our first theorem gives lower bounds on
γ(G−v) and i(G−v) in terms of γ(G) and i(G), respectively, and lower and upper
bounds on α(G − v) and IR(G − v) in terms of α(G) and IR(G), respectively.

Theorem 2.2.1. For any vertex v of a graph G,

(1) γ(G) − 1 ≤ γ(G − v);

(2) i(G) − 1 ≤ i(G − v);

(3) α(G) − 1 ≤ α(G − v) ≤ α(G);

(4) IR(G) − 1 ≤ IR(G − v) ≤ IR(G).

P r o o f. (1) If D is a minimum dominating set of G−v, then D∪{v} dominates
G and therefore γ(G) ≤ |D ∪ {v}| = γ(G − v) + 1.

(2) Let I be a minimum maximal independent set in G− v. If NG(v)∩ I = ∅,
then I∪{v} is a maximal independent set in G and consequently i(G) ≤ |I∪{v}| =
i(G − v) + 1. If NG(v) ∩ I 6= ∅, then I is a maximal independent set in G and
again i(G) ≤ |I| = i(G − v) < i(G − v) + 1.

(3) Since every independent set of vertices in G − v is also independent in G,
we have α(G− v) ≤ α(G). In order to prove the inequality α(G)− 1 ≤ α(G− v),
we let I be a maximum independent set of vertices in G. Then |I| = α(G) and in
the event v 6∈ I, it is clear that α(G− v) = α(G) and hence α(G− v) ≥ α(G)− 1.
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If v ∈ I, then I − {v} is an independent set of vertices in G − v and therefore
α(G − v) ≥ |I − {v}| = α(G) − 1.

(4) Any irredundant set of vertices of G − v is also irredundant in G. Hence
IR(G−v) ≤ IR(G). Now suppose that J is a maximum irredundant set of vertices
in G. If v ∈ J , then J −{v} is irredundant in G− v and IR(G− v) ≥ |J −{v}| =
IR(G) − 1. Similarly, if v 6∈ J but J is irredundant in G − v, then IR(G − v) ≥
|J | = IR(G) ≥ IR(G)−1. We therefore examine the situation in which v 6∈ J and
J is not irredundant in G−v. In this case the irredundance of J in G implies that
there exists exactly one x in G[J ] for which NG[x] − NG[J − {x}] = {v}. Then
J−{x} is an irredundant set in G−v and hence IR(G−v) ≥ |J−{x}| = IR(G)−1.
This completes the proof.

In view of Theorem 2.2.1 it is natural to ask: What relationships, if any, exist
between the upper domination number of a graph and the upper domination
number of its vertex-deleted subgraph? The following examples show that no par-
ticular inequalities hold between these two parameters. For a positive integer n,
by An we denote the graph which consists of two vertex-disjoint complete graphs
with vertices v1, v2, . . . , vn+1 and u1, u2, . . . , un+1, respectively, and n additional
edges viui for i = 1, 2, . . . , n. For convenience, we denote An − vδ, where vδ is a
vertex of minimum degree in An, by Dn. The graphs A3 and D3 are shown in
Figure 1. Simple verifications show that graphs An and Dn have the following
properties.

Proposition 2.2.1. For every integer n ≥ 2, Γ (An) = 2 and Γ (Dn) = n.

r r
r rr r

r r

r r

r r
r rr r

v1 v1

v3 v3

u1 u1

u3 u3

v4 v4
v2 v2u2 u2

u4

A3 D3

Fig. 1. The graphs A3 and D3 of Proposition 2.2.1

Note that for n ≥ 2, the vertex-deleted subgraph Dn − v∆ of Dn is isomorphic
to An−1 if v∆ is any vertex of maximum degree in Dn. From this and from
Proposition 2.2.1 it follows that Γ (An) = 2, while Γ (An − vδ) = Γ (Dn) = n and,
again, Γ (Dn − v∆) = Γ (An−1) = 2. These examples show that the removal of a
vertex need not decrease the upper domination number and may even increase
it. Moreover, if v is a vertex of G, then the difference Γ (G)−Γ (G− v) as well as
Γ (G − v) − Γ (G) can be made arbitrarily large.

In the next theorem, we present the relationship between the lower irredun-
dance number of a graph and the lower irredundance number of its vertex-deleted
subgraph. We already know that the deletion of a vertex from a graph can
increase the lower irredundance number and that there is no upper bound on
ir(G− v) only in terms of ir(G). On the other hand, the deletion of a vertex can
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decrease the lower irredundance number and it follows from Proposition 2.1.3,
Theorem 2.2.1(1) and Corollary 2.1.5 that if v is a vertex of a graph G, then
ir(G) ≤ γ(G) ≤ γ(G−v)+1 ≤ 2 ir(G−v). Therefore ir(G)/2 is a lower bound on
ir(G − v). Recently Favaron [62] has proved that if v is a vertex of G such that
ir(G − v) ≥ 2, then (ir(G) + 1)/2 is the best possible lower bound on ir(G − v).
Now it is possible to prove a bit more. The proof of Theorem 2.2.2 given below
is a modification of the proof given by Favaron [62].

Theorem 2.2.2. If G is a graph of order at least two and v is a vertex of G,
then

ir(G − v) ≥
ir(G) + min{1, |ir(G) − 2|}

2
.

P r o o f. Let X = {x1, x2, . . . , xn} be a maximal irredundant set of G − v,
n = ir(G − v). If n = 1, then 1 ≤ ir(G) ≤ 2 and the result is obvious. Thus
assume that n ≥ 2. Certainly, X is an irredundant set in G. If in addition X is
a maximal irredundant set of G, then ir(G) ≤ n ≤ 2n − 1 and therefore

n ≥
ir(G) + 1

2
≥

ir(G) + min{1, |ir(G) − 2|}

2
.

Similarly, if X is a dominating set of G− v, then γ(G − v) = n and according to
Proposition 2.1.3 and Theorem 2.2.1(1) we have ir(G) ≤ γ(G) ≤ γ(G − v) + 1 =
n + 1 ≤ 2n − 1 which again enforces the result. If the set X ∪ {v} is irredundant
in G, then certainly it is a maximal irredundant set of G and ir(G) ≤ |X ∪{v}| ≤
2n − 1 which implies the result. We have the same result if there exists a vertex
y ∈ V (G − v) − X such that X ∪ {y} is a maximal irredundant set of G.

We now assume that neither X is a dominating set of G− v nor X or X ∪{y}
for y ∈ V (G) − X is a maximal irredundant set of G. Then let Y be a subset
of V (G − v) − X of the smallest cardinality such that |Y | ≥ 2 and X ∪ Y is a
maximal irredundant set of G, i.e., IG(x,X ∪ Y ) 6= ∅ for each x ∈ X ∪ Y .

We assert that v ∈ IG(x0,X ∪ Y ) for some x0 ∈ X. First, let us observe that
v ∈ IG(x,X ∪Y ) for some x ∈ X ∪Y ; for if v 6∈ IG(x,X ∪Y ) for each x ∈ X ∪Y ,
then X ∪ Y is irredundant in G − v, contrary to the maximality of X in G − v.
Next, for each y ∈ Y , v 6∈ IG(y,X ∪ Y ); for if there were y0 ∈ Y such that
v ∈ IG(y0,X ∪ Y ), then X ∪ (Y − {y0}) would be irredundant in G − v which
again is impossible. Combining the above facts we deduce that v ∈ IG(x0,X ∪Y )
for some x0 ∈ X.

Since X does not dominate all the vertices of G − v, the set U0 = {x ∈
V (G − v) − X : NG−v(x) ∩ X = ∅} is nonempty, so by Theorem 2.1.1(a) the
set U1 = {x ∈ V (G − v) − X : |NG−v(x) ∩ X| = 1} is also nonempty. Denote
U2 = V (G − v) − X − U0 − U1. By Theorem 2.1.1(a), for each u ∈ U0, the
set Xu = {x ∈ X : IG−v(x,X) ⊆ NG−v(u)} is nonempty. Let M be a subset
of X of the smallest cardinality such that Xu ∩ M 6= ∅ for each u ∈ U0, say
M = {x1, x2, . . . , xm}. Each vertex xi of M belongs to Xu for some u ∈ U0, so
IG−v(xi,X) ⊆ NG−v(u) and therefore xi 6∈ IG−v(xi,X) (as xi 6∈ NG−v(u)) and xi
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is a nonisolated vertex in the subgraph induced by X in G− v. For each xi ∈ M ,
we choose any x′

i ∈ IG−v(xi,X) and form the set D = X ∪ {x′
1, x

′
2, . . . , x

′
m} of

cardinality n + m. Certainly, each vertex of U1 ∪U2 is adjacent to a vertex of X.
Moreover, for each u ∈ U0, there exists xi ∈ M such that xi ∈ Xu, so u is adjacent
to x′

i. We conclude that D is a dominating set of G− v and of G (as v is adjacent
to x0 ∈ X ⊂ D). Thus, if m < n, then the result follows from the inequalities
ir(G) ≤ γ(G) ≤ |D| ≤ 2n − 1. Finally, if m = n, then it follows easily from the
above and from Theorem 2.1.1(b) that for each xi ∈ X − {x0}, the set D − {xi}
is a dominating set of G and again the result is derived from the inequalities
ir(G) ≤ γ(G) ≤ |D − {xi}| = 2n − 1. This completes the proof of the theorem.

The next two examples concern the above theorem and they show that this
result is the best possible since for every positive integer n there exist a graph
G and a vertex v of G such that ir(G − v) = n = (ir(G) + min{1, |ir(G) −
2|})/2. For n = 1, take G = K2 and any vertex v of G. Then ir(G − v) = 1 =
(ir(G) + min{1, |ir(G)− 2|})/2. For n ≥ 2, such a graph G can be constructed as
follows (see Figure 2): Take two vertex-disjoint complete graphs Kn and K ′

n on
vertices x1, x2, . . . , xn and x′

1, x
′
2, . . . , x

′
n, respectively. Now join the vertices xi

and x′
i for 1 ≤ i ≤ n. Add a new vertex v adjacent to xn and x′

n. Finally, take
n + n(n − 1)/2 additional sets Y1, Y2, . . . , Yn, Z1,2, Z1,3, . . . , Z1,n, Z2,3, . . . , Zn−1,n

each with n mutually nonadjacent vertices, join each vertex of Yi to the vertex
x′

i (1 ≤ i ≤ n) and each vertex of Zi,j to the vertices xi and xj (1 ≤ i < j ≤ n).
One can verify that {x1, x2, . . . , xn−1} ∪ {x′

1, x
′
2, . . . , x

′
n} and {x1, x2, . . . , xn} are

minimum maximal irredundant sets of G and G − v, respectively, and therefore
ir(G − v) = n = (ir(G) + min{1, |ir(G) − 2|})/2.
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Fig. 2. A graph G in which ir(G) = 2n− 1 = ir(G− v− xnx
′

n) and ir(G− v) = n = ir(G− vxn)
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The following theorem relates the k-packing and k-covering numbers of a graph
and the k-packing and k-covering numbers of its edge-deleted subgraphs.

Theorem 2.2.3. For any positive integer k and any edge vu of a graph G,

(1) γk(G) ≤ γk(G − vu) ≤ γk(G) + 1;

(2) αk(G) ≤ αk(G − vu) ≤ αk(G) + 1.

P r o o f. (1) If C is a minimum k-covering of G − vu, then C is a k-covering
of G and therefore γk(G) ≤ |C| = γk(G − vu). On the other hand, if D is a
minimum k-covering of G, then at least one of the sets D, D ∪ {v}, and D ∪ {u}
is a k-covering in G − vu and hence γk(G − vu) ≤ |D| + 1 = γk(G) + 1.

(2) Since every k-packing of G is a k-packing of G−vu, so αk(G) ≤ αk(G−vu).

In order to prove the inequality αk(G− vu) ≤ αk(G) + 1, let I be a maximum
k-packing of G−vu. If I is also a k-packing in G, then αk(G−vu) = |I| ≤ αk(G) ≤
αk(G) + 1. Thus assume that I is not a k-packing in G. Then there are vertices
x, y ∈ I for which dG−vu(x, y) > k, whereas dG(x, y) ≤ k. Let I0 be the set of
all such vertices x and y from I, and define Iv = {x ∈ I0 : dG(x, v) < dG(x, u)}
and Iu = {y ∈ I0 : dG(y, u) < dG(y, v)}. It is easy to observe that the sets Iv

and Iu are nonempty and they form a partition of I0. Note that if x, y ∈ I0 and
dG(x, y) ≤ k, then any shortest x−y path passes through the edge vu in G. This
implies that dG(x, y) > k if x and y are different vertices of Iv (Iu, resp.).

We claim that |Iv| = 1 or |Iu| = 1. Suppose, contrary to our claim, that
|Iv| ≥ 2 and |Iu| ≥ 2. Let x1 ∈ Iv be the vertex nearest v in G. Similarly,
let y1 ∈ Iu be the vertex nearest u in G. Take any x2 ∈ Iv − {x1} and y2 ∈
Iu−{y1}. It follows from the choice of the vertices x1 and y1 that dG(x1, y1) ≤ k,
dG(x2, y1) ≤ k, dG(y2, x1) ≤ k, while dG(x1, x2) > k and dG(y1, y2) > k. Let
P1 and P2 be any shortest x1 − y1 and x2 − y1 paths in G, respectively. Let x′

be the vertex nearest x1 in P1 which is also in P2. Without loss of generality,
we assume that the x′ − y1 subpaths of P1 and P2 are the same. Let P3 be a
shortest y2 − x1 path in G and let y′ be the vertex nearest y2 in P3 which is also
in P1 (and P2). We may assume that the x′ − y′ subpaths of P1 and P3 are the
same. Denote dG(x′, y′) = p, dG(xi, x

′) = li, and dG(yi, y
′) = ki for i = 1, 2. Since

dG(x2, y1) = l2 + p + k1 ≤ k < dG(x1, x2) ≤ l1 + l2, so l1 > k1 + p. Therefore
dG(y2, x1) = k2 + p + l1 > k1 + k2 + 2p ≥ dG(y1, y2) + 2p > k + 2p > k. This
contradicts dG(y2, x1) ≤ k, and our claim follows.

According to the above claim, we may assume that Iv = {x1}. Then it is easy
to check that I−{x1} is a k-packing in G, so αk(G−vu)−1 = |I−{x1}| ≤ αk(G).
This completes the proof.

Corollary 2.2.1. Let k be a positive integer. If v and u are two nonadjacent

vertices of a graph H, then

(1) γk(H) − 1 ≤ γk(H + vu) ≤ γk(H);

(2) αk(H) − 1 ≤ αk(H + vu) ≤ αk(H).
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P r o o f. This follows immediately by applying Theorem 2.2.3 to the edge vu
of the graph G = H + vu.

The next three theorems are counterparts of the last corollary for the lower
and upper irredundance, domination, and independence numbers of a graph. The
statement (2) of Theorem 2.2.4 and the statements (1) and (2) of Corollary 2.2.2
were proved in [83].

Theorem 2.2.4. For every graph G and every edge vu of G,

(1) γ(G) ≤ γ(G − vu) ≤ γ(G) + 1;

(2) α(G) ≤ α(G − vu) ≤ α(G) + 1;

(3) 2 ≤ Γ (G − vu) ≤ Γ (G) + 1;

(4) IR(G) − 1 ≤ IR(G − vu) ≤ IR(G) + 1.

P r o o f. Since (1) and (2) follow from Theorem 2.2.3, we only prove (3) and (4).

(3) For any edge vu of G, G − vu is not a complete graph and therefore
Γ (G − vu) ≥ 2. To prove the inequality Γ (G − vu) ≤ Γ (G) + 1, let D be a
maximum minimal dominating set of G− vu. Certainly, D is a dominating set of
G and we consider three cases.

First, if neither v nor u belongs to D, then D is a minimal dominating set of
G and therefore Γ (G) ≥ |D| = Γ (G − vu) ≥ Γ (G − vu) − 1.

Assume now that either v or u belongs to D, say v ∈ D and u ∈ V (G)−D. If
D is a minimal dominating set of G, then certainly Γ (G) ≥ |D| = Γ (G − vu) ≥
Γ (G − vu) − 1. Thus assume that D is not a minimal dominating set of G.
Then, since D is a minimal dominating set of G−vu, there exists a unique vertex
u′ ∈ D−{v} such that IG−vu(u′,D) = {u}. Now it is easy to observe that D−{u′}
is a minimal dominating set of G and so Γ (G) ≥ |D − {u′}| = Γ (G − vu) − 1.

Finally, assume that both v and u belong to D. If IG−vu(v,D)− {v} 6= ∅ and
IG−vu(u,D) − {u} 6= ∅, then D is a minimal dominating set of G and Γ (G) ≥
|D| ≥ Γ (G − vu) − 1. If IG−vu(v,D) − {v} = ∅ or IG−vu(u,D) − {u} = ∅, then
D−{v} or D−{u} is a minimal dominating set of G and Γ (G) ≥ Γ (G− vu)−1.

(4) In order to prove the inequality IR(G)−1 ≤ IR(G−vu) (which is obvious if
IR(G) = 1), we assume that IR(G) ≥ 2 and let X be a maximum irredundant set
in G. If the vertices v and u are both either in X or in V (G)−X, then we see at
once that IG−vu(x,X) ⊇ IG(x,X) 6= ∅ for every x ∈ X. Hence X is irredundant
in G − vu and therefore IR(G − vu) ≥ |X| = IR(G) ≥ IR(G) − 1. If exactly one
of the vertices v and u is in X, say v ∈ X and u 6∈ X, then it is easy to check
that IG−vu(x,X − {v}) = IG(x,X − {v}) ⊇ IG(x,X) 6= ∅ for every x ∈ X − {v}.
Thus the set X − {v} is irredundant in G − vu, so IR(G − vu) ≥ |X − {v}| =
IR(G) − 1.

We prove the remaining inequality IR(G− vu) ≤ IR(G) + 1 by contradiction.
Thus suppose that IR(G−vu) > IR(G)+1 and let Y be a maximum irredundant
set in G − vu. We derive contradictions in three cases.
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If none of the vertices v and u belongs to Y , then IG(y, Y ) = IG−vu(y, Y ) 6= ∅
for every y ∈ Y , so Y is irredundant in G and therefore IR(G) ≥ |Y | = IR(G−vu),
contradicting the supposition.

If exactly one of the vertices v and u is in Y , say v ∈ Y and u 6∈ Y , then
IG(y, Y −{v}) = IG−vu(y, Y −{v}) 6= ∅ for every y ∈ Y −{v}. We conclude that
Y −{v} is irredundant in G, from which we see that IR(G) ≥ |Y −{v}| = IR(G)−1,
a contradiction.

Finally, suppose that the vertices v and u belong to Y . Then IG(u, Y −{v}) ⊇
IG−vu(u, Y − {v}) ⊇ IG−vu(u, Y ) 6= ∅ and IG(y, Y − {v}) = IG−vu(y, Y − {v}) −
{v} ⊇ IG−vu(y, Y )−{v} = IG−vu(y, Y ) 6= ∅ for every y∈Y −{v, u}. Consequently,
Y − {v} is an irredundant set in G, so IR(G) ≥ |Y − {v}| = IR(G − vu) − 1, our
final contradiction.

The following examples show that parts (3) and (4) of Theorem 2.2.4 cannot
be improved. For a positive integer n, let Hn denote the graph which consists of
two vertex-disjoint complete graphs with vertices v1, v2, . . . , vn and u1, u2, . . . , un,
respectively, and n additional edges viui for i = 1, 2, , . . . , n. It is no problem to
observe that Γ (Hn)=n while Γ (Hn−viui) = 2 for i = 1, 2, . . . , n. For any edge vu
of Kn with n ≥ 2, Γ (Kn−vu) = Γ (Kn)+1 = 2 and IR(Kn−vu) = IR(Kn)+1 = 2.
Finally, the graph G of Figure 3 contains an edge vu such that IR(G − vu) = 5
while IR(G) = 6.
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G

v u

Fig. 3. A graph with IR(G− vu) = IR(G)− 1 = 5

Theorem 2.2.5. If vu is an edge of a graph G, then

min{2, i(G)} ≤ i(G − vu) ≤ i(G) + 1.

P r o o f. Note that if i(G) = 1, then 1 ≤ i(G− vu) ≤ 2, so 1 = min{2, i(G)} ≤
i(G − vu). If i(G) ≥ 2, then i(G − vu) ≥ 2 and therefore 2 = min{2, i(G)} ≤
i(G − vu). On the other hand, if I is a minimum maximal independent set of G,
then at least one of the sets I, I ∪ {v}, and I ∪ {u} is a maximal independent set
of G − vu, so i(G − vu) ≤ |I| + 1 = i(G) + 1.

The restriction imposed by the inequalities of Theorem 2.2.5 cannot be im-
proved in the following sense: For any positive integers n and k with min{2, n} ≤
k ≤ n + 1, there exist a graph G and an edge vu in G such that i(G) = n and
i(G − vu) = k. For n = k = 1, the complete graph G = K3 and any edge vu
of G have the required properties. For n ≥ 1 and k = n + 1, take G = nK2.
Then i(G) = n and i(G − vu) = n + 1 for every edge vu of G. For n ≥ 2 and
2 ≤ k < n + 1, consider the graph G given in Figure 4 and its edge-deleted
subgraph G − vu. It is easy to check that i(G) = n and i(G − vu) = k.
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Fig. 4. A graph with i(G) = n and i(G− vu) = k for 2 ≤ k < n+ 1

We now show that the removal of an edge from a graph increases (decreases,
resp.) the lower irredundance number by at most factor 2 (1/2, resp.).

Theorem 2.2.6. If vu is an edge of a graph G, then

ir(G) + 1

2
≤ ir(G − vu) ≤ ir(G) + max{1, ir(G) − 1}.

P r o o f. According to Proposition 2.1.3, Theorem 2.2.4 and Corollary 2.1.5,
ir(G) ≤ γ(G) ≤ γ(G − vu) ≤ 2 ir(G − vu) − 1 and therefore (ir(G) + 1)/2 ≤
ir(G − vu). Similarly, ir(G − vu) ≤ γ(G − vu) ≤ γ(G) + 1 ≤ (2 ir(G) − 1) + 1 =
2 ir(G). Of course, ir(G−vu) = 2 ir(G) if and only if equality holds at each point in
the above sequence of inequalities. Furthermore, 2 ir(G)=ir(G)+max{1, ir(G)−1}
if and only if ir(G) = 1. Therefore in order to prove the inequality ir(G − vu) ≤
ir(G) + max{1, ir(G) − 1} it is enough to assume γ(G − vu) = γ(G) + 1, γ(G) =
2 ir(G) − 1 with ir(G) ≥ 2, and then to show that ir(G − vu) ≤ 2 ir(G) − 1.

Let X = {x1, x2, . . . , xn}, n = ir(G), be any minimum maximal irredundant
set of G, and let U0, U1 and U2 be subsets of V (G) − X, where U2 = {x ∈
V (G) − X : |NG(x) ∩ X| ≥ 2} and Ui = {x ∈ V (G) − X : |NG(x) ∩ X| = i}
for i = 0, 1. Certainly, the sets X, U0, U1, U2 form a partition of V (G). Since
|X| = n < 2n − 1 = γ(G), the set U0 is nonempty and therefore it follows from
Theorem 2.1.1 that the set U1 is nonempty, either. For each u ∈ U0, define
Xu = {x ∈ X : IG(x,X) ⊆ NG(u)}. Again by Theorem 2.1.1, the set Xu is
nonempty for each u ∈ U0. Let M be a subset of X of the smallest cardinality
such that Xu ∩M 6= ∅ for each u ∈ U0, say M = {x1, . . . , xm}. For each xi ∈ M ,
xi ∈ Xu for some u ∈ U0, so IG(xi,X) ⊆ U1∩NG(u) and therefore xi 6∈ IG(xi,X)
(as xi 6∈ NG(u)) and xi is not isolated in G[X], the subgraph of G induced by
X. For xi ∈ M , choose any x′

i ∈ IG(xi,X) and define D = X ∪ {x′
1, . . . , x

′
m}. It

follows from the definition of the sets U1 and U2 that every vertex of U1 ∪ U2 is
adjacent to a vertex of X. In addition, for each u ∈ U0, there exists i ∈ {1, . . . ,m}
such that xi ∈Xu, hence u is adjacent to x′

i. Thus D is a dominating set of G.
However, since D contains X, D is not irredundant. Therefore D properly contains
a minimal dominating set (by Corollary 2.1.4) and hence 2n−1 = γ(G) < n+m.
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Consequently, m = n and then M = X, G[X] is without isolated vertices, and
it follows from the above facts and from Theorem 2.1.1(b) that D − {xi} is a
minimum dominating set of G for each xi ∈ X. Furthermore, for any two vertices
xi, xj ∈ X, xi 6= xj, there exists a vertex x ∈ U2 such that NG(x)∩D = {xi, xj},
as otherwise the set D − {xi, xj} would be dominating in G which is impossible.

We now show that one of the vertices v and u belongs to U0 and the other to
U1 if γ(G − vu) = γ(G) + 1. First it is easy to observe that for every minimum
dominating set D′ of G we have |D′∩{v, u}| = 1. Moreover, if x ∈ D′∩{v, u} and
y ∈ {v, u}−D′, then NG(y)∩D′ = {x}. Consequently, {v, u} cannot be a subset
of U0 ∪ U2 as otherwise each of the sets D − {xi}, xi ∈ X, would be a minimum
dominating set of G− vu which is impossible. Similarly, neither |{v, u} ∩U2| = 1
and |{v, u}∩(X∪U1)| = 1 nor |{v, u}∩X| = 1 and |{v, u}∩U1| = 1 nor {v, u} ⊆ X
because otherwise at least one of the sets D−{xi}, xi ∈ X, would be a minimum
dominating set of G − vu which again is impossible. We now claim that {v, u}
cannot be a subset of U1. For if not, then either {v, u} ⊆ IG(xk,X) for some
xk ∈ X or v ∈ IG(xi,X) and u ∈ IG(xj ,X) for some xi, xj ∈ X with xi 6= xj. In
these cases, if the vertices of D − X are chosen in such a way that x′

k ∈ {v, u},
say x′

k = v, when {v, u} ⊆ IG(xk,X) (resp. x′
i = v and x′

j = u if v ∈ IG(xi,X)
and u ∈ IG(xj ,X)), then for the minimum dominating set D − {xl} of G (with
l 6= k) we have {v, u}∩ (D−{xl}) = {v} and {v, xk} ⊆ NG(u)∩ (D−{xl}) (resp.
{v, u} ⊂ D−{xl}) and therefore γ(G−vu) = γ(G), a contradiction. We therefore
have {v, u} 6⊆ U1. Since no vertex of U0 is adjacent to a vertex of X, it follows
from the above and from the assumption γ(G − vu) = γ(G) + 1 that one of the
vertices v and u belongs to U1 and the other to U0, say v ∈ U1 and u ∈ U0.

Let xi be the unique vertex of NG(v)∩X. Certainly, v ∈ IG(xi,X). Moreover,
v is the unique vertex of IG(xi,X), i.e. v = x′

i, as otherwise if x′
i ∈ IG(xi,X)−{v},

then none of the vertices v and u belongs to D−{xl} (l = 1, . . . , n) and therefore
γ(G−vu) = γ(G), a contradiction. Hence we have IG(xi,X) = {v}. We now show
that NG(u) ∩ U1 = {v}. Suppose on the contrary that NG(u) ∩ U1 − {v} 6= ∅.
Then there exists xj ∈ X − {xi} such that IG(xj ,X) ⊂ NG(u). But now for the
minimum dominating set D−{xl} of G we have {x′

i, x
′
j} ⊆ NG(u)∩(D−{xl}) and

consequently γ(G−vu) = γ(G), a contradiction. It follows that NG(u)∩U1 = {v}
and in particular IG(xk,X) ∩ (NG[u] − {v}) = ∅ for each xk ∈ X.

In order to complete the proof, we show that X∪{u} is a maximal irredundant
set of G − vu. Since u is isolated in the subgraph of G − vu induced by X ∪ {u}
and IG−vu(xk,X ∪ {u}) = NG−vu[xk] − NG−vu[(X − {xk}) ∪ {u}] = IG(xk,X) −
(NG[u] − {v}) = IG(xk,X) 6= ∅ for each xk ∈ X, the set X ∪ {u} is irredundant
in G − vu. By maximality of X (in G), for every vertex d of V (G) − X, there
exists some vertex yd in X ∪ {d} such that NG[yd] ⊆ NG[(X ∪ {d}) − {yd}].
In particular, for d ∈ V (G) − X − {v, u}, there exists yd ∈ X ∪ {d} such that
NG−vu[yd] = NG[yd] ⊆ NG[(X ∪ {d}) − {yd}] = NG−vu[(X ∪ {d}) − {yd}] ⊂
NG−vu[(X ∪ {d}) − {yd}] ∪ NG−vu[u] = NG−vu[(X ∪ {u, d}) − {yd}]. Therefore
X ∪ {u, d} is not irredundant in G− vu for each d ∈ V (G) −X −{v, u}. Finally,
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X∪{u, v} is not irredundant in G−vu since IG(xi,X) = NG[xi]−NG[X−{xi}] =
{v} and hence IG−vu(xi,X ∪{v, u}) = NG−vu[xi]−NG−vu[(X −{xi})∪{v, u}] =
NG[xi] − NG[X − {xi}] − NG[{v, u}] = {v} − NG[{v, u}] = ∅. We conclude that
X∪{u} is a maximal irredundant set of G−vu. Therefore ir(G−vu) ≤ |X∪{u}| =
ir(G) + 1 ≤ 2 ir(G) − 1. This completes the proof.

Note that both the lower and upper bounds on the lower irredundance number
of an edge-deleted subgraph imposed by the inequalities of Theorem 2.2.6 are
attainable in the following sense: For any positive integer n there exist a graph
G and an edge vu in G such that ir(G − vu) = n = (ir(G) + 1)/2. Similarly,
for a positive integer n there exist a graph F and an edge vu in F such that
ir(F ) = n and ir(F − vu) = ir(F ) + max{1, ir(F ) − 1}. For n = 1, let G =
K1 +(K1∪K2), and let vu be the unique edge of G such that dG(v) = dG(u) = 2.
Then (ir(G) + 1)/2 = ir(G − vu) = 1 = ir(G) + max{1, ir(G) − 1}. For n ≥ 2, let
G be the graph defined after Theorem 2.2.2, see Figure 2. Then (ir(G) + 1)/2 =
n = ir(G − vxn), as {x1, x2, . . . , xn−1} ∪ {x′

1, x
′
2, . . . , x

′
n} and {x1, x2, . . . , xn} are

minimum maximal irredundant sets of G and G− vxn, respectively. Finally, take
the subgraph F = G − v of G. Then ir(F − xnx′

n) = 2n − 1 = 2 ir(F ) − 1 =
ir(F ) + max{1, ir(F ) − 1}, as {x1, x2, . . . , xn} and {x1, . . . , xn−1} ∪ {x′

1, . . . , x
′
n}

are minimum maximal irredundant sets of F and F − xnx′
n, respectively.

Corollary 2.2.2. If v and u are two nonadjacent vertices of a graph H, then

(1) γ(H) − 1 ≤ γ(H + vu) ≤ γ(H);
(2) α(H) − 1 ≤ α(H + vu) ≤ α(H);
(3) Γ (H) − 1 ≤ Γ (H + vu);
(4) IR(H) − 1 ≤ IR(H + vu) ≤ IR(H) + 1;
(5) i(H) − 1 ≤ i(H + vu);
(6) (ir(H) + min{1, |2 − ir(H)|})/2 ≤ ir(H + vu) ≤ 2 ir(H) − 1.

P r o o f. This follows immediately by applying Theorems 2.2.4–2.2.6 to the
edge vu of the graph G = H + vu.

2.3. Packing and covering numbers. In the rest of this chapter we are
mainly interested in classes of graphs for which some of the parameters ir, γ, i,
α, Γ , IR, γk and αk are equal. Many results of this type have been given during
the last few years and most of them give sufficient conditions, usually in terms of
forbidden subgraphs. However, forbidden subgraph characterizations for equality
of parameters have been hard to obtain; in fact, it is impossible in general. This is
easy to see since the corona of graphs G and K1 produces the graph G′ = G ◦K1

containing G as an induced subgraph and ir(G′) = γ(G′) = i(G′) = α(G′) =
Γ (G′) = IR(G′) by Proposition 2.1.4. The same comment applies to the forbidden
subgraph characterizations of graphs G for which γk(G) = αk(G), see Proposition
2.3.2 in this section.

In 1970, Szamko lowicz [135] (see also [136]) posed the problem of characteriz-
ing those graphs for which the domination number is equal to the independence
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number (see also Problem 1(c) in [100]). Such graphs have been studied in [22, 23],
[66] and [146, 148, 149, 150, 152, 153]. In this section, we first give a complete
description of connected graphs G of order (k+1)n with γk(G) = n. Then we char-
acterize bipartite graphs G with γ(G) = α(G) and trees T with γk(T ) = αk(T ).
We go on to show that αk(G) = sk(G) for any block graph G, where sk(G) de-
notes the smallest integer n for which there exists a partition V1, . . . , Vn of the
vertex set V (G) in which each set Vi induces a subgraph of diameter at most
k. Finally, we prove a theorem from which we can get an effective algorithm for
determining the numbers αk(G), sk(G), a maximum k-packing, and a decompo-
sition of a block graph G into sk(G) graphs each of diameter at most k. (Other
classes of graphs G for which γ(G) = α(G) are given in the next chapter.)

We shall apply the following result due to Meir and Moon [107].

Proposition 2.3.1. If T is a tree on p ≥ k + 1 vertices, then γk(T ) ≤
⌊p/(k + 1)⌋.

P r o o f. Let P = (v0, v1, . . . , vd) be any longest path in T . If d ≤ k, then the
vertex v0 constitutes a k-covering of T and γk(T ) = 1 ≤ ⌊p/(k+1)⌋. Thus assume
d > k and denote

Di = {v ∈ V (T ) : dT (v0, v) = i (mod(k + 1))}

for i = 0, 1, . . . , k. We now show that each set Di is a k-covering of T .

Let z be any vertex of T and suppose that dT (v0, z) = l. If l ≥ i, then
i + m(k + 1) ≤ l < i + (m + 1)(k + 1) for some nonnegative integer m. Let u be
the unique vertex of the v0 − z path such that dT (v0, u) = i + m(k + 1). Then
u ∈ Di, dT (z, u) = dT (z, v0) − dT (u, v0) = l − i − m(k + 1) ≤ k and therefore
dT (z,Di) ≤ k as required.

If l < i, then dT (z, vi) = dT (z, vd) − dT (vi, vd) ≤ dT (v0, vd) − dT (vi, vd) =
dT (v0, vi) = i ≤ k and again dT (z,Di) ≤ dT (z, vi) ≤ k as required.

Since the k-coverings D0,D1, . . . ,Dk form a partition of V (T ), at least one of
them has at most ⌊p/(k + 1)⌋ vertices. Thus, γk(T ) ≤ ⌊p/(k + 1)⌋.

Corollary 2.3.1. If G is a connected graph on p ≥ k + 1 vertices and T is a

spanning tree of G, then γk(G) ≤ γk(T ) ≤ ⌊p/(k + 1)⌋.

P r o o f. It follows from Theorem 2.2.3 that γk(G) ≤ γk(T ) for every spanning
tree T of G. Consequently, by Proposition 2.3.1, γk(G) ≤ γk(T ) ≤ ⌊p/(k + 1)⌋.

For a graph G and a positive integer k, we denote by G◦k the graph obtained
by taking one copy of G and |V (G)| copies of the path Pk−1 of length k − 1, and
then joining the ith vertex of G to exactly one end vertex in the ith copy of Pk−1.
It follows from the definition that G◦k has exactly (k + 1)|V (G)| vertices. If G is
without isolated vertices, then G◦k has exactly |V (G)| end vertices. For a vertex
u of G we denote by u the only end vertex of G ◦ k which is at distance k from
u. In addition, for a vertex v of G ◦ k we denote by t(v) the unique vertex of G
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such that v belongs to the t(v) − t(v) path. Note that G ◦ 1 is the corona G ◦K1

of the graphs G and K1.

Proposition 2.3.2. For any graph H of order n, γk(H ◦ k) = αk(H ◦ k) = n.

P r o o f. Assume that H is a graph on n vertices. Let D and I be a smallest
k-covering and a largest k-packing of H ◦ k, respectively. Let v be a vertex of H.
It follows from the minimality of D (the maximality of I, resp.) and the structure
of H ◦ k that exactly one vertex of the v − v path belongs to D (I, resp.). Since
the vertices of the v − v paths, v ∈ V (H), form a partition of the vertex set of
H ◦ k, we conclude that |D| = |I| = n. This finishes the proof.

According to Corollary 2.3.1, if G is a connected graph of order (k + 1)n,
then γk(G) ≤ n. The following two theorems characterize connected graphs G of
order (k + 1)n for which the upper bound is achieved for γk(G). For k = 1, these
two theorems were first established by Fink, Jacobson, Kinch and Roberts [71].
Theorem 2.3.1 for k = 1 has also been announced in [100]. The proofs given here
are reproduced from the paper by Topp and Volkmann [152].

Theorem 2.3.1. Let T be a tree on (k + 1)n vertices. Then γk(T ) = n if and

only if at least one of the following conditions holds:

(1) T is any tree on k + 1 vertices;

(2) T = R ◦ k for some tree R on n ≥ 1 vertices.

P r o o f. Let T be a tree on (k + 1)n vertices. Since γk(T ) ≥ 1, it follows from
Proposition 2.3.1 that γk(T ) = 1 if T has k + 1 vertices. If T = R ◦ k for some
tree R on n vertices, then γk(T ) = n by Proposition 2.3.2.

Conversely, we shall show that T satisfies the conditions (1) or (2) of the
theorem if T is a tree of order (k + 1)n with γk(T ) = n. We proceed by induction
on n. The result is clear for n = 1. Suppose the result is true for trees of order
(k+1)n (n ≥ 1) and let T be a tree of order (k+1)(n+1) with γk(T ) = n+1. We
denote by d(T ) = d the diameter of T , and by P = (v0, . . . , vd) any longest path
in T . Since γk(T ) = n + 1 ≥ 2, it follows that d > 2k; for if d ≤ 2k, then {vl},
where l = ⌊d/2⌋, would be a smallest k-covering of T and this would contradict
the assumption γk(T ) = n + 1 ≥ 2. From this we conclude that each component
of the graph T − vkvk+1 has at least k + 1 vertices. Let T1 (T2, resp.) be the
component of T − vkvk+1 which contains (does not contain, resp.) the vertex vk.
It follows from the choice of P that dT1

(v, vk) ≤ k for each v ∈ V (T1). Hence {vk}
is a k-covering of T1 and γk(T1) = 1. Now either T1 = Pk or T1 6= Pk; we consider
the two cases.

C a s e 1: T1 6= Pk. In this case, T2 has less than (k + 1)n vertices and
γk(T2) < n by Proposition 2.3.1. Hence with the vertex vk, we get γk(T ) < n+ 1,
a contradiction. This implies that we have

C a s e 2: T1 = Pk. Then T2 has (k + 1)n vertices and it is easily seen that
γk(T2) = n. Thus, by the induction hypothesis, either T2 is a tree on k+1 vertices
if n = 1 or T2 = R′ ◦ k for some tree R′ on n vertices if n ≥ 2.
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First assume that T2 has k + 1 vertices. In this case T has (k + 1)2 vertices.
Since d = d(T ) > 2k, T is a path on 2k+2 vertices, T = P2k+1. Hence T = K2 ◦k
and T satisfies (2).

Next assume that T2 = R′ ◦ k, where R′ is a tree on n ≥ 2 vertices. We claim
that vk+1 is a vertex of the tree R′. Suppose, contrary to our claim, that vk+1 6∈
V (R′). Then vk+1 belongs to the t(vk+1)− t(vk+1) path in T2 and vk+1 6= t(vk+1).
It is a simple matter to observe that (V (R′) − {t(vk+1)}) ∪ {vk} is a k-covering
of T and therefore γk(T ) ≤ |(V (R′) − {t(vk+1)}) ∪ {vk}| ≤ n, contradicting our
hypothesis. From this we see that vk+1 ∈ V (R′). In addition, the subgraph R of
T induced by V (R′) ∪ {vk} is a tree. Because R′ is a tree such that R′ ◦ k = T2,
vk is an end vertex of the path Pk = T1, and vkvk+1 is a unique edge joining a
vertex from T1 to a vertex from T2, we conclude that T = R ◦ k. Thus T satisfies
the condition (2). The result follows by the principle of induction.

Theorem 2.3.2. Let G be a connected graph of order (k+1)n. Then γk(G) = n
if and only if at least one of the following conditions holds:

(1) G is any connected graph of order k + 1;

(2) G = C2k+2;

(3) G = H ◦ k for some connected graph H of order n.

P r o o f. Suppose that G is a connected graph of order (k+1)n. It follows easily
from Corollary 2.3.1, simple observation, and Proposition 2.3.2 that γk(G) = 1 if
G has k + 1 vertices, γk(G) = 2 if G = C2k+2, and γk(G) = n if G = H ◦ k and
H has n vertices, respectively.

It clearly suffices to prove the converse for n ≥ 2. Assume that G is a connected
graph of order (k + 1)n such that γk(G) = n. We first prove that G = C2k+2 or
G = P2k+1 = K2 ◦ k if n = 2. Suppose on the contrary that G is different from
C2k+2 and P2k+1. Then G has a spanning tree, say T , which is not a path. Since T
is not a path and has 2k+2 vertices, its diameter d(T ) = d is not greater than 2k.
Let P = (v0, . . . , vd) be any longest path in T and l = ⌊d/2⌋. Then dT (v, vl) ≤ k
for each vertex v of T and therefore {vl} is a k-covering of T . This implies that
{vl} is a k-covering of G and γk(G) = 1, which is impossible. Thus, G = C2k+2

or G = K2 ◦ k, and G has the desired properties.

The proof will be completed by showing that G = H ◦ k for some connected
graph H if n ≥ 3. In order to get this, let T be a spanning tree of G. It follows
from Corollary 2.3.1 that γk(T ) = n. Then, by Theorem 2.3.1, T = R ◦ k for
some tree R of order n. Moreover, the set V (R) containing n vertices is a smallest
k-covering of G. Let H be the subgraph of G induced by V (R). We claim that
G=H ◦k. Suppose on the contrary that G 6= H ◦k. Then G contains two vertices
v ∈ V (G)−V (H) and u ∈ V (G) such that vu ∈ E(G)−E(H ◦ k). There are two
cases to consider.

C a s e 1: t(v) = t(u). Then k ≥ 2 and vu is a chord of the t(v) − t(v) path.
Choose any neighbour z of t(v) in R. Certainly, each vertex of the t(v)−t(v) path
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is at distance at most k from z. This makes it obvious that the set V (R)−{t(v)}
of order n − 1 is a k-covering of G, a contradiction.

C a s e 2: t(v) 6= t(u). First suppose that dT (v, t(v)) = dT (u, t(u)). Since n ≥ 3
and R is connected, there is a vertex z ∈ V (R)−{t(v), t(u)} which is adjacent to
t(v) or t(u), say z is adjacent to t(v) in R. It is easy to verify that each vertex of
the t(v) − t(v) path is at distance at most k from z or u. Then it is easily seen
that the set (V (R) − {t(v), t(u)}) ∪ {u} containing n − 1 vertices is a k-covering
of G, a contradiction. Therefore dT (v, t(v)) 6= dT (u, t(u)) and if without loss of
generality dT (v, t(v)) > dT (u, t(u)), then we choose any neighbour z of t(v) in R.
It is again easy to observe that each vertex of the t(v) − t(v) path is at distance
at most k from z or t(u) and then one can check that the set V (R) − {t(v)} of
order n − 1 is a k-covering of G, a contradiction.

Since both Case 1 and Case 2 lead to contradictions, it follows that G = H ◦k,
which completes the proof.

The equivalence of the statements (1) and (3) of the next theorem is the
content of a theorem established by Fink, Jacobson, Kinch and Roberts [71] and
it follows from Theorem 2.3.2. In [146], Topp and Vestergaard have given an
independent and considerably shorter proof of this equivalence. The technique of
this proof can be used to obtain slightly more general results.

Theorem 2.3.3. Let G be a connected graph of order 2n. Then the following

statements are equivalent :

(1) G = C4 or G = H ◦ K1 for some connected graph H;

(2) ir(G) = n;

(3) γ(G) = n.

P r o o f. The implication (1)⇒(2) is obvious if G = C4 and follows from Propo-
sition 2.1.4 if G = H◦K1. The implication (2)⇒(3) follows from Proposition 2.1.3
and the observation that γ(G) ≤ |V (G)|/2 = n for a graph G without isolated
vertices.

To prove the implication (3)⇒(1), assume G is a connected graph of order 2n
with γ(G) = n. Let D be a minimum dominating set of G. Then |D| = n and
D = V (G) − D is another minimum dominating set of G. It follows from the
König–Hall theorem (see [15, p. 132]) that G has a perfect matching M between
D and D; otherwise there exists a subset S of D such that |NG(S) ∩ D| < |S|
and then D′ = (D − S) ∪ (NG(S) ∩ D) is dominating in G with |D′| < n. Let
M = {v1u1, . . . , vnun} be a perfect matching between D = {v1, . . . , vn} and D =
{u1, . . . , un}. If every edge of M is an end edge of G, then certainly G = H ◦K1

with H = K1 if G = K2 or H = G−Ω otherwise, where Ω is the set of end vertices
of G. Clearly H is connected since G is connected. Thus assume that M contains a
non-end edge of G. Let viui be any such edge. Then the sets A=NG(vi)−{ui} and
B = NG(ui)−{vi} are nonempty, say x ∈ A and y ∈ B. Moreover, A∩B = ∅; for
if there were t ∈ A∩B, then vi and ui would be dominated by t, and D′ = D−{vi}
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or D′ = D − {ui} would be dominating in G with |D′| < n. Observe next that
A = {x}, B = {y}, x and y are adjacent and xy ∈ M ; otherwise there are
x′ ∈ A, y′ ∈ B, distinct edges vkuk, vlul ∈ M − {viui} such that x′ ∈ {vk, uk}
and y′ ∈ {vl, ul}, and then D′ = (D − {vi, vk, vl}) ∪ {x′, y′} is dominating in G
with |D′| < n. Consequently, xy is another non-end edge from M and it has the
same properties as viui. Thus, since G is connected and NG(x)−{y} = {vi} and
NG(y) − {x} = {ui}, G is a 4-cycle with V (G) = {vi, ui, x, y}. This completes
the proof of the theorem.

Let G be a nontrivial connected graph of order p and let ε(G) denote the
maximum number of end edges in a spanning forest of G. In [110], Nieminen
proved that γ(G) + ε(G) = p. Consequently, ε(G) ≥ p/2 (since γ(G) ≤ p/2) and
it follows from Theorem 2.3.3 that this lower bound for ε(G) is attained if and
only if G = C4 or G = H ◦ K1 for some connected graph H. Similar remarks
may be given for other Gallai-type results (see [39]) which involve the domination
number.

As we have already mentioned, the structure of graphs with equal 1-packing
and 1-covering numbers has been studied in [22, 23], [66] and [146, 148, 149, 150,
152, 153] (see also the next chapter in this paper and Theorem 3.1.10 in [100]). It
follows from Proposition 2.1.4 that if G = H ◦ K1, then γ(G) = α(G). The next
result shows that in the class of connected bipartite graphs, except for K1 and
C4, the converse implication is true.

Corollary 2.3.2 [149]. If G is a connected bipartite graph, then γ(G) = α(G)
if and only if G = K1, G = C4, or G = H ◦ K1 for some connected bipartite

graph H.

P r o o f. The sufficiency is obvious if G ∈ {K1, C4} and follows from Propo-
sition 2.1.4 if G = H ◦ K1 for some graph H. Conversely, assume that G is a
connected bipartite graph with γ(G) = α(G) and G 6= K1. Let V1 and V2 be
partite sets of G. Clearly, each of the sets V1 and V2 is both independent and
dominating in G and so

α(G) ≥ max{|V1|, |V2|} ≥ min{|V1|, |V2|} ≥ γ(G).

Hence α(G) = |V1| = |V2| = γ(G) and it follows from Theorem 2.3.3 that either
G = C4 or G = H ◦ K1 for some connected graph H. In the latter case H is
bipartite since G is bipartite.

Corollary 2.3.2 gives a solution to the Szamko lowicz problem (and to Problem
1(c) of Laskar and Walikar [100]) for bipartite graphs. It follows from Corollary
2.3.2 and from a result of Payan and Xuong [112] that the graphs character-
ized in Corollary 2.3.2 are exactly those connected bipartite graphs G for which
γ(G)γ(G) = |V (G)|, so they also form a solution to Problem 1(e) of Laskar and
Walikar [100] for connected bipartite graphs. The next result due to Borowiecki
[22, 23] easily follows from Corollary 2.3.2.
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Corollary 2.3.3. If T is a tree, then γ(T ) = α(T ) if and only if T = K1 or

T = R ◦ K1 for some tree R.

The result of Corollary 2.3.3 has also been obtained by Walikar, Acharya and
Sampathkumar, see Theorem 3.1.10 in [100]. We now give a generalization of the
last result.

Theorem 2.3.4 [152]. If T is a tree, then γk(T ) = αk(T ) = n if and only if

one of the following statements holds:

(1) T is a tree of diameter at most k and n = 1;

(2) There exists a decomposition of T into n subgraphs T1, . . . , Tn in such a

way that

(a) Ti is a tree of diameter k (i = 1, . . . , n), and

(b) for each i ∈ {1, . . . , n}, there exists a vertex ui ∈ V (Ti) − V (T0) such

that dT (ui, V (T0)) = k, where T0 is the subgraph of T generated by the

edges which do not belong to any of the trees T1, . . . , Tn.

P r o o f. Let T be a tree such that γk(T ) = αk(T ) = n. It is obvious that the
diameter d(T ) = d of T is not greater than k if n = 1. Thus assume n ≥ 2 and
let P = (v0, . . . , vd) be any longest path in T . An analysis similar to that in the
proof of Theorem 2.3.1 shows that d > 2k. Let T ′ (T ′′, resp.) be the component
of T − vkvk+1 which contains (does not contain, resp.) the vertex vk.

First we claim that γk(T ′) = αk(T ′) = 1. It follows from the choice of P that
{vk} is a k-covering of T ′ and therefore γk(T ′) = 1 ≤ αk(T ′). There remains to
prove that αk(T ′) = 1. By contradiction, suppose that αk(T ′) = m > 1. Let I ′ be
a k-packing of T ′ such that |I ′| = m and let I be a maximal k-packing of T such
that I ′ ⊆ I. By Corollary 2.1.2, |I| = n and I is a minimum k-covering of T . On
the other hand, it is seen at once that the set (I − I ′) ∪ {vk} is a k-covering of
T and |(I − I ′) ∪ {vk}| ≤ n − m + 1 < γk(T ), a contradiction. This implies our
claim. By the way, since αk(T ′) = 1 and T ′ contains the v0 − vk path of length k,
the diameter d(T ′) = k and dT (v0, vk) = k.

Now we claim that γk(T ′′) ≥ n − 1; for if γk(T ′′) < n − 1, then for any
minimum k-covering I ′′ of T ′′ the set I ′′ ∪ {vk} would be a k-covering of T and
γk(T ) ≤ |I ′′ ∪ {vk}| < n which is impossible. Furthermore, αk(T ′′) ≤ n − 1; for
if αk(T ′′) > n − 1, then for any maximum k-packing J ′′ of T ′′ the set J ′′ ∪ {v0}
would be a k-packing of T and αk(T ) ≥ |J ′′ ∪ {v0}| > n which is also impossible.
Hence, by Corollary 2.1.1, we get γk(T ′′) = αk(T ′′) = n − 1.

After the above observation, by induction on n, we prove that T has property
(2). First, if n = 2, then γk(T ′′) = αk(T ′′) = 1 and, since T ′′ contains the vk+1−vd

path of length at least k, we exactly have d(T ′′) = k and dT (vd, vk+1) = k. One
sees immediately that the decomposition T1 = T ′, T2 = T ′′ of T with u1 = v0 and
u2 = vd satisfies (2). Second, if n ≥ 3, then the induction hypothesis implies that
there exists a decomposition T1, . . . , Tn−1 of T ′′ into n − 1 trees with property
(2). For convenience, let T ′′

0 (resp., T0) denote the subgraph of T ′′ (resp., T )
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generated by the edges which do not belong to any of the trees T1, . . . , Tn−1 (resp.,
T1, . . . , Tn−1, Tn = T ′). We shall prove that the trees T1, . . . , Tn have property (2)
in T . Certainly, T1, . . . , Tn form a decomposition of T into n trees of diameter
k. In order to prove that this decomposition satisfies the condition (b) of (2),
without loss of generality we can assume that the vertex vk+1 belongs to the
tree Tn−1. Then, since dT (v0, V (T0)) = dT (v0, vk) = k and there exists ui ∈
V (Ti) − V (T ′′

0 ) such that dT (ui, V (T ′′
0 )) = k (i = 1, . . . , n − 1), it suffices to show

that dT (un−1, V (T0)) = k for some vertex un−1 ∈ V (Tn−1)− V (T0) = V (Tn−1)−
(V (T ′′

0 ) ∪ {vk+1}). Suppose on the contrary that dT (v, V (T0)) < k for each v ∈
V (Tn−1). Then dT (v,NT (V (Tn−1))−V (Tn−1)) ≤ k for each v ∈ V (Tn−1). Since T
is a tree, no two vertices of the set NT (V (Tn−1))−V (Tn−1) (⊂ V (T0)−V (Tn−1))
belong to the same tree Ti (i ∈ {1, . . . , n}−{n−1}). Hence there exists a superset
of NT (V (Tn−1))−V (Tn−1), say I, such that |I∩V (Ti)| = 1 for i = 1, . . . , n. Let zi

denote a unique vertex of I which belongs to the tree Ti (i = 1, . . . , n). We shall
prove that I−{zn−1} is a k-covering of T . Let v be any vertex of T . If v∈V (Tn−1),
then dT (v, I − {zn−1}) = dT (v,NT (V (Tn−1)) − V (Tn−1)) ≤ k. If v ∈ V (Ti) for
some i ∈ {1, . . . , n} − {n − 1}, then dT (v, I − {zn−1}) ≤ dT (v, zi) ≤ k since
v, zi ∈ V (Ti) and Ti is a tree of diameter k. This implies that the set I − {zn−1}
containing n − 1 vertices is a k-covering of T . This contradicts γk(T ) = n and
therefore our assertion follows. This proves the necessity of the conditions.

The sufficiency is obvious if the diameter of T is not greater than k. If the dia-
meter of T is greater than k, then assume that we have a decomposition of T into
trees T1, . . . , Tn satisfying (2). We shall prove that γk(T ) = αk(T ) = n. Let I be
any maximum k-packing of T . Since the distance between any two vertices of Ti

is not greater than k (by (a)), at most one vertex of Ti belongs to I (i = 1, . . . , n).
Therefore n ≥ |I| = αk(T ). On the other hand, let J be any minimum k-covering
of T . It follows from the property (b) of the decomposition T1, . . . , Tn of T that
there is a vertex ui in Ti such that dT (ui, V (T ) − V (Ti)) > k (i = 1, . . . , n).
Consequently, since dT (ui, J) ≤ k, at least one vertex of Ti belongs to J and
therefore γk(T ) = |J | ≥ n. Hence, by Corollary 2.1.1, γk(T ) = αk(T ) = n and
this completes the proof.

The following theorem extends the last theorem to block graphs and it has
recently been proved by Hatting and Henning [85].

Theorem 2.3.4′. If G is a block graph, then γk(G) = αk(G) = n if and only

if one of the following statements holds:

(1) G has diameter at most k and n = 1;

(2) There exists a decomposition of G into n subgraphs G1, . . . , Gn in such a

way that

(a) Gi is a block graph of diameter k (i = 1, . . . , n),

(b) for each i ∈ {1, . . . , n}, there exists a vertex ui ∈ V (Gi) − V (G0) such

that dG(ui, V (G0)) = k, where G0 is the subgraph of G generated by the

edges which do not belong to any of the subgraphs G1, . . . , Gn, and
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(c) there is at most one edge with one end in V (Gi) and the other end in

V (Gj) for 1 ≤ i < j ≤ n.

The clique covering number θ(G) of a graph G is the smallest integer n for
which there exists a partition V1, . . . , Vn of the vertex set V (G) such that each Vi

induces a complete subgraph of G. It is easy to observe that α1(G) ≤ θ(G) for
every graph G. In [77], Hajnál and Suranýi proved the following result.

Proposition 2.3.3. For any chordal graph G, α1(G) = θ(G).

P r o o f. Let G be a chordal graph and suppose that α1(H) = θ(H) for all
smaller chordal graphs H. Let x be a simplicial vertex of G. Then G−NG[x] is a
smaller chordal graph and therefore α1(G−NG[x]) = θ(G−NG[x]). On the other
hand, α1(G−NG[x]) = α1(G) − 1 since every maximal independent set of G has
exactly one vertex in NG[x]. Similarly, θ(G − NG[x]) = θ(G) − 1 because every
minimal covering of G by cliques must necessarily contain the clique G[NG[x]] to
cover the vertex x. Thus, α1(G) = θ(G).

For a graph G and a positive integer k, we denote by Gk the kth power of G,
the graph with the same vertices as G, two vertices being adjacent in Gk when
their distance in G is at most k. In [51], Duchet has proved that if Gk is a chordal
graph, then Gk+2 is chordal. This result applied to block graphs implies the next
result due to Jamison (see Corollary 6.9 in [51]); the same result may also be
obtained from [6, Th. 1] and [30, Th. 2.2].

Proposition 2.3.4. If G is a block graph, then Gk is chordal for each integer

k ≥ 1.

Proposition 2.3.5. For any graph G, αk(G) ≤ sk(G).

P r o o f. Assume that I is a maximum k-packing of G. Let G1, . . . , Gs be a
decomposition of G into s = sk(G) graphs each of diameter at most k. Since
d(Gi) ≤ k, |I ∩V (Gi)| ≤ 1 for i = 1, . . . , s. Therefore αk(G) = |I| = |I ∩V (G)| =
|I ∩

⋃s
i=1 V (Gi)| =

∑s
i=1 |I ∩ V (Gi)| ≤ s = sk(G).

Theorem 2.3.5 [152]. For any block graph G, sk(G) = αk(G).

P r o o f. It follows from the definition of Gk that two vertices in Gk are not
adjacent if and only if their distance in G is greater than k. This implies that
a subset I of V (G) = V (Gk) is a maximum k-packing in G if and only if it is
a maximum 1-packing in Gk. Hence αk(G) = α1(Gk). Moreover, since a subset
X of V (G) induces in G a subgraph of diameter at most k if and only if it
induces a complete subgraph in Gk, we have sk(G) = θ(Gk). The rest follows
from Propositions 2.3.3 and 2.3.4.

The next result for trees when k = 1 has been mentioned in [2].

Corollary 2.3.4 [152]. For any block graph G, s2k(G) = γk(G).

P r o o f. Since α2k(G) = γk(G) for any block graph G (see [30, Th. 4.1], [49,
Th. 4], and [107, Th. 9] (for trees)), the result follows from Theorem 2.3.5.
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Theorem 2.3.6 [152]. Let T be a block graph with the diameter d(T ) = d ≥
k + 1 and sk(T ) = αk(T ) = n. Assume that P = (v0, v1, . . . , vd) is any longest

path without chords in T , let Ti be that connected component of T − ({vi−1} ∪
(NT (vi+1) − {vi})) which contains the vertex vi of P ; in addition, let T0 be the

subgraph induced by the vertex v0, and Td = T −
⋃d−1

i=0 V (Ti). Assume that i0 is

the greatest integer i such that dT (v0, v) ≤ k for each vertex v ∈
⋃i

l=0 V (Tl), and

denote by T ′ and T ′′ the subgraph of T induced by
⋃i0

i=0 V (Ti) and
⋃d

i=i0+1 V (Ti),
respectively. Then d(T ′) ≤ k, sk(T ′) = αk(T ′) = 1, and sk(T ′′) = αk(T ′′) = n−1.

P r o o f. For convenience, let V0(Ti) be the set of vertices v ∈ V (Ti) − {vi}
such that the shortest v − v0 path joining v with v0 does not contain the vertex
vi (i ∈ {1, . . . , d}). By V1(Ti) we denote the set V (Ti) − V0(Ti).

First we prove that d(T ′) ≤ k. To prove this, it would suffice to show that
for any pair a, b ∈ V (T ′) − {v0} we have dT (a, b) ≤ k. Without loss of generality
we can assume that a ∈ V (Ts), b ∈ V (Tt) and s ≤ t ≤ i0. It follows from the
choice of P and i0 that dT (vs, a) ≤ dT (vs, v0) and dT (b, v0) ≤ k. Therefore we
have dT (b, a) = dT (b, vt−1)+dT (vt−1, vs)+dT (vs, a) ≤ dT (b, vt−1)+dT (vt−1, vs)+
dT (vs, v0) = dT (b, v0) ≤ k if s < t. If s = t, then we distinguish two cases.

C a s e 1: Either a ∈ V0(Ts) and b ∈ V1(Ts) or a, b ∈ V1(Ts). Then dT (b, a) ≤
dT (b, vs) + dT (vs, a) ≤ dT (b, vs) + dT (vs, v0) = dT (b, v0) ≤ k.

C a s e 2: a, b ∈ V0(Ts). Let a′ (b′, resp.) be the neighbour of vs which belongs
to the shortest vs − a (vs − b, resp.) path. Certainly, dT (b′, a′) ≤ 1 = dT (b′, vs−1)
and dT (a′, a) ≤ dT (vs−1, v0). Therefore dT (b, a) ≤ dT (b, b′)+dT (b′, a′)+dT (a′, a) ≤
dT (b, b′)+dT (b′, vs−1)+dT (vs−1, v0) = dT (b, v0) ≤ k. This implies that d(T ′) ≤ k.
Hence sk(T ′) = 1 = αk(T ′) and, in addition, αk(T ′′) ≥ n − 1.

Next we prove that αk(T ′′) = n − 1. In order to prove this, for a maximum
k-packing J of T ′′, we denote by J(v0) the subset of J , where J(v0) = {v ∈ J :
dT (v0, v) ≤ k}. First, let us observe that if there were different vertices a and b
in J(v0), then (in a similar manner as we have proved that d(T ′) ≤ k) we would
get dT (a, b) ≤ k, which is impossible since J(v0) is a subset of a k-packing of T ′′.
This implies that |J(v0)| ≤ 1 for any maximum k-packing J of T ′′. We claim that
J(v0) = ∅ for some maximum k-packing J of T ′′. Let J be a maximum k-packing
of T ′′. If J(v0) = ∅, then we are done. On the other hand, if J(v0) 6= ∅, let a
be the unique element of J(v0), and assume that a ∈ V (Ts) for some s > i0.
Since dT (a, v0) ≤ k, the choice of P implies that dT (a, v) ≤ k for each vertex
v ∈

⋃s
i=0 V (Ti) (v ∈

⋃s−1
i=0 V (Ti) ∪ V0(Ts), resp.) if a ∈ V1(Ts) (a ∈ V0(Ts),

resp.). Hence J − {a} ⊂
⋃d

i=s+1 V (Ti) (J − {a} ⊂ V1(Ts) ∪
⋃d

i=s+1 V (Ti), resp.)
if a ∈ V1(Ts) (a ∈ V0(Ts), resp.). It follows from the definition of i0 that there
exists a vertex u0 ∈ V (Ti0+1) such that dT (v0, u0) = k + 1. We shall prove that
J0 = (J − {a}) ∪ {u0} is a maximum k-packing of T ′′. Since |J0| = |J | and
J −{a} is a subset of a k-packing, it remains to show that dT (u0, x) > k for each
x ∈ J − {a}. For convenience, we let dT (vi0+1, u0) = l1, dT (vi0+1, vs) = l2, and
dT (vs, a) = l3. Then dT (vi0 , u0) ≤ l1 + 1, l3 ≤ dT (vs−1, a), and dT (vi0 , vs−1) = l2.
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Since dT (v0, u0) = dT (v0, vi0)+dT (vi0 , u0) = k+1 > k ≥ dT (v0, a) = dT (v0, vi0)+
dT (vi0 , vs−1) + dT (vs−1, a), it follows that l1 + 1 ≥ dT (vi0 , u0) > dT (vi0 , vs−1) +
dT (vs−1, a) ≥ l2 + l3 and this implies that l1 + l2 ≥ l3. Let x be any vertex from
J −{a}. Then dT (x, a) = dT (x, vs) + l3 > k and therefore dT (x, u0) = dT (x, vs) +
l1 + l2 ≥ dT (x, vs) + l3 > k. This implies that the set J0 is a maximum k-packing
of T ′′ and certainly J0(v0) = ∅. Furthermore, we have αk(T ′′) = |J0| = n − 1;
for if it were |J0| ≥ n, then the set J0 ∪ {v0} would be a k-packing in T with
|J0 ∪ {v0}| > n = αk(T ) which is impossible. Then, by Theorem 2.3.5, we have
sk(T ′′) = n − 1. This completes the proof.

2.4. Conditions for equalities of domination parameters. As pointed
out before, various authors have found sufficient conditions for two or more of
the lower and upper independence, domination and irredundance numbers of a
graph to be equal. Of specific importance to the present section are conditions
under which equality of the lower domination and independence numbers occurs.
In this respect Allan and Laskar have proved in [3] that if G is a K1,3-free graph
(i.e. G has no induced subgraph isomorphic to K1,3), then γ(G) = i(G). This
extends an earlier result by Mitchell and Hedetniemi [108] that if G is the line
graph of a tree, then γ(G) = i(G), and a result by Cockayne, Hedetniemi and
Miller [40] that if G is the middle graph of a graph (that is, G = L(H ◦ K1)
for some graph H), then ir(G) = γ(G) = i(G). A simple and short proof of the
Allan–Laskar theorem is due to Sumner [133]. The Allan–Laskar theorem has been
further generalized by Bollobás and Cockayne [20] and Zverovich and Zverovich
[161]. They have proved that if G has no induced subgraph isomorphic to K1,k

with k ≥ 3, then i(G) ≤ (k − 2)γ(G) − (k − 3). Bollobás and Cockayne [20] have
also proved that if G does not have two induced subgraphs isomorphic to P4 with
vertex sequences (ai, bi, ci, di), i = 1, 2, where b1, b2, c1, c2, d1, d2 are distinct and
ai 6∈ {c1, c2, d1, d2} for i = 1, 2, then ir(G) = γ(G). Favaron [60] has improved
this result showing that if G has no induced subgraph isomorphic to one of the
six graphs Gi of Figure 5, then ir(G) = γ(G). Favaron [60] has also shown that
for any graph G that does not contain either K1,3 or the graph G1 of Figure 6 as
an induced subgraph, ir(G) = γ(G) = i(G).
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G1 G2 G3 G4 G5 G6

Fig. 5. Forbidden subgraphs for ir(G) = γ(G) = i(G)

Laskar and Pfaff [98, 99] have also given three results which guarantee the
equality ir(G) = γ(G) or ir(G) = γ(G) = i(G) for chordal and split graphs; a



36 J. Topp

graph G is a split graph if both G and its complement G are chordal. Laskar and
Pfaff have shown that if G is connected and it is a split graph or the complement
of a bipartite graph or G is chordal and it contains neither G1 nor G2 of Figure
6 as an induced subgraph, then ir(G) = γ(G). Also, they show for any graph
G that does not contain either K1,3 or G3 of Figure 6, where the dotted edges
of G3 are the only extra edges allowed, ir(G) = γ(G) = i(G). A recent paper
by Jacobson, Peters and Rall [92] gives several sufficient conditions on G such
that ir(G) = γ(G) (and some sufficient conditions for equality of the lower n-
dependence and lower n-irredundance numbers). Finally, recent papers by Harary
and Livingston [79, 80] provide forbidden subtree characterizations of the trees
and caterpillars T for which γ(T ) = i(T ).
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r r r
r r r

G1 G2 G3

r r r
Fig. 6. Forbidden subgraphs for ir(G) = γ(G) and ir(G) = γ(G) = i(G)

We begin with inequalities which relate the domination number, the indepen-
dent domination number and the independence number to one another in graphs
that do not contain some forbidden graphs. For integers n ≥ 2 and m ≥ 2, the
double star Sn,m is the graph formed from the graph K2 by attaching n− 1 pen-
dant edges at one end vertex of K2 and m − 1 pendant edges at the other. The
following theorem was previously proved by Zverovich and Zverovich [161]; we
give a somewhat different proof of this theorem.

Theorem 2.4.1. If G has no induced subgraph isomorphic to Sk,k (k ≥ 3),
then

i(G) ≤ (k − 2)γ(G) − (k − 3).

P r o o f. For a subset X of vertices of G, let n(X) denote the number of
nonisolated vertices of G[X]. Let D1 be a minimum dominating set of G. We
consider two cases.

C a s e 1: n(D1) = 0. Then D1 is an independent dominating set of G and so
i(G) ≤ |D1| = γ(G) ≤ (k − 2)γ(G) − (k − 3).

C a s e 2: n(D1) = l > 0. Then 2 ≤ l ≤ γ(G). Let D1, D2, . . . be a sequence
of minimal dominating sets of G defined as follows: For i ≥ 1, if n(Di) > 0, then
let D′

i be the set of nonisolated vertices of G[Di]. Since Sk,k is not an induced
subgraph of G, D′

i contains a vertex vi such that α(G[IG(vi,Di)]) ≤ k − 2. Let
Ii be a maximal independent set of G[IG(vi,Di)]. Then Di+1 = (Di − {vi}) ∪ Ii

is a dominating set of G. Now Di+1 is defined to be a minimal subset of Di+1

dominating G. Certainly, |Di+1|≤|Di|+(k−3) and n(Di+1) < n(Di). In addition,
since n(D1) > n(D2) > . . . , there exists an integer m, 2 ≤ m ≤ l − 1, such that
n(Dm) = 0 while n(Dm−1) > 0. Thus Dm is an independent dominating set of G
and therefore
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i(G) ≤ |Dm| ≤ |Dm−1| + (k − 3)
≤ |Dm−2| + 2(k − 3)
...
≤ |D1| + (m − 1)(k − 3)
= γ(G) + (m − 1)(k − 3) (|D1| = γ(G))
≤ γ(G) + (l − 2)(k − 3) (m ≤ l − 1)
≤ γ(G) + (γ(G) − 2)(k − 3) (l ≤ γ(G))
= (k − 2)γ(G) − 2(k − 3)
≤ (k − 2)γ(G) − (k − 3).

Since every K1,k-free graph is Sk,k-free, we have the following result due to
Bollobás and Cockayne [20].

Corollary 2.4.1. If G has no induced subgraph isomorphic to K1,k (k ≥ 3),
then

i(G) ≤ (k − 2)γ(G) − (k − 3).

From Proposition 2.1.3 and Corollary 2.4.1 (for k = 3), we immediately have
the following corollary proved in [3, 20, 133, 151, 161].

Corollary 2.4.2. If G has no induced subgraph isomorphic to K1,3, then

γ(G) = i(G).

For any graph G, we have γ(G) ≤ i(G) ≤ α(G) and it is easy to observe
that in general the gap between any two elements of this inequality may be
arbitrary large. However, the next theorem shows that for K1,k-free graphs, the
independence number and the independent domination number can be bounded
in terms of the domination number.

Theorem 2.4.2. If G has no induced subgraph isomorphic to K1,k (k ≥ 3),
then

γ(G) ≤ α(G) ≤ (k − 1)γ(G).

P r o o f. Since the inequality γ(G) ≤ α(G) is obvious, we prove that α(G) ≤
(k − 1)γ(G). Let D and I be respectively a minimum dominating set and a
maximum independent set of G. Then |D| = γ(G) and |I| = α(G). Since D is
dominating, V (G) =

⋃

v∈D NG[v]. On the other hand, since G is K1,k-free, for
every v ∈ D, the set NG[v] contains at most k − 1 independent vertices and
therefore |I ∩NG[v]| ≤ k−1. Thus α(G) = |I| = |I ∩V (G)| = |I ∩

⋃

v∈D NG[v]| ≤
∑

v∈D |I ∩ NG[v]| ≤ (k − 1)|D| = (k − 1)γ(G).

The next two corollaries have been announced by Sumner [133].

Corollary 2.4.3. If G has no induced subgraph isomorphic to K1,k (k ≥ 3),
then i(G) ≥ α(G)/(k − 1).

P r o o f. Since α(G) ≤ (k − 1)γ(G) (by Theorem 2.4.2) and γ(G) ≤ i(G), the
inequality i(G) ≥ α(G)/(k − 1) is obvious.
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Corollary 2.4.4. If G has no induced subgraph isomorphic to K1,k (k ≥ 3),
then

γ(G) ≥
α(G) + (k − 1)(k − 3)

(k − 1)(k − 2)
.

P r o o f. By Theorem 2.4.1 and Corollary 2.4.3, (k−2)γ(G)−(k−3) ≥ i(G) ≥
α(G)/(k − 1) and this implies the result.

Motivated by the Allan–Laskar theorem, we now give a list of forbidden
subgraphs (from a paper by Topp and Volkmann [151]) that is sufficient for
γ(G) = i(G). We also show that ir(G) = i(G) if every minimal dominating set of
G is independent. In the second part of the section we show that α(G) = IR(G)
for all chordal and unicyclic graphs.

Theorem 2.4.3. If a graph G contains no induced subgraph isomorphic to one

of the graphs H1, . . . ,H14 of Figure 7, then γ(G) = i(G).
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Fig. 7. The forbidden subgraphs for Theorem 2.4.3

P r o o f. Assume that none of the graphs H1, . . . ,H14 is an induced subgraph
of G. We will show that γ(G) = i(G). Since γ(G) ≤ i(G) (Proposition 2.1.3),
it is sufficient to prove that in G there is a minimum dominating set which is
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independent, that is, there exists an independent dominating set of the cardinality
γ(G). Suppose on the contrary that each minimum dominating set of G is not
independent. Let D0 be a minimum dominating set of G such that e(G[D0]) is the
minimum number taken over all minimum dominating sets of G, where e(G[X])
denotes the number of edges in the subgraph induced by X ⊆ V (G). Take two
adjacent vertices x1, x2 from D0 and the sets

Ii = {v ∈ V (G) − D0 : NG(v) ∩ D0 = {xi}} (i = 1, 2),

and
I1,2 = {v ∈ V (G) − D0 : NG(v) ∩ D0 = {x1, x2}}.

Since every minimum dominating set is minimal, it follows from Proposition 2.1.2
that the sets I1, I2 are nonempty and disjoint. We derive contradictions in two
cases.

Case 1: For i = 1 or 2, there exists a vertex vi ∈ Ii such that Ii ⊂ NG[vi].
Then, it is easy to see that the set D1 = (D0 − {xi}) ∪ {vi} (for i = 1, 2) is a
minimum dominating set of G and e(G[D1]) < e(G[D0]), contradicting the choice
of D0.

Case 2: For i = 1, 2 and every y ∈ Ii, Ii 6⊂ NG[y]. Then in Ii (i = 1, 2) there
are nonadjacent vertices. Let v1, v2 and u1, u2 be nonadjacent vertices from I1 and
I2, respectively. From the fact that the subgraph G[{x1, x2, v1, v2, u1, u2}] is not
isomorphic to H4 it follows that there exist v ∈ {v1, v2} ⊆ I1 and u ∈ {u1, u2} ⊆ I2

such that vu 6∈ E(G).
We now claim that I1∪I2 ⊂ NG[{v, u}] if v ∈ I1, u ∈ I2 and vu 6∈ E(G). For if

not, then there exist vertices v0 ∈ I1 and u0 ∈ I2 such that v0u0 6∈ E(G) and the
set (I1∪I2)−NG[{v0, u0}] is not empty. Without loss of generality we may assume
that I1 − NG[{v0, u0}] 6= ∅. Take any vertex v from I1 − NG[{v0, u0}] and any
vertex u from I2 − NG[u0]. Then, since x1x2, x1v0, x1v, x2u0, x2u ∈ E(G) and
v0u0, v0v, u0u, u0v 6∈ E(G), the induced subgraph G[{x1, x2, v0, v, u0, u}] of G is
isomorphic to one of the graphs H1, H2, H3, a contradiction. This contradiction
shows that I1 ∪ I2 ⊂ NG[{v, u}] whenever v ∈ I1, u ∈ I2 and vu 6∈ E(G).

Next we show that there exist vertices v0 ∈ I1, u0 ∈ I2 such that v0u0 6∈ E(G)
and I1,2 ⊂ NG({v0, u0}). Suppose to the contrary that the set I1,2 − NG({v, u})
is not empty for every v ∈ I1, u ∈ I2 if vu 6∈ E(G). It is easy to see that for
nonadjacent vertices v ∈ I1, u ∈ I2 and for any vertices v ∈ I1 − NG[v] and
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Fig. 8. The graphs F1 and F2 of the proof of Theorem 2.4.3
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u ∈ I2 − NG[u], the subgraph A = G[{x1, x2, v, v, u, u}] is isomorphic to one of
the graphs F1, F2 in Figure 8, as otherwise A would be isomorphic to one of the
forbidden graphs H1, H2, H3. We distinguish two subcases.

Subcase 2.1: A is isomorphic to F1. Then for any x ∈ I1,2 − NG({v, u}),
the subgraph G[V (A) ∪ {x}] is isomorphic to H5 if |{v, u} ∩ NG(x)| = 2 or
G[V (A)∪{x}] contains H2 or H3 as an induced subgraph if |{v, u}∩NG(x)| ≤ 1,
a contradiction.

Subcase 2.2: A is isomorphic to F2. First let us observe that if there exists a
vertex x ∈ I1,2 − (NG({v, u}) ∪ NG({v, u})), then the subgraph G[V (A) ∪ {x}] is
isomorphic to H6, contradicting the hypothesis of the theorem. Thus assume that
the set I1,2 − (NG({v, u})∪NG({v, u})) is empty. Since the sets I1,2 −NG({v, u})
and I1,2 − NG({v, u}) are not empty and I1,2 ⊂ NG({v, u}) ∪ NG({v, u}), the
sets (I1,2 − NG({v, u})) ∩ NG({v, u}) and (I1,2 − NG({v, u})) ∩ NG({v, u}) are
nonempty and disjoint. For y ∈ (I1,2 − NG({v, u})) ∩ NG({v, u}) and z ∈ (I1,2 −
NG({v, u}))∩NG({v, u}) we consider the subgraph G[V (A)∪{y, z}]. It is evident
that G[V (A)∪{y, z}] is isomorphic to one of the graphs H7, . . . ,H10 (H11, . . . ,H14,
resp.) if yz 6∈ E(G) (yz ∈ E(G), resp.). Again, we have obtained a contradiction
to the hypothesis of the theorem and therefore we shall suppose that there exist
vertices v ∈ I1, u ∈ I2 such that vu 6∈ E(G) and I1,2 ⊂ NG({v, u}).

The proof may now be completed. It follows from the above established ob-
servations that there exist vertices v ∈ I1, u ∈ I2 such that vu 6∈ E(G) and
I1 ∪ I2 ∪ I1,2 ⊂ NG[{v, u}]. Then consider the set D1 = (D0 − {x1, x2}) ∪ {v, u}.
Let x ∈ V (G) − D1 = P ∪ R, where P = V (G) − (D0 ∪ I1 ∪ I2 ∪ I1,2) and
R = (I1∪I2∪I1,2∪{x1, x2})−{v, u}. The fact that D0 is a dominating set of G and
the definitions of the sets I1, I2, and I1,2 imply that NG(x)∩ (D0 −{x1, x2}) 6= ∅
and therefore NG(x) ∩ D1 6= ∅ for each x ∈ P . From the choice of the vertices v
and u we have NG(x) ∩ {v, u} 6= ∅ for each x ∈ R. Hence D1 is a dominating set
of G. Since |D1| = |D0| and NG({v, u}) ∩ D1 = ∅, D1 is a minimum dominating
set of G with e(G[D1]) < e(G[D0]). Again, we have obtained a contradiction to
the choice of D0. This contradiction completes the proof.

Sumner [133] defines a graph G to be domination perfect if for each induced
subgraph H of G, γ(H) = i(H). It follows from Theorem 2.4.3 that if G has no
induced subgraph isomorphic to any of the graphs H1, . . . ,H14 of Figure 7, then G
is domination perfect. The converse implication is not true as H10 is domination
perfect itself. The same theorem implies that the characterization of domination
perfect graphs offered in [161] is not correct. (According to Theorem 3 of [161],
a graph G is domination perfect if and only if G does not contain as an induced
subgraph any of H1, . . . ,H4 in Figure 7. However, the graph H6 of Figure 7 is
the smallest counterexample to this characterization, since H6 is not domina-
tion perfect and it does not contain as an induced subgraph any of H1, . . . ,H4.)
Theorem 2.4.3 immediately implies some next results about domination perfect
graphs.
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Corollary 2.4.5. Let G be a graph of girth at least four. Then G is domina-

tion perfect if and only if G contains no induced subgraph isomorphic to one of

the four graphs H1, H2, H3, H4 of Figure 7.

P r o o f. The necessity follows from the observation that H1, . . . ,H4 are not
domination perfect. The sufficiency follows from Theorem 2.4.3 and the observa-
tion that of the graphs of Figure 7, only H1, . . . ,H4 are of girth at least four.

The proofs of the next two corollaries are similar to that of Corollary 2.4.5.

Corollary 2.4.6. A graph of girth at least five is domination perfect if and

only if it does not contain H1 as an induced subgraph.

Corollary 2.4.7 [133]. A chordal graph is domination perfect if and only if

it does not contain H1 as an induced subgraph.

Corollary 2.4.8 [133]. A graph G is domination perfect if and only if γ(H) =
i(H) for every induced subgraph H of G with γ(H) = 2.

P r o o f. The necessity is obvious. To prove the sufficiency, assume that a graph
G is not domination perfect. We may assume that γ(G) < i(G) while γ(F ) = i(F )
for every proper induced subgraph F of G. Take a minimum dominating set D0

of G, adjacent vertices x1, x2 ∈ D0, sets I1, I2, I1,2 as in the proof of Theorem
2.4.3, and consider the subgraph H induced by I1 ∪ I2 ∪ I1,2 ∪ {x1, x2}. Observe
that γ(H) = 2 < i(H), for otherwise we could find a minimum dominating set
D1 of G such that G[D1] has fewer edges than G[D0].

Corollary 2.4.9. If a graph G has no induced subgraph isomorphic to one of

the six graphs H1, H2, H3, H4, F1, F2 of Figures 7 and 8, then G is domination

perfect.

P r o o f. The result is immediate from Theorem 2.4.3, since G (and every
induced subgraph of G) does not have an induced subgraph isomorphic to one of
the graphs H5, . . . ,H14 if it does not have an induced subgraph isomorphic to F1

or F2.

Corollary 2.4.10. If G is a graph in which no two induced subgraphs iso-

morphic to K1,3 have a common edge and different centers, then G is domination

perfect.

P r o o f. Under these conditions on G, no induced subgraph of G contains any
of the graphs H1, . . . ,H14 as an induced subgraph and the result follows from
Theorem 2.4.3.

The subdivision graph S(G) of a graph G is a graph with the property that
there exists a one-to-one correspondence between its vertices and the elements of
G such that two vertices of S(G) are adjacent if and only if the corresponding
elements of G are an edge and an incident vertex. In other words, S(G) is a graph
obtained from G by inserting a new vertex on each edge of G. The next result is
immediate from Corollary 2.4.10.
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Corollary 2.4.11. For any graph G, the subdivision graph S(G) is domina-

tion perfect.

For a graph G, let C3(G) denote the set {v ∈ V (G) : α(G[NG(v)]) ≥ 3}.
We say that a graph G is almost K1,3-free if the set C3(G) is independent and
γ(G[NG(v)]) ≤ 2 for every v ∈ C3(G). Certainly, every K1,3-free graph is almost
K1,3-free. For any graph Hi of Figure 7, the set C3(Hi) is not independent and
therefore an almost K1,3-free graph contains no induced subgraph isomorphic
to any of the graphs H1, . . . ,H14 of Figure 7. Thus, from Theorem 2.4.3, we
immediately get the following generalization of Corollary 2.4.2.

Corollary 2.4.12. Every almost K1,3-free graph is domination perfect.

The next two theorems give other instances in which the lower irredundance,
domination and independence numbers are equal.

Theorem 2.4.4. If X is a smallest maximal irredundant set in G and X is

independent , then ir(G) = γ(G) = i(G)

P r o o f. Because of Proposition 2.1.3, it suffices to show that ir(G) = i(G).
Suppose on the contrary that ir(G) 6= i(G). Then |X| = ir(G) < i(G) and there-
fore X is not a maximal independent set in G. But then V (G) − NG[X] 6= ∅
and for any x ∈ V (G) − NG[X], the set X ∪ {x} is independent and therefore
irredundant in G, contrary to the maximality of X.

As pointed out before, every maximal independent set of a graph G is a mini-
mal dominating set of G (see Corollary 2.1.3). The converse is generally not true.
Benzaken and Hammer [9] define a graph G to be domistable if every minimal
dominating set of G is independent. It would be a challenging and worth in-
vestigating problem to characterize domistable graphs. Benedetti and Mason [8]
give some examples of domistable graphs, and some conditions for domistability.
It follows from Proposition 2.1.3 and the definition of a domistable graph that
every domistable graph G, in particular, satisfies the equalities

γ(G) = i(G) and α(G) = Γ (G).

We now show that for domistable graphs, ir(G) = γ(G). (We do not know if
a similar result is true for the upper domination number Γ (G) and the upper
irredundance number IR(G) of a domistable graph G.)

Theorem 2.4.5. If G is a domistable graph, then ir(G) = γ(G) = i(G).

P r o o f. Assume that G is domistable and suppose that ir(G) 6= γ(G) = i(G),
so ir(G) < γ(G) = i(G). Let X = {x1, . . . , xn} be a smallest maximal irredun-
dant set in G. Since |X| = ir(G) < γ(G), X does not dominate all the vertices
of G and therefore the set U0 = {x ∈ V (G) − X : NG(x) ∩ X = ∅} is nonempty.
Then, by Theorem 2.1.1(a), the set U1 = {x ∈ V (G) − X : |NG(x) ∩ X| = 1}
is nonempty, either. Denote U2 = V (G) − X − U0 − U1. Certainly, each vertex
of U1 ∪ U2 is adjacent to a vertex of X. By Theorem 2.1.1(a), for each u ∈ U0,
the set Xu = {x ∈ X : IG(x,X) ⊆ NG(u)} is nonempty. Let M be a subset
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of X of the smallest cardinality such that Xu ∩ M 6= ∅ for each u ∈ U0, say
M = {x1, . . . , xm}, m ≤ n. Each vertex xi of M belongs to Xu for some u ∈ U0,
so IG(xi,X) ⊆ NG(u) and therefore xi 6∈ IG(xi,X). For each xi ∈ M , we choose
any x′

i ∈ IG(xi,X) and form the set M ′ = {x′
1, . . . , x

′
m}. Note that for each

u ∈ U0, there exists xi ∈ M such that xi ∈ Xu, so u is adjacent to x′
i. We

conclude that the set M ′ dominates U0. Let M ′′ be a minimal subset of M ′ which
dominates U0, say M ′′ = {x1, . . . , xp}, p ≤ m. Then D = X∪M ′′ is a dominating
set of G. However, since D contains X, it follows from Corollary 2.1.4 that D
properly contains a minimal dominating set D′ of G. It follows from the choice
of M ′′ that for each x′

i ∈ M ′′, the set M ′′ − {x′
i} does not dominate U0 and

therefore D − {x′
i} is not dominating in G. This enables M ′′ to be a subset of

D′. Further, since G is domistable and D′ is a minimal dominating set of G,
D′ is independent. Consequently, D′ ⊆ (X − {x1, . . . , xp}) ∪ {x′

1 . . . , x′
p} because

{x′
1, . . . , x

′
p} ⊆ D′ and each xi is adjacent to x′

i, i = 1, . . . , p. Thus, γ(G) ≤
|D′| ≤ |(X − {x1, . . . , xp}) ∪ {x′

1 . . . , x′
p}| = ir(G), contrary to our supposition.

This completes the proof of the theorem.

Sufficient conditions for equality of some of the upper independence, domi-
nation and irredundance numbers of a graph have been presented in [33, 36, 40,
60, 76, 90, 91, 92, 146]. In [40], Cockayne, Hedetniemi and Miller have observed
that if G is the middle graph of a graph (that is, G = L(H ◦ K1) for some graph
H), then α(G) = Γ (G) = IR(G). Favaron [60] shows that if G is K1,3-free and it
contains neither G1 of Figure 6 nor A3 of Figure 1 as an induced subgraph, then
Γ (G) = IR(G). Cockayne, Favaron, Payan and Thomason [36] present several
sufficient conditions for equality of some of the upper parameters. In particular,
they prove the following theorem.

Theorem 2.4.6. If G is a bipartite graph, then α(G) = Γ (G) = IR(G).

P r o o f. Let R and S be the defining sets of the bipartite graph G. Suppose
X is a maximum irredundant set of G and let U be the set of isolated vertices
of G[X]. If X = U , then X is independent, α(G) ≥ |X| = IR(G) and the result
follows from Proposition 2.1.3. If X 6= U , then we define

A = U ∩ R, B = (X ∩ R) − U, C = U ∩ S and D = (X ∩ S) − U.

In this case the sets B and D are nonempty and each vertex of D is adjacent to
a vertex of B (and vice versa). Irredundance implies that d 6∈ IG(d,X) for each
d ∈ D. Moreover, the sets IG(d,X), d ∈ D, are nonempty and disjoint subsets
of (V (G) − X) ∩ R and no vertex of

⋃

d∈D IG(d,X) is adjacent to a vertex of C.
Consequently, A ∪ B ∪ C ∪

⋃

d∈D IG(d,X) is an independent set of G. Therefore
α(G) ≥ |A| + |B| + |C| +

∑

d∈D |IG(d,X)| ≥ |A| + |B| + |C| + |D| = IR(G) and
again the result follows from Proposition 2.1.3.

Cheston, Hare, Hedetniemi and Laskar [33] show that if G is a simplicial
graph, then α(G) = Γ (G). Also, they show that α(G) = Γ (G) = IR(G) for
any edge simplicial graph G; an edge simplicial graph is a graph in which every
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edge belongs to a simplex. A recent result by Golumbic and Laskar [76] shows
that the same holds for circular arc graphs. (A graph is a circular arc graph
if it can be represented as the intersection graph of arcs on a circle.) Jacobson
and Peters [90, 91] and Jacobson, Peters and Rall [92] present several conditions
which involve or do not involve forbidden subgraph characterizations of graphs
G for which α(G) = Γ (G) = IR(G). In [91], Jacobson and Peters survey a wide
variety of families of graphs G for which α(G) = Γ (G) = IR(G). The following
two theorems due to Jacobson and Peters [90] demonstrate the equality of α(G)
and IR(G) for chordal graphs and for graphs which do not contain either K1,3,
C4 or K3 ◦2 as an induced subgraph (the definition of G◦k has been given before
Proposition 2.3.2); we present new proofs of these theorems.

Theorem 2.4.7. If G is a chordal graph, then α(G) = Γ (G) = IR(G).

P r o o f. Assume that the result is not true for some chordal graph. Let G be
a smallest chordal graph with α(G) < IR(G). The choice of G implies that G is
connected and noncomplete. Further, for each v ∈ V (G), since G − v is chordal,
we have α(G− v) = IR(G− v). From this and from Theorem 2.2.1 it follows that
IR(G − v) = IR(G) − 1 (and α(G − v) = α(G)) for each v ∈ V (G). Let X be
any largest irredundant set in G, X ′ be the set of isolated vertices in G[X] and
X ′′ = X−X ′. Further, define Ui = {x ∈ V (G)−X : |NG(x)∩X| = i} for i = 0, 1,
and U2 = {x ∈ V (G) − X : |NG(x) ∩ X| ≥ 2}. We note that U0 = U2 = ∅, for
otherwise X would be irredundant in G − v for each v ∈ U0 ∪ U2. Moreover, we
have X ′ = ∅; otherwise NG(X ′) would be a nonempty subset of U1 and X would
be irredundant in G − v for v ∈ NG(X ′). Thus, V (G) = X ∪ U1 and X = X ′′.
Since no vertex of X is isolated in G[X], IG(x,X) is a nonempty subset of U1 for
each x ∈ X. In addition, for each x ∈ X, IG(x,X) has exactly one vertex; for if
there were x ∈ X with |IG(x,X)| ≥ 2, then X would be irredundant in G− v for
each v ∈ IG(x,X). Thus, each vertex of X is adjacent to exactly one vertex of U1

and vice versa. We note that no vertex of G[U1] is isolated; for if v were isolated
in G[U1] and x were the unique neighbour of v in X, then (X −{x})∪{v} would
be an irredundant set of cardinality IR(G) in G − x. Consequently, each vertex
of X (resp. U1) is adjacent to at least two nonadjacent vertices—one in U1 (resp.
X) and the other in X (resp. U1). Thus, no vertex of G is simplicial and therefore
G is not a chordal graph, contrary to our assumption, and the result follows.

Since a block graph is a chordal graph, we have the following corollary for a
block graph.

Corollary 2.4.13. If G is a block graph, then α(G) = Γ (G) = IR(G).

Theorem 2.4.8. If a graph G does not contain either K1,3, C4 or K3 ◦ 2 as

an induced subgraph, then α(G) = Γ (G) = IR(G).

P r o o f. Suppose it is not true and let G be a smallest graph that does not
contain either K1,3, C4 or K3 ◦ 2 as an induced subgraph and for which α(G) <
IR(G). By the choice of G, G is connected, noncomplete and α(G−v) = IR(G−v)
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for any vertex v of G. Consequently, by Theorem 2.2.1, we have IR(G − v) =
IR(G)−1 = α(G) = α(G−v) for each v ∈ V (G). Let X be any largest irredundant
set in G. For any v ∈ V (G) − X, |X| = IR(G) = IR(G − v) − 1 and therefore
X is not irredundant in G − v. Let X ′ be the set of isolated vertices in G[X]
and define X ′′ = X − X ′, Ui = {x ∈ V (G) − X : |NG(x) ∩ X| = i} for i =
0, 1, and U2 = {x ∈ V (G) − X : |NG(x) ∩ X| ≥ 2}. Note that U0 = U2 = ∅;
otherwise, for every v ∈ U0 ∪ U2, X is irredundant in G − v and consequently
|X| ≤ IR(G − v) = IR(G) − 1 = |X| − 1 which is impossible. Moreover, X ′ = ∅;
otherwise NG(X ′) would be a nonempty subset of U1 and X would be irredundant
in G − v for each v ∈ NG(X ′). Thus, V (G) = X ∪ U1 and X = X ′′. Since no
vertex of X is isolated in G[X], IG(x,X) is a nonempty subset of U1 for each
x ∈ X. In addition, for each x ∈ X, IG(x,X) has exactly one vertex; for if there
were x ∈ X with |IG(x,X)| ≥ 2, then X would be irredundant in G − v for
each v ∈ IG(x,X). Thus, each vertex of X is adjacent to exactly one vertex of
U1 and vice versa. This implies that U1 is another largest irredundant set in G.
Note that no vertex of G[U1] is isolated; for if v were isolated in G[U1] and x were
the unique neighbour of v in X, then (X − {x}) ∪ {v} would be an irredundant
set of cardinality IR(G) in G − x. Consequently, each vertex of X (resp. U1) is
adjacent to at least two nonadjacent vertices—one in U1 (resp. X) and the other
in X (resp. U1). Certainly, G is not a cycle (otherwise α(G) = |V (G)|/2 = IR(G))
and therefore G has a vertex x0 of degree at least three. We may assume that x0

belongs to X. Let x1 and x2 be distinct neighbours of x0 in X. For i = 0, 1, 2,
let yi be the unique element of IG(xi,X). Since K1,3 is not an induced subgraph
of G, the vertices x1 and x2 are adjacent. Similarly, since C4 is not an induced
subgraph of G, the vertices y0, y1 and y2 are mutually nonadjacent. For i = 0, 1, 2,
let y′i be a neighbour of yi in U1. Again, since K1,3 is not an induced subgraph
of G, the vertices y′0, y′1 and y′2 are distinct and mutually nonadjacent. But now
the vertices x0, x1, x2, y0, y1, y2, y′0, y′1, y′2 induce a graph isomorphic to K3 ◦ 2
in G, and we have a final contradiction.

The next theorem shows that the conclusion of the last theorem is also true
for unicyclic graphs.

Theorem 2.4.9. If G is a unicyclic graph, then α(G) = Γ (G) = IR(G).

P r o o f. It is not difficult to verify the result for cycles. Thus let G be a
unicyclic graph of order n (n ≥ 4), G 6= Cn, and suppose that the result is true
for trees (see Theorems 2.4.6 and 2.4.7 or Corollary 2.4.13) and for unicyclic
graphs of order less than n. Since α(G) ≤ Γ (G) ≤ IR(G), it suffices to show
that α(G) ≥ IR(G). Let Ω(G) be the set of end vertices of G and let x be
any farthest vertex from the unique cycle of G. Certainly, x ∈ Ω(G). Let x′

be the unique neighbour of x and denote A = NG(x′) ∩ Ω(G). Suppose X is a
maximum irredundant set of G. The maximality of X implies that A ⊂ X if
A∩X 6= ∅. Similarly, if A∩X = ∅ but x′ ∈ X, then (X−{x′})∪A is a maximum
irredundant set and it contains the vertices of A. Finally, suppose that A∩X = ∅
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and x′ 6∈ X. Then there is exactly one vertex y in X such that IG(y,X) = {x′}
and consequently (X −{y})∪A is a maximum irredundant set containing all the
vertices of A. Therefore we henceforth suppose that X contains the vertices of A.

Consider the graph H = G−(A∪{x′}). It is no problem to observe that X−A
is a maximum irredundant set of H, so IR(H) = IR(G)−|A|. Further, since H is
a tree or a unicyclic graph of order less than n, the induction hypothesis implies
that α(H) = Γ (H) = IR(H). In addition, if I is a maximum independent set in
H, then I ∪ A is independent in G and therefore α(G) ≥ |I ∪A| = α(H) + |A| =
IR(H) + |A| = IR(G). This completes the proof.

The conclusion of Theorem 2.4.9 is not true for connected graphs with two or
more cycles. In fact, the graph G of Figure 3 has two cycles and α(G) = 5 while
Γ (G) = IR(G) = 6.

3. Well covered graphs

3.1. Introduction and preliminary results. A graph G is called well cov-

ered if every maximal independent set of vertices in G is a maximum independent
set. A graph G is said to be well dominated if every minimal dominating set in
G is a minimum dominating set. By analogy to these concepts, a graph G is well

irredundant if every maximal irredundant set in G is a maximum irredundant
set. Equivalently, a graph G is well covered (dominated, irredundant, resp.) if
i(G) = α(G) (γ(G) = Γ (G), ir(G) = IR(G), resp.). A graph G is very well cov-

ered if it is a well covered graph without isolated vertices and α(G) = |V (G)|/2.
It follows from the Proposition 2.1.3 that every well irredundant graph is well
dominated, and every well dominated graph is well covered. The converse is not
necessarily true. For example, the graph G1 in Figure 9 is well dominated but
not well irredundant as I1 = {v1, v4, v7} and I2 = {v3, v5} are both maximal irre-
dundant sets in G1. On the other hand, the graph G2 in Figure 9 is well covered
but not well dominated since D1 = {u1, u3, u6} and D2 = {u2, u5} are minimal
dominating sets of different cardinalities in G2.

r r r
r r r

r r r
r r rr

v1v2v3

v4

v7v6v5

u1u2u3

u6u5u4G1 G2

Fig. 9. The graph G1 (G2, resp.) is well dominated (covered, resp.) but not well irredundant
(dominated, resp.)

The concept of well covered graphs was introduced by Plummer [115] and
generalized by Favaron and Hartnell [63] and Currie and Nowakowski [45]. Some
interest in these graphs is motivated by the fact that a maximum independent
set can always be found efficiently in a well covered graph, whereas the inde-
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pendence set problem is NP -complete for general graphs, as we have mentioned
in the second chapter. The well covered and well dominated graphs have been
studied in a few papers. For example, Staples [130, 131] studied the properties
of the Wn classes of graphs, where a graph G belongs to class Wn if |V (G)| ≥ n
and every n disjoint independent sets in G are contained in n disjoint maximum
independent sets. The Wn classes form a descending chain W1 ⊇ W2 ⊇ . . . and
W1 is the class of well covered graphs. Staples [130] and later Favaron [59] gave
a characterization of very well covered graphs. These graphs include bipartite
well covered graphs which were also characterized by Ravindra [118]. The cubic,
planar, 3-connected graphs which are well covered have been characterized in [28]
by Campbell and Plummer. Finbow and Hartnell [64] characterized well covered
graphs of girth at least 8. Recently Finbow, Hartnell, and Nowakowski in [67]
and [68] have extensively described the well covered graphs of girth at least 5
and the well covered graphs containing neither a cycle C4 nor a cycle C5 as a
subgraph. The well dominated graphs of girth at least five and the well domi-
nated bipartite graphs are characterized in [66] again by Finbow, Hartnell and
Nowakowski. Topp and Volkman [154] studied the well coveredness of products
of graphs. In [150], they have also given structural characterizations of the well
covered and well dominated block graphs and unicyclic graphs. The well irredun-
dant graphs were defined and studied in [146]. Berge [14], among other things,
presents some relationships between the class of well covered graphs and some
other classes of graphs. Other subclasses of the well covered graphs were studied
in [45, 63, 141, 148]. Various approaches to the problem of characterizing families
of well covered graphs have been tried and the reader is referred to an article by
Plummer [116] for an excellent survey of progress.

The main objectives of this chapter are to study various general properties
and various subclasses of well covered graphs. The following is a summary of the
results presented in this chapter.

In §3.1 (an introductory section), we first give several general properties of
maximal independent sets and then we prove theorems due to Staples, Ravindra
and Favaron which characterize the very well covered graphs. Three theorems
which concern well covered (and well dominated) graphs of girth at least five
and well covered cubic, 3-connected, planar graphs (due to Finbow, Hartnell and
Nowakowski, and Campbell and Plummer, resp.) are given without proofs due to
lack of space. All these results are used in the subsequent sections of this chapter.
We also present a subclass of the well covered graphs introduced by Finbow and
Hartnell.

In §3.2, we study the well coveredness of graphs formed from other graphs by
various operations.

In §3.3, we characterize well covered and well dominated graphs within the
following families: simplicial graphs, chordal graphs, circular arc graphs, k-trees,
and C(n)-trees.

In §3.4, we investigate edge and total versions of the well coveredness.
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In §3.5, we show that there are exactly five well covered generalized Petersen
graphs.

In §3.6, we investigate the well irredundance of bipartite graphs, chordal
graphs, and graphs of girth at least five.

We begin with a useful characterization of maximum independent sets of ver-
tices in a graph. This characterization is due to Berge [15].

Proposition 3.1.1. Let I be an independent set in a graph G. Then I is

a maximum independent set of G if and only if every independent subset S of

V (G) − I can be matched into I.

P r o o f. Assume that I is a maximum independent set of G and S is an
independent subset of V (G)− I. Note that |NG(A)∩I| ≥ |A| for every set A ⊆ S;
for if there were A⊆S with |NG(A)∩ I| < |A|, then (I −NG(A)) ∪A would be a
larger independent set in G which is impossible. From this and from König–Hall’s
Theorem (see [15, p. 132]) it follows that S can be matched into I.

Conversely, assume that every independent subset S ⊆ V (G) − I can be
matched into I and suppose indirectly that I is not a maximum independent
set. Then there is an independent set J in G with |J − I| > |I −J | and, certainly,
the set J − I cannot be matched into I, a contradiction.

As in [15], a vertex x of a graph G is called a critical vertex of G if α(G−x) 6=
α(G), or equivalently, if every maximum independent set of G contains x. Note
that every isolated vertex is a critical vertex.

Proposition 3.1.2 [15]. If a graph G has no critical vertex , then every inde-

pendent set J of G can be matched into V (G) − J .

P r o o f. We proceed by induction on |J |. Since G is without critical vertices,
the result is trivial if |J | = 1. Suppose the result is true for sets of cardinality at
most p − 1 and let J be an independent set with |J | = p > 1. Take any vertex
v ∈ J . Since v is not a critical vertex, there exists a maximum independent set
I which does not contain v. By Proposition 3.1.1, J − I can be matched into
I and so into I − J . By the induction hypothesis, J ∩ I can be matched into
V (G)− (J ∩ I) and so into V (G)− (J ∪ I). These two matchings give a matching
of J into V (G) − J .

Corollary 3.1.1 [15]. If a graph G has no critical vertex , then α(G) ≤
|V (G)|/2. Moreover , if α(G) = |V (G)|/2, then G has a perfect matching.

P r o o f. Let I be a maximum independent set in G. By Proposition 3.1.2, I can
be matched into V (G)−I and therefore α(G) = |I| ≤ |V (G)−I| = |V (G)|−α(G).
Hence, α(G) ≤ |V (G)|/2. Certainly, if α(G) = |V (G)|/2, then any matching
between I and V (G) − I is a perfect matching in G.

Proposition 3.1.3. If G is a well covered graph without isolated vertices, then

G has no critical vertices.
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P r o o f. Let x be any vertex of G. It is enough to show that there exists a
maximum independent set in G that does not contain x. Let y be any neighbour
of x and let I be any maximal independent set that contains y. Certainly, x 6∈ I.
In addition, since G is well covered and I is a maximal independent set in G, I
is a maximum independent set in G. This implies the result.

Corollary 3.1.2. If G is a well covered graph without isolated vertices, then

α(G) ≤ |V (G)|/2.

P r o o f. The result is immediate from Corollary 3.1.1 and Propositions 3.1.3.

We now prove the first characterization of the very well covered graphs. The
following theorem is a slight modification of the result due to Staples [130] and
later to Favaron [59].

Theorem 3.1.1. Let G be a connected graph of order n ≥ 2. Then G is very

well covered if and only if G has a perfect matching M and for every edge vu ∈ M ,

(1) vu does not belong to a triangle and

(2) every vertex of NG(v) is adjacent to every vertex of NG(u).

P r o o f. Assume G is a very well covered graph. Then α(G) = n/2 and G
has a perfect matching (see Corollary 3.1.1). Let I be any maximal (and hence
maximum) independent set in G and let M be any perfect matching of G. Cer-
tainly, every edge from M has exactly one of its vertices in I and therefore in
every maximal independent set in G. Take any edge vu from M . Observe that
vu does not belong to a triangle in G; for if there were a vertex y adjacent to
both v and u, then every maximal independent set containing y would contain
none of the vertices v and u of the edge vu from M which is impossible. Simi-
larly, every vertex of NG(v) is adjacent to every vertex of NG(u); for if there were
nonadjacent vertices y ∈ NG(v) and z ∈ NG(u), then every maximal independent
set containing y and z would contain none of the vertices v and u which again is
impossible.

Assume now that G has a perfect matching M such that the conditions (1)
and (2) are satisfied for every edge of M . Let I be any maximal independent set
in G. Then |I| ≤ |M | = n/2 and it is enough to show that |I| = |M |. Suppose also
that |I| < |M |. Then there is an edge vu in M with v, u ∈ V (G)− I. Since I is a
maximal independent set in G, the vertices v and u are adjacent to some vertices
of I, say v′ ∈ NG(v) ∩ I and u′ ∈ NG(u) ∩ I. It follows from (1) and (2) that the
vertices v′ and u′ are different and adjacent, contrary to the independence of I.
Consequently, |I| = |M | = n/2 which completes the proof.

It is obvious from the definition of a very well covered graph that every very
well covered graph is well covered. The converse implication is true for bipartite
graphs.

Proposition 3.1.4. If G is a connected bipartite graph of order n ≥ 2, then

G is well covered if and only if G is very well covered.
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P r o o f. Assume that G is a well covered connected bipartite graph of order
n ≥ 2. Let V1 and V2 be partite sets of vertices of G. Since both V1 and V2 are
maximal independent sets in G, we have

α(G) ≥ max{|V1|, |V2|} ≥ min{|V1|, |V2|} ≥ i(G)

and therefore α(G) = |V1| = |V2| = i(G) = n/2, as α(G) = iG) and |V1|+|V2| = n.
Hence G is very well covered. The converse implication is obvious.

For bipartite graphs we have the following two immediate consequences of
Theorem 3.1.1 and Proposition 3.1.4. These two results were originally due to
Ravindra [118]; the second one describes the structure of well covered trees.

Corollary 3.1.3. A connected bipartite graph G of order n ≥ 2 is well covered

if and only if G has a perfect matching M and for every vu ∈ M , the induced

subgraph G[NG({v, u})] is a complete bipartite graph.

P r o o f. The result follows from Theorem 3.1.1, Proposition 3.1.4 and the fact
that a bipartite graph does not have any triangle.

Corollary 3.1.4. A tree T is well covered if and only if every interior vertex

of T is adjacent to exactly one end vertex of T .

P r o o f. Assume that T is a well covered tree, T 6= K1. Then, by Corollary
3.1.3, T has a perfect matching M and so every interior vertex of T is adjacent
to at most one end vertex of T . On the other hand, if v is an interior vertex
of T , then there is a vertex u in T such that vu ∈ M . Since G[NG({v, u})] is a
complete bipartite graph and T has no cycles, G[NG({v, u})] is a star and u is an
end vertex in T . Thus, every interior vertex of T is adjacent to exactly one end
vertex of T .

If T 6= K1 and every interior vertex of T is adjacent to exactly one end vertex
of T , then the end edges of T form a perfect matching of T and for every end
edge vu of T , the subgraph G[NG({v, u})] is complete bipartite. Thus, T is well
covered by Corollary 3.1.3.

We remark that Corollary 3.1.4 may also be stated in the form “A tree T is
well covered if and only if T = K1 or T = R ◦ K1 for some tree R.”

The following simple property of the well covered graphs was first observed
by Campbell and Plummer [28]; we present a somewhat different proof here.

Proposition 3.1.5. If G is a well covered graph, then for each independent

set I in G, G − NG[I] is a well covered graph.

P r o o f. Suppose on the contrary that G−NG[I] is not well covered for some
independent set I of G. Then there are maximal independent sets I1 and I2 in
G − NG[I] with |I1| 6= |I2|. But then, since no vertex of I is adjacent to a vertex
of V (G) − NG[I] in G, it is easy to observe that I1 ∪ I and I2 ∪ I are maximal
independent sets of different cardinalities in G, contradicting the well coveredness
of G.



Domination, independence and irredundance 51

It follows from Proposition 3.1.5 that if G is a well covered graph, then G −
NG[v] is a well covered graph for every vertex v of G. This condition often provides
a quick means for showing that a given graph fails to be well covered. On the
other hand, that this condition is not sufficient for any graph to be well covered,
may be seen by considering a star K1,n with n ≥ 2. In the next theorem we will
show that for a K2,3-free graph G with i(G) > 1, this condition is sufficient for
the well coveredness of G.

Theorem 3.1.2. Let G be a graph with i(G) > 1 and assume that no induced

subgraph of G is isomorphic to K2,3. Then G is well covered if and only if for

every vertex v of G, G − NG[v] is a well covered graph.

P r o o f. The “only if” part of the theorem follows from Proposition 3.1.5. To
prove the “if” part, assume that G is a K2,3-free graph with i(G) ≥ 2, G−NG[v]
is a well covered graph for every vertex v of G, and suppose to the contrary that
G is not well covered. Then G possesses maximal independent sets of different
cardinality. First we claim that any two maximal independent sets (of G) of dif-
ferent cardinality are disjoint. Suppose, to the contrary, that there are maximal
independent sets I1 and I2 in G such that |I1| 6= |I2| and I1 ∩ I2 6= ∅. Then for
every v0 ∈ I1 ∩ I2, the sets I1 −{v0} and I2 −{v0} are maximal independent sets
in G−NG[v0] and |I1 −{v0}| 6= |I2 −{v0}|. This contradicts the well coveredness
of G − NG[v0] and proves our claim.

Let J1 and J2 be two maximal independent sets of G with |J1| 6= |J2|, say
|J1| < |J2|. We now claim that G[J1 ∪ J2] is a complete bipartite graph. Since
the sets J1 and J2 are independent and disjoint, it suffices to show that every
vertex of J1 is adjacent to every vertex of J2. Suppose to the contrary that
there are nonadjacent vertices v and u in G[J1 ∪ J2] such that v ∈ J1 and
u ∈ J2. Let I be any maximal independent set of G that contains v and u.
Then I ∩ J1 6= ∅, I ∩ J2 6= ∅, and |I| 6= |J1| or |I| 6= |J2|, a contradiction to
the first claim. Thus, G[J1 ∪ J2] is a complete bipartite graph. From this and
from the inequalities 2 ≤ i(G) ≤ |J1| < |J2| it follows that the complete bi-
partite graph K2,3 is an induced subgraph of G. This contradicts our assump-
tion that G is a K2,3-free graph. With this contradiction the theorem is estab-
lished.

We shall now briefly mention three interesting and important theorems con-
cerning some subclasses of the well covered graphs. These three theorems are deep
and their proofs are difficult and long and therefore we refer the readers who are
interested in this topic to the original papers. In [28], Campbell and Plummer
gave the following characterization of cubic, 3-connected, planar, well covered
graphs. (Campbell, Ellingham and Royle [27] have recently characterized all well
covered cubic graphs.)

Theorem 3.1.3. There are exactly four cubic, planar , 3-connected , well cov-

ered graphs and they are shown in Figure 10.
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Fig. 10. The four graphs of Theorem 3.1.3

A series of papers by Finbow and Hartnell [64, 65] and Finbow, Hartnell and
Nowakowski [66, 67, 68] has been devoted to characterizations of well covered and
well dominated graphs of girth at least five, and well covered graphs containing
neither a cycle C4 nor a cycle C5 as a subgraph. We need the following definitions.
A cycle C of a graph G is said to be basic if C is of length 5 and does not contain
two adjacent vertices of degree three or more. Let PC be the family of graphs
defined as follows: A graph G belongs to the family PC if its vertex set can be
partitioned into two subsets, say VP and VC , where VP consists of the vertices
incident with the end edges of G and, in addition, the end edges form a perfect
matching of the subgraph G[VP ] induced by VP , while VC consists of the vertices
of the basic 5-cycles and the vertex sets of the basic 5-cycles form a partition of
VC . It is possible that one of the sets VP and VC is empty. Note that the subgraph
G[VP ] is the corona of some graph H and K1. If G ∈ PC and the set VP (VC ,
resp.) is empty, then we say that G belongs to the family C (P, resp.). Notice
that if a graph G of order p belongs to the family C, then G contains at least 3p/5
vertices of degree two. Figure 11 contains a graph G which belongs to PC.
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b b b b b b
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Fig. 11. A graph of the family PC

The following two structural characterizations of well covered and well domi-
nated graphs of girth at least five are the keys to some of our theorems.

Theorem 3.1.4 [67]. Let G be a connected graph of girth at least five. Then

G is well covered if and only if either G belongs to the family PC, or G = K1, or

G is isomorphic to one of the five graphs Q13, P13, C7, P10, or P14 in Figures 12
and 13.

Theorem 3.1.5 [66]. If a graph G belongs to the family PC, then G is well

dominated if and only if for every pair of basic 5-cycles there is either no edge

joining them, exactly two edges and they are vertex disjoint , or four edges.

Corollary 3.1.5. Let G be a connected graph of girth at least five. Then G
is well dominated if and only if either G = K1, or G is isomorphic to one of the

three graphs C7, P10, and P14 in Figure 13, or G belongs to the family PC and
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for every pair of basic 5-cycles there is either no edge joining them or exactly two

edges and they are vertex disjoint.
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Fig. 12. The graphs Q13 and P13 of Theorem 3.1.4
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Fig. 13. The graphs C7, P10 and P14 of Theorem 3.1.4

P r o o f. Since every well dominated graph is well covered and the graphs Q13

and P13 of Figure 12 are not well dominated, the result follows from Theorems
3.1.4 and 3.1.5 and from the fact that no two basic 5-cycles are joined by four
edges in a graph of girth at least five.

Corollary 3.1.6 [66]. A connected graph of girth at least five is well covered

if and only if it is well dominated.

Two new subclasses of the well covered graphs were introduced and studied
in [65] by Finbow and Hartnell. First we recall some terminology from [65]. A
dominating set D of a graph G is defined to be locating ([41, 127, 128, 129]) if
NG(v) ∩ D 6= NG(u) ∩ D for every pair of vertices v, u ∈ V (G) − D. In [65],
Finbow and Hartnell call a graph G to be an EDL graph if every dominating
set of G is locating. They also refer to a graph G as an EIDL graph if every
independent dominating set of G is locating. Certainly, every EDL graph is an
EIDL graph. As the graph G2 in Figure 9 shows, the converse is, in general, not
true. In what follows, it is helpful to note that if G is an EIDL graph and I is
an independent set of vertices in G, then G−NG[I] is also an EIDL graph. (The
formal proof of this fact is similar to the proof of Proposition 3.1.5.) The following
relationship between the EIDL and well covered graphs was observed by Finbow
and Hartnell [65].

Theorem 3.1.6. Every EIDL graph is well covered.

P r o o f. Suppose that G is an EIDL graph which is not well covered. Among
the pairs (S, T ) of the maximal independent subsets of V (G) with |S| > |T |,
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choose one, say (H,K), such that H−K has the smallest cardinality. We complete
the proof by showing that there exists a maximal independent set K ′ in G with
|K ′| ≤ |K| and |H − K ′| < |H − K|.

Take any x ∈ H−K. Observe that NG(x)∩K 6= ∅. Moreover, if |NG(x)∩K| =
1, say NG(x) ∩ K = {y}, then K ′ = (K − {y}) ∪ {x} is the independent set
required to complete the proof: indeed K ′ is an independent set in G and, in
addition, it is a maximal independent set, for if there were v ∈ V (G) − K ′ such
that NG(v) ∩ K ′ = ∅, then it would be NG(v) ∩ K = {y} = NG(x) ∩ K which is
impossible in an EIDL graph.

The proof can thus be completed by showing that for each x ∈ H − K with
|NG(x) ∩ K| ≥ 2 there is a maximal independent set K ′′ such that |K ′′| ≤ |K|,
|H−K ′′| ≤ |H−K|, and |NG(x)∩K ′′| < |NG(x)∩K|. Consider the subgraph G′′ =
G−NG[K−NG(x)]. Certainly, G′′ is an EIDL graph and the set A={x}∪(NG(x)∩
K) is a subset of V (G′′). Moreover, V (G′′) − A 6= ∅, for otherwise {x} would be
a maximal independent set in G′′ such that NG′′(v) ∩ {x} = NG′′(u)∩ {x} = {x}
for any two vertices v, u ∈ NG(x)∩K. Observe that for every y ∈ V (G′′)−A, the
set NG(y)∩K is nonempty and it is a proper subset of NG(x)∩K, for otherwise
NG(y) ∩ K = NG(x) ∩ K. Among the vertices of V (G′′) − A, choose one, say y0,
such that NG(y0) ∩ K has the smallest cardinality. Then, as it is easy to check,
K ′′ = (K − NG(y0)) ∪ {y0} is the required maximal independent set in G.

Complete graphs of order at least three show that not every well covered graph
is an EIDL graph. However, this is not the case if we restrict our attention to well
covered graphs of girth at least five.

Theorem 3.1.7 [65]. Let G be a graph of girth at least five. Then G is an

EIDL graph if and only if G is well covered.

P r o o f. Assume that G is a well covered graph of girth at least five and
suppose on the contrary that G is not an EIDL graph. Then there exist a maximal
independent set I in G and different vertices v, u ∈ V (G)−I such that NG(v)∩I =
NG(u)∩ I. It follows from the girth restriction that NG(v)∩ I = {x} = NG(u)∩ I
for some x ∈ I. But then (I − {x}) ∪ {v, u} is a greater independent set in G
which is impossible in a well covered graph. The second part of the result follows
from Theorem 3.1.5.

r r r r
r
r

r
r

WL8

Fig. 14. The graph WL8 is an EDL graph

A structural characterization of the well covered graphs of girth at least five
and therefore a structural characterization of the EIDL graphs of girth at least five
is given in Theorem 3.1.4. Finally, Finbow and Hartnell [65] gave a representation
theorem of the EDL graphs: a connected graph G is an EDL graph if and only if
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G ∈ {K1, C7,WL8} ∪ {H ◦ K1 : H is a connected graph}, where the graph WL8

is given in Figure 14.

3.2. The well coveredness of products of graphs. Many techniques for
building various families of well covered graphs have been provided by Staples
[130, 131], Campbell [34], and recently by Gasquoine, Hartnell, Nowakowski, and
Whitehead [74], Pinter [113], and Whitehead [159]. In this section, we study the
following types of graph products with respect to the well covered and the very
well covered properties: the corona, the join, the disjunction, the conjunction,
the lexicographic product, and the cartesian product of graphs. Conditions for
these products of graphs to be (very) well covered are established based upon the
factors. The products of graphs used here can be found in the literature under
various aliases. To avoid confusion, we state the definitions explicitly. All the
results of this section are taken from the paper by Topp and Volkmann [154].

The corona of graphs. For a graph G and a family H = {Hv : v ∈ V (G)} of
graphs indexed by the vertices of G, the corona G ◦H of G and H is the disjoint
union of G and Hv, v ∈ V (G), with additional edges joining each vertex v of G
to all vertices of Hv. If all the graphs of the family H are isomorphic to one and
the same graph H then we shall write G ◦ H instead of G ◦ H.

The following results specify when the corona G ◦ H is a (very) well covered
graph.

Theorem 3.2.1. Let G be a graph, and let H = {Hv : v ∈ V (G)} be a family

of nonempty graphs indexed by the vertices of G. Then the corona G◦H is a well

covered graph if and only if H consists of complete graphs.

P r o o f. Assume that G◦H is a well covered graph. For every vertex v ∈ V (G),
let Iv be any maximum independent set in Hv. It is easy to see that I =

⋃

v∈V (G) Iv

is a maximal (and thus, maximum) independent set in G◦H. We claim that Hv is
a complete graph for every v ∈ V (G). Suppose that Hv0

is not a complete graph
for some v0 ∈ V (G). Then |Iv0

| > 1 and by removing Iv0
from I and replacing it

by {v0}, we form the set I ′ which is also a maximal independent set in G ◦H but
which is smaller than I, a contradiction. This implies that the above condition is
necessary for the corona G ◦ H to be well covered.

We now assume that each graph of the family H is complete. Let I be a
maximal independent set in G ◦ H. It follows from the definition of G ◦ H and
the choice of I that either v ∈ I or |I ∩ V (Hv)| = 1 for every v ∈ V (G); for if
there were a vertex v0 in G such that v0 6∈ I and I ∩ V (Hv0

) = ∅, then, for any
x ∈ V (Hv0

), the set I ∪ {x} would be a larger independent set in G ◦ H which is
impossible. This implies that each maximal independent set in G◦H has exactly
|V (G)| elements. Hence G ◦ H is well covered.

Corollary 3.2.1. For any graph G and a positive integer n, the corona G◦Kn

is a well covered graph.
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The above theorem and its proof immediately yield the next corollary.

Corollary 3.2.2. For a graph G and a family H of nonempty graphs indexed

by the vertices of G, the corona G ◦H is very well covered if and only if G ◦H =
G ◦ K1.

The lexicographic product. For a graph G and a family H = {Hv : v ∈ V (G)}
of nonempty graphs indexed by the vertices of G, the lexicographic product G[H]
of G and H is the graph having vertex set V (G[H]) =

⋃

v∈V (G){(v, u) : u ∈
V (Hv)} =

⋃

v∈V (G){v}×V (Hv), and two vertices (v1, v2) and (u1, u2) of G[H] are
adjacent whenever either [v1u1 ∈ E(G)] or [v1 = u1 and v2u2 ∈ E(Hv1

)]. If all
the graphs of the family H are isomorphic to one and the same graph H then we
shall write G[H] instead of G[H]. For a subset S of V (G[H]), we denote πG(S) =
{x ∈ V (G) : ∃y∈V (Hx)(x, y) ∈ S} and πHx(S) = {y ∈ V (Hx) : (x, y) ∈ S} for
every x ∈ πG(S).

The join G1 + G2 of two graphs G1 and G2 is defined as the disjoint union of
G1 and G2 with additional edges linking each vertex of G1 with each vertex of
G2. It is obvious that the join G1 +G2 is isomorphic to the lexicographic product
K2[{G1, G2}].

In this subsection we establish some necessary and sufficient conditions for the
(very) well coveredness of the lexicographic product of graphs. Our first propo-
sition describes the maximal independent sets in the lexicographic product of
graphs.

Proposition 3.2.1. Let G be a graph and H = {Hv : v ∈ V (G)} a family

of nonempty graphs indexed by the vertices of G. A subset S of V (G[H]) is a

maximal independent set in G[H] if and only if πG(S) is a maximal independent

set in G, and for every v ∈ πG(S), the set πHv (S) is a maximal independent set

in the graph Hv.

P r o o f. Assume that the set S ⊆ V (G[H]) is a maximal independent set in
G[H]. It is obvious from the definition of the lexicographic product that the set
πG(S) is independent in G, and for every v ∈ πG(S), the set πHv (S) is independent
in Hv. We claim that πG(S) is a maximal independent set in G and πHv (S) is
a maximal independent set in Hv for v ∈ πG(S). First suppose that πG(S) is
not a maximal independent set in G. Then there is v0 ∈ V (G) − πG(S) such
that the set πG(S) ∪ {v0} is independent in G. Hence, for every x ∈ V (Hv0

), the
set S ∪ {(v0, x)} would be a greater independent set in G[H], a contradiction.
Similarly, the set πHv (S) (for v ∈ πG(S)) is a maximal independent set in Hv, as
otherwise there is x ∈ V (Hv)− πHv (S) such that πHv (S)∪ {x} is independent in
Hv and then S ∪ {(v, x)} would be a greater independent set in G[H], which is
impossible.

On the other hand, if πG(S) is a maximal independent set in G and πHv (S) is
a maximal independent set in Hv, v ∈ πG(S), then S is a maximal independent
set in G[H]; for if not, then there is a vertex (v0, x0) ∈ V (G[H]) − S such that
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S ∪{(v0, x0)} is independent in G[H] and then πG(S ∪{(v0, x0)}) = πG(S)∪{v0}
or πHv0

(S ∪ {(v0, x0)}) = πHv0
(S) ∪ {x0} is a greater independent set in G or in

Hv0
, respectively, which is impossible. This completes the proof.

We are now ready to show conditions for the lexicographic product of graphs to
be well covered. (Pinter, in his Ph.D. thesis [113], was able to employ the following
theorem to obtain infinite families of W2 graphs and well covered graphs G for
which G − e is also well covered for each edge e ∈ E(G).)

Theorem 3.2.2. Let G be a graph and H = {Hv : v ∈ V (G)} a family of

nonempty graphs indexed by the vertices of G. Then the lexicographic product

G[H] is a well covered graph if and only if G and H satisfy the following two

conditions:

(1) each graph Hv of the family H is well covered ,

(2)
∑

v∈SG
α(Hv) =

∑

u∈S′

G
α(Hu) for any two maximal independent sets SG

and S′
G of G.

P r o o f. We begin by assuming that G[H] is a well covered graph. First we
claim that every graph Hv from H is well covered. For if not, let Hv0

be a coun-
terexample. Then Hv0

has two maximal independent sets of different cardinality,
say Iv0

and I ′v0
. Let SG ⊆ V (G)−{v0} be such that SG ∪{v0} is a maximal inde-

pendent set in G. For every v ∈ SG, let Iv be any maximal independent set in Hv.
Since |Iv0

| 6= |I ′v0
|, Proposition 3.2.1 implies that

⋃

v∈SG
{(v, x) : x ∈ Iv}∪{(v0, y) :

y ∈ Iv0
} and

⋃

v∈SG
{(v, x) : x ∈ Iv} ∪ {(v0, t) : t ∈ I ′v0

} are maximal independent
sets of different cardinality in G[H], which contradicts our assumption. Hence,
each graph of the family H is well covered if the graph G[H] is well covered.

Let SG and S′
G be two maximal independent sets in G. We now claim that

∑

v∈SG
α(Hv) =

∑

v∈S′

G
α(Hv). To prove this, let Jv be any maximum independent

set in Hv for v ∈ SG ∪ S′
G. Proposition 3.2.1 and the assumption on G[H] imply

that S =
⋃

v∈SG
{(v, x) : x ∈ Jv} and S′ =

⋃

v∈S′

G
{(v, x) : x ∈ Jv} are maximum

independent sets in G[H]. Hence |S| = |S′| and then from the observation |{(v, x) :
x ∈ Jv}| = |Jv | = α(Hv) (for v ∈ SG ∪ S′

G) we have
∑

v∈SG
α(Hv) = |S| = |S′| =

∑

v∈S′

G
α(Hv), and our assertion follows.

For the converse, assume G and H satisfy the conditions (1) and (2). We shall
prove that G[H] is a well covered graph. For this purpose, assume that S is a
maximal independent set in G[H]. Then, by Proposition 3.2.1, πG(S) is a maximal
independent set in G and πHv (S) is a maximal independent set in Hv for every v ∈
πG(S). Since S =

⋃

v∈πG(S){(v, x) : x ∈ πHv (S)} and |πHv (S)| = α(Hv) (by (1)),
|S| =

∑

v∈πG(S) |{(v, x) : x ∈ πHv (S)}| =
∑

v∈πG(S) |πHv (S)| =
∑

v∈πG(S) α(Hv).
Consequently, by (2), any two maximal independent sets in G[H] have the same
cardinality and therefore G[H] is a well covered graph.

Corollary 3.2.3. The lexicographic product G[H] of two nonempty graphs G
and H is a well covered graph if and only if G and H are well covered graphs; if

graphs G and H are nonempty and one of them is without isolated vertices, then
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the lexicographic product G[H] is very well covered if and only if exactly one of

G and H is very well covered and the second is totally disconnected , i.e., without

edges.

P r o o f. The first part of the assertion easily follows from Theorem 3.2.2. Thus
we shall only prove the second part. Let a = |V (G)| and b = |V (H)|.

We first assume that G[H] is very well covered. Then G and H are well covered
(by the first part of the corollary), and α(G[H])= |V (G[H])|/2=ab/2. Moreover,
it follows from Proposition 3.2.1 that α(G[H]) = α(G)α(H). Since G or H is
without isolated vertices, Corollary 3.1.1 implies that α(G) ≤ a/2 or α(H) ≤ b/2.
Therefore ab/2 = α(G)α(H) ≤ (a/2)α(H) or ab/2 = α(G)α(H) ≤ α(G)b/2. This
makes it obvious that α(H) = b and α(G) = a/2 or α(G) = a and α(H) = b/2.
From this it may be concluded that H is totally disconnected and G is very well
covered or vice versa, as claimed.

Finally, if G is very well covered and H is totally disconnected (or G is totally
disconnected and H is very well covered), then α(G)=a/2, α(H)=b (or α(G)=
a, α(H)=b/2) and G[H] is well covered. Moreover, since α(G[H]) = α(G)α(H) =
ab/2 = |V (G[H])|/2, G[H] is very well covered.

Corollary 3.2.4. The join G+H of two nonempty graphs G and H is a well

covered graph if and only if G and H are well covered graphs and α(G) = α(H);
G + H is very well covered if and only if both G and H are totally disconnected

and have the same number of vertices.

P r o o f. The first part of the assertion immediately follows from Theorem
3.2.2, since G + H is isomorphic to K2[{G,H}].

In order to prove the second part, assume first that G and H are totally
disconnected and each of them has n vertices. Then G + H is isomorphic to the
bipartite complete graph Kn,n. Since Kn,n is very well covered, G + H is very
well covered.

Now assume that G + H is very well covered. Then at once α(G + H) =
|V (G + H)|/2 = |V (G)|/2 + |V (H)|/2 and α(G + H) = α(G) = α(H). Since
α(G) ≤ |V (G)| and α(H) ≤ |V (H)|, so we have α(G) = |V (G)| = |V (H)| =
α(H), and thus G and H are totally disconnected graphs of the same order.

The disjunction of graphs. In this subsection the (very) well coveredness of
a disjunction graph is established based upon the (very) well coveredness of the
factors. The disjunction G1∨G2 of graphs G1 and G2 is the graph having vertex set
V (G1∨G2) = V (G1)×V (G2), and two vertices (v1, v2) and (u1, u2) of G1∨G2 are
adjacent whenever v1u1 ∈ E(G1) or v2u2 ∈ E(G2). For a subset S of V (G1∨G2),
we denote by πG1

(S) and πG2
(S) the projections of S onto V (G1) and V (G2)

respectively, so πG1
(S) = {x ∈ V (G1) : ∃y∈V (G2)(x, y) ∈ S} and πG2

(S) = {y ∈
V (G2) : ∃x∈V (G1)(x, y) ∈ S}.

The next four properties of independent sets in a disjunction graph will help
provide a well coveredness criterion for the disjunction of two graphs.
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Proposition 3.2.2. If Ii ⊆ V (Gi) is an independent set in a graph Gi (i =
1, 2), then I1 × I2 is an independent set in G1 ∨ G2.

P r o o f. Since the set Ii is independent in Gi, NGi(vi) ⊆ V (Gi) − Ii for each
vertex vi ∈ Ii (i = 1, 2). Hence NG1∨G2

((v1, v2)) = (NG1
(v1)×V (G2))∪ (V (G1)×

NG2
(v2)) ⊆ ((V (G1) − I1) × V (G2)) ∪ (V (G1) × (V (G2) − I2)) = V (G1 ∨ G2) −

(I1 × I2) for each (v1, v2) ∈ I1 × I2, and therefore the set I1 × I2 is independent
in G1 ∨ G2.

Proposition 3.2.3. If a set I ⊆ V (G1 ∨G2) is independent in G1 ∨G2, then

the set πGi(I) is independent in Gi (i = 1, 2).

P r o o f. Let v1, v2 be any two vertices from πG1
(I). We claim that they are

nonadjacent; for if not, then vertices (v1, v
′
1), (v2, v

′
2) ∈ I (for some v′1, v

′
2 ∈ V (G2))

would be adjacent in G1∨G2, which is impossible. This implies that the set πG1
(I)

is independent in G1. We conclude similarly that πG2
(I) is an independent set

in G2.

Proposition 3.2.4. If Ii ⊆ V (Gi) is a maximal independent set in Gi (i =
1, 2), then I1 × I2 is a maximal independent set in G1 ∨ G2.

P r o o f. By Proposition 3.2.2, the set I1 × I2 is independent in G1 ∨ G2. We
claim that I1 × I2 is a maximal independent set in G1 ∨ G2. Suppose to the
contrary that I1 × I2 is a proper subset of some independent set I in G1 ∨ G2.
Then the set πGi(I) is independent in Gi (by Proposition 3.2.3) and Ii ⊆ πGi(I)
for i = 1, 2. Since |Ii| ≤ |πGi(I)| (i = 1, 2) and |I1 × I2| < |I| ≤ |πG1

(I)×πG2
(I)|,

|I1| < |πG1
(I)| or |I2| < |πG2

(I)| and therefore at least one of the sets I1 and I2

is not a maximal independent set in G1 and G2, respectively, a contradiction.

Proposition 3.2.5. If I⊆V (G1∨G2) is a maximal independent set in G1∨G2,
then I = πG1

(I)×πG2
(I) and πGi(I) is a maximal independent set in Gi (i = 1, 2).

P r o o f. Assume that I is a maximal independent set in G1 ∨G2. By Proposi-
tion 3.2.3, πGi(I) is an independent set in Gi (i = 1, 2). Let Ii be an independent
set in Gi such that πGi(I) ⊆ Ii (i = 1, 2). Then πG1

(I)×πG2
(I) and I1×I2 are in-

dependent sets in G1∨G2 by Proposition 3.2.2. Since I⊆πG1
(I)×πG2

(I) ⊆ I1×I2,
from the maximality of I we have I = πG1

(I) × πG2
(I) = I1 × I2. In addition,

πG1
(I) = I1 and πG2

(I) = I2. Consequently, πG1
(I) and πG2

(I) are maximal
independent sets in G1 and G2, respectively.

With the above, the main result of this subsection falls out quite quickly.

Theorem 3.2.3. The disjunction G1∨G2 of graphs G1 and G2 is a well covered

graph if and only if the graphs G1 and G2 are well covered.

P r o o f. Assume G1 and G2 are well covered graphs. In order to prove the
sufficiency, it is enough to show that every maximal independent set in G1 ∨ G2

has α(G1)α(G2) elements. Let I ⊆ V (G1 ∨ G2) be any maximal independent
set in G1 ∨ G2. Then by Proposition 3.2.5, I =πG1

(I) × πG2
(I), and πG1

(I) and
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πG2
(I) are maximal independent sets in G1 and G2, respectively. Consequently, by

hypothesis, |πG1
(I)| = α(G1), |πG2

(I)| = α(G2) and therefore |I| = α(G1)α(G2).

On the other hand assume that G1 ∨ G2 is well covered and suppose on the
contrary that G1 or G2 is not well covered. Without loss of generality, we may
assume that G1 is not well covered. Then G1 has two maximal independent sets
of different cardinality, say I1 and I ′1. Let I2 be a maximal independent set in G2.
Then by Proposition 3.2.4, I1 × I2 and I ′1 × I2 are maximal independent sets of
different cardinality in G1 ∨ G2, a contradiction. This proves the necessity and
completes the proof of the theorem.

Corollary 3.2.5. If graphs G1 and G2 are nonempty and one of them is

without isolated vertices, then the disjunction G1 ∨G2 is very well covered if and

only if exactly one of G1 and G2 is very well covered and the second is totally

disconnected.

The proof of Corollary 3.2.5 is similar to the proof of the second part of
Corollary 3.2.3, so it will be omitted.

The conjunction of graphs. The conjunction G1 ∧ G2 of graphs G1 and G2

is the graph having vertex set V (G1 ∧ G2) = V (G1) × V (G2), and two vertices
(v1, v2) and (u1, u2) of G1 ∧ G2 are adjacent if v1u1 ∈ E(G1) and v2u2 ∈ E(G2).

In this subsection we study conditions for the well coveredness of conjunction
graphs. We begin with a simple observation.

Proposition 3.2.6. Let G1 and G2 be graphs without isolated vertices. If I1

and I2 are maximal independent sets in G1 and G2 respectively , then I1 × V (G2)
and V (G1) × I2 are maximal independent sets in G1 ∧ G2.

P r o o f. Assume that I1 is a maximal independent set in G1, and G2 has no
isolated vertex. Then NG1

(v) ∩ I1 = ∅ (6= ∅, resp.) if v ∈ I1 (v ∈ V (G1) − I1,
resp.), and NG2

(u) 6= ∅ for u ∈ V (G2). Thus NG1∧G2
((v, u)) ∩ (I1 × V (G2)) =

(NG1
(v)∩I1)×NG2

(u) = ∅ (6= ∅, resp.) if (v, u) ∈ I1×V (G2) ((v, u) 6∈ I1×V (G2),
resp.). Hence I1 × V (G2) is a maximal independent set in G1 ∧ G2. Likewise,
V (G2) × I2 is a maximal independent set in G1 ∧ G2.

The next theorem gives some necessary conditions for the conjunction of two
graphs to be well covered.

Theorem 3.2.4. If G1 and G2 are graphs without isolated vertices and G1∧G2

is a well covered graph, then

(1) G1 and G2 are well covered and

(2) α(G1)|V (G2)| = α(G2)|V (G1)|.

P r o o f. Let Ii be any maximal independent set in Gi (i=1, 2). By Proposition
3.2.6, I1 × V (G2) and V (G1) × I2 are maximal independent sets in G1 ∧ G2.
Since G1 ∧G2 is well covered, the sets I1 × V (G2) and V (G1)× I2 have the same
cardinality and therefore |I1||V (G2)| = |I2||V (G1)|. This implies that |Ii| = α(Gi)
(i = 1, 2) and then the result follows.
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The implication in Theorem 3.2.4 cannot be reversed. This can be seen with
the aid of the cycle C5 of length 5. The graphs G1 = G2 = C5 have the properties
(1) and (2) of Theorem 3.2.4, and it is easy to check that C5 ∧ C5 is not a well
covered graph. However, for very well covered graphs the converse of Theorem
3.2.4 is true. The following proposition is useful to prove that fact.

Proposition 3.2.7. Let v1, . . . , v2n and u1, . . . , u2m be the vertices of graphs

G1 and G2, respectively. If the edges v2i−1v2i (i = 1, . . . , n) and u2j−1u2j (j =
1, . . . ,m) form a perfect matching in G1 and G2 respectively , then the edges

(v2i−1, u2j−1)(v2i, u2j) and (v2i, u2j−1)(v2i−1, u2j) (i = 1, . . . , n; j = 1, . . . ,m)
form a perfect matching of the graph G1 ∧ G2.

P r o o f. The proof is immediate.

The following theorem and its corollaries will establish where the class of very
well covered conjunction graphs belongs to the world of the well covered graphs.

Theorem 3.2.5. Let G1 and G2 be graphs without isolated vertices. Then the

graph G1 ∧G2 is very well covered if and only if G1 and G2 are very well covered.

P r o o f. Let G1 ∧G2 be a very well covered graph. By Theorem 3.2.4, G1 and
G2 are well covered. Clearly, G1 and G2 are very well covered; for if not, there
exists a maximal independent set I1 in G1 (or I2 in G2) such that |I1| 6= |V (G1)|/2
(or |I2| 6= |V (G2)|/2) and then |I1 × V (G2)| = |I1||V (G2)| 6= |V (G1)||V (G2)|/2 =
|V (G1 ∧ G2)|/2 (or |V (G1) × I2| 6= |V (G1 ∧ G2)|/2), which is impossible since
I1 × V (G2) (or V (G1)× I2) is a maximal independent set in G1 ∧G2. Hence, G1

and G2 are very well covered if G1 ∧ G2 is very well covered.

Conversely, assume that the graphs G1 and G2 are very well covered. For
i = 1, 2, let Mi be a perfect matching of Gi that has the properties (1) and
(2) of Theorem 3.1.1 in Gi. Assume that M1 = {v2i−1v2i : i = 1, . . . , n} and
M2 = {u2j−1u2j : j = 1, . . . ,m}. By Proposition 3.2.7,

M = {(v2i−1, u2j−1)(v2i, u2j), (v2i, u2j−1)(v2i−1, u2j) :

i = 1, . . . , n and j = 1, . . . ,m}

is a perfect matching of G1 ∧ G2 and in order to prove that G1 ∧ G2 is very well
covered it is enough to show that M satisfies the conditions of Theorem 3.1.1 in
G1 ∧ G2.

First we claim that no edge of M belongs to a triangle in G1 ∧ G2. Let (v, u)
be any vertex of G1 ∧ G2. It follows from the property (1) of M1 and M2 that
{v2i−1, v2i} 6⊆ NG1

(v) (i = 1, . . . , n) and {u2j−1, u2j} 6⊆ NG2
(u) (j = 1, . . . ,m).

Hence, neither {(v2i−1, u2j−1), (v2i, u2j)} nor {(v2i−1, u2j), (v2i, u2j−1)} is a subset
of NG1∧G2

((v, u)) (i = 1, . . . , n; j = 1, . . . ,m) and therefore no edge of M belongs
to a triangle in G1 ∧ G2.

Finally, we claim that the matching M has the property (2) (of Theorem 3.1.1)
in G1∧G2. Since M1 and M2 have the property (2) in G1 and G2 respectively, every
vertex v ∈ NG1

(v2i−1) is adjacent to every vertex v′ ∈ NG1
(v2i) (i = 1, . . . , n) in
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G1, and every vertex u ∈ NG2
(u2j−1) is adjacent to every vertex u′ ∈ NG2

(u2j)
(j = 1, . . . ,m) in G2. This combined with the definition of the conjunction
of graphs implies that every vertex (v, u) ∈ NG1∧G2

((v2i−1, u2j−1)) is adjacent to
every vertex (v′, u′) ∈ NG1∧G2

((v2i, u2j)), and every (v, u′) ∈ NG1∧G2
((v2i−1, u2j))

is adjacent to every (v′, u) ∈ NG1∧G2
((v2i, u2j−1)) (i = 1, . . . , n; j = 1, . . . ,m).

This implies the desired claim and finishes the proof.

Corollary 3.2.6. Let G1 and G2 be graphs without isolated vertices. If at

least one of G1 and G2 is very well covered , then the following statements are

equivalent :

(1) G1 ∧ G2 is well covered ,

(2) G1 ∧ G2 is very well covered ,

(3) both G1 and G2 are very well covered.

P r o o f. We have already proved that (2) and (3) are equivalent, and since
(2) trivially implies (1), it suffices to prove that (1) implies (3). Let us assume
that G1 ∧ G2 is well covered and G2 is very well covered. By Theorem 3.2.4, G1

is well covered and α(G1)|V (G2)| = α(G2)|V (G1)| = |V (G1)||V (G2)|/2. Thus
α(G1) = |V (G1)|/2 and hence G1 is very well covered.

There is an analogous result for bipartite graphs.

Corollary 3.2.7. Let G1 and G2 be graphs without isolated vertices. If at

least one of G1 and G2 is bipartite, then the following statements are equivalent :

(1) G1 ∧ G2 is well covered ,

(2) G1 ∧ G2 is very well covered ,

(3) G1 and G2 are very well covered.

P r o o f. By Theorem 3.2.5, (2) and (3) are equivalent. Our assumption on G1

and G2 imply that G1 ∧ G2 is a bipartite graph without isolated vertices, so (1)
and (2) are equivalent by Proposition 3.1.4.

The above results give rise to some interesting observations. For example, if
both G1 and G2 are graphs without isolated vertices, then: (a) G1 ∧ G2 is very
well covered if and only if both G1 and G2 are very well covered; (b) G1 ∧ G2 is
not well covered if exactly one of G1 and G2 is very well covered; (c) G1 and G2

are well covered but not very well covered if G1 ∧G2 is well covered but not very
well covered.

As we have already admitted, it is possible that G1 ∧ G2 is not well covered
whereas G1 and G2 are well covered. It appears difficult to find general theorems
for the cases where each of the graphs G1, G2 and G1 ∧ G2 is well but not very
well covered.

We conclude this section with well covered conjunctions of complete graphs
and cycles.
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Proposition 3.2.8. The conjunction Kn∧Km of complete graphs Kn and Km

(n,m ≥ 2) is a well covered graph if and only if n = m; Kn ∧ Km is a very well

covered graph if and only if n = m = 2.

P r o o f. The necessity of the first part follows immediately by applying The-
orem 3.2.4 to Kn ∧ Km. On the other hand, assume that I is a maximal in-
dependent set in Kn ∧ Kn and (v, u) ∈ I. Since NKn∧Km((v, u)) ∩ I = ∅ and
NKn∧Km((v, u)) = (V (Kn) − {v}) × (V (Kn) − {u}), the maximality of I implies
that either I = {v} × V (Kn) or I = V (Kn) × {u}. Therefore every maximal
independent set in Kn ∧ Kn has exactly n elements, so Kn ∧ Kn is well covered.
Since K2 is the only complete very well covered graph, Theorem 3.2.5 implies
that Kn ∧ Km is very well covered if and only if n = m = 2.

Proposition 3.2.9. The conjunction Cn ∧ Cm of cycles Cn and Cm is a well

covered graph if and only if n = m = 3 or 4; Cn ∧Cm is a very well covered graph

if and only if n = m = 4.

P r o o f. It is clear that if n and k are integers such that n ≥ 3 and ⌈n/3⌉ ≤ k ≤
⌊n/2⌋, then in the cycle Cn there exists a maximal independent set of cardinality
k. This implies that the cycle Cn is well covered if and only if ⌈n/3⌉ = ⌊n/2⌋,
that is, if and only if n = 3, 4, 5 or 7.

Certainly, C4 is the only very well covered cycle. Therefore, by Theorem 3.2.5,
Cn ∧ Cm is very well covered if and only if n = m = 4. This proves the second
part of the theorem. The well coveredness of C3 ∧ C3 follows from Proposition
3.2.8, since C3 = K3.

On the other hand, assume that the conjunction Cn∧Cm is well covered. Then
Cn and Cm are well covered by Theorem 3.2.4; hence, n,m ∈ {3, 4, 5, 7}. Again,
by Theorem 3.2.4, none of the six graphs C3 ∧ C4, C3 ∧ C5, C3 ∧ C7, C4 ∧ C5,
C4 ∧C7, C5 ∧C7 is well covered. One can verify that neither C5 ∧C5 nor C7 ∧C7

is well covered. Thus, C3∧C3 and C4 ∧C4 are the only well covered conjunctions
of cycles.

Corollary 3.2.8. The conjunction Cn ∧ Km of a cycle Cn (n ≥ 3) and a

complete graph Km (m ≥ 2) is a well covered graph if and only if n = m = 3 or

n = 4 and m = 2; Cn ∧ Km is very well covered if and only if n = 4 and m = 2.

P r o o f. This follows at once from the above results.

The cartesian product of graphs. The cartesian product G1×G2 of two graphs
G1 and G2 is the graph having vertex set V (G1 × G2) = V (G1) × V (G2), and
two vertices (v1, v2) and (u1, u2) of G1 × G2 are adjacent if [v1u1 ∈ E(G1) and
v2 = u2] or [v1 = u1 and v2u2 ∈ E(G2)].

We are not able to give a complete description of the relationship between
the well coveredness of graphs formed by the cartesian product and their factors.
However, we consider some special cases which seem interesting. Since the carte-
sian product nK1 × G is isomorphic to nG, we may only consider the cartesian
product of graphs which are not totally disconnected. We begin by proving that
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for such graphs, the cycle C4 (= K2 ×K2) is the only connected, bipartite, (very)
well covered cartesian product of graphs.

Theorem 3.2.6. If G1, G2 are connected bipartite graphs and each of them is

different from K1, then G1 × G2 is well covered if and only if G1 = G2 = K2.

P r o o f. If G1 = G2 = K2, then G1 × G2 = C4 is well covered. Conversely,
assume that G1 ×G2 is a well covered graph. Since G1, G2 are bipartite, G1 ×G2

is bipartite. Thus, according to Corollary 3.1.3, G1 × G2 has a perfect match-
ing M such that for every edge (x, y)(x′, y′) ∈ M , the subgraph induced by
NG1×G2

((x, y)) ∪ NG1×G2
((x′, y′)) is a complete bipartite graph. We claim that

G1 = G2 = K2. For if not, without loss of generality, let G1 be a counterexample
and let v be a vertex of degree at least two in G1. Then for any v′ ∈ NG1

(v),
v′′ ∈ NG1

(v) − {v′}, u ∈ V (G2) and u′ ∈ NG2
(u), the vertices (v′′, u) and (v′, u′)

are not adjacent in G1×G2 but each of them is adjacent to exactly one of the ver-
tices incident with the edge (v, u)(v′, u) (and (v, u)(v, u′)). Therefore neither the
subgraph induced by NG1×G2

((v, u)) ∪NG1×G2
((v′, u)) (for any v′ ∈ NG1

(v)) nor
the subgraph induced by NG1×G2

((v, u)) ∪NG1×G2
((v, u′)) (for any u′ ∈ NG2

(u))
is complete bipartite. This implies that no edge incident with the vertex (v, u) be-
longs to M , contrary to the hypothesis that M is a perfect matching in G1×G2.

Corollary 3.2.9. If G1, G2 are connected very well covered graphs, then

G1 × G2 is very well covered if and only if G1 = G2 = K2.

P r o o f. Assume that G1, G2, and G1 × G2 are very well covered graphs. Let
Ii be a maximum independent set in Gi (i = 1, 2). It is then clear that the set
I1 × I2 is independent in G1 ×G2. Let I be a maximum independent superset of
I1 × I2 in G1 × G2. Obviously, |I| = |V (G1 × G2)|/2 = |(I1 × I2) ∪ ((V (G1) −
I1) × (V (G2) − I2))|. By the maximality of Ii, every vertex vi ∈ V (Gi) − Ii

is adjacent to some vertex of Ii in Gi (i = 1, 2). Thus every vertex (v1, v2) ∈
((V (G1) − I1) × I2) ∪ (I1 × (V (G2) − I2)) is adjacent to some vertex of I1 × I2.
Hence I is a subset of (I1×I2)∪((V (G1)−I1)×(V (G2)−I2)) and so I = (I1×I2)∪
((V (G1)−I1)×(V (G2)−I2)). By the independence of (V (G1)−I1)×(V (G2)−I2)
in G1 × G2, the sets V (G1) − I1 and V (G2) − I2 are independent in G1 and G2,
respectively. This implies the bipartition of G1 and G2. The rest follows from
Theorem 3.2.6 and Proposition 3.1.4.

For the cartesian product of complete graphs we have

Proposition 3.2.10. For all positive integers n and m, Kn × Km is well

covered.

P r o o f. Assume n ≤ m and V (Kn × Km) = {x1, x2, . . . , xn} × {y1, y2, . . . ,
ym}. Let I be any maximal independent set in Kn × Km. In order to prove that
Kn × Km is well covered, we shall show that α(Kn × Km) = n and |I| = n. It
is easy to see that |I ∩ ({xi} × V (Km))| ≤ 1 and |I ∩ (V (Kn) × {yj})| ≤ 1 for
i = 1, . . . , n and j = 1, . . . ,m. Hence |I| ≤ n and therefore α(Kn × Km) ≤ n.
On the other hand, since the set {(x1, y1), (x2, y2), . . . , (xn, yn)} has n elements
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and is independent in Kn × Km, α(Kn × Km) = n. There remains only to show
that |I| = n. Suppose indirectly that |I| < n. Then the sets V (Kn) − πKn(I)
and V (Km) − πKm(I) are nonempty, and for every x ∈ V (Kn) − πKn(I) and
y ∈ V (Km) − πKm(I), the proper superset I ∪ {(x, y)} of I is independent in
Kn × Km, a contradiction.

We now study the well coveredness of the cartesian product of two cycles. Let
Cn and Cm be two cycles with V (Cn) = {x1, . . . , xn}, V (Cm) = {y1, . . . , ym},
E(Cn) = {xixi+1 : i = 1, . . . , n − 1} ∪ {x1xn}, and E(Cm) = {yjyj+1 : j =
1, . . . ,m − 1} ∪ {y1ym}. For the cartesian product Cn × Cm of the cycles Cn

and Cm, we define In,m to be the set of those vertices (xi, yj) of Cn × Cm for
which i = 1, . . . , 2⌊n/2⌋, j = 1, . . . , 2⌊m/2⌋ and i + j is an even integer. Put
I∗n,m = In,m ∪ {(xn, ym)} if both n and m are odd, while I∗n,m = In,m in other
cases. It is easy to check the following properties of the set I∗n,m in Cn × Cm.

Proposition 3.2.11. For all integers n,m ≥ 3, the set I∗n,m is a maximal

independent set in Cn ×Cm; in addition, |I∗n,m| = 2⌊n/2⌋⌊m/2⌋ + 1 if both n and

m are odd , whereas |I∗n,m| = 2⌊n/2⌋⌊m/2⌋ in other cases.

Proposition 3.2.12. For every integer m ≥ 3, the cartesian product C3 ×Cm

is well covered.

P r o o f. Let I be any maximal independent set in C3 × Cm. As in the proof
of Proposition 3.2.10, it is enough to show that α(C3 × Cm) = m and |I| = m.
Since |I ∩ (V (C3)×{yj})| ≤ 1 for j = 1, . . . ,m, so |I| ≤ m and α(C3 ×Cm) ≤ m.
On the other hand, by Proposition 3.2.11, the set I∗3,m is independent in C3 ×Cm

and |I∗3,m| = m. Hence α(C3 × Cm) = m. We now claim that |I| = m. For if
not, then |I| < m and therefore I ∩ (V (C3) × {yj}) = ∅ for some j ∈ {1, . . . ,m},
say j = 2. The maximality of I implies that NC3×Cm((xi, y2)) ∩ I 6= ∅ for each
i = 1, 2, 3. From this and from the structure of C3×Cm it follows that the subset
⋃3

i=1 NC3×Cm((xi, y2)) ∩ I of V (C3) × {y1, y3} has at least three vertices. Hence,
I∩(V (C3)×{y1}) or I∩(V (C3)×{y3}) has at least two vertices, a contradiction.

Proposition 3.2.13. For all integers n,m ≥ 4, the cartesian product Cn×Cm

is not well covered.

P r o o f. The result follows from Theorem 3.2.6 if both n and m are even. Thus
it suffices to show that Cn ×Cm is not well covered if n or m is odd. We consider
two cases.

C a s e 1: n and m are odd. By Proposition 3.2.11, the set I∗n,m is a maximal
independent set in Cn × Cm. On the other hand, it is easy to check that the set

Jn,m = (I∗n,m − {(x1, y1), (x1, y3), (x2, y2)}) ∪ {(x1, y2), (xn, y3)}

is also a maximal independent set in Cn ×Cm. Since |I∗n,m| 6= |Jn,m|, Cn ×Cm is
not well covered.
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C a s e 2: Exactly one of n and m is odd. Since Cn × Cm is isomorphic to
Cm ×Cn, we may assume that m is odd. An easy verification shows that the set

Nn,m = (I∗n,m − {(x1, y1), (x1, y3), (x2, y2), (xn, y2)}) ∪ {(x1, y2), (x1, ym)}

is a maximal independent set in Cn×Cm. Since Nn,m is smaller than I∗n,m, Cn×Cm

is not a well covered graph. This completes the proof.

We summarize the above results in the following corollary.

Corollary 3.2.10. The cartesian product Cn × Cm of cycles Cn and Cm is

well covered if and only if n = 3 or m = 3.

Staples [130, 131] has observed that K2 × G is a Wn−1 graph if G is a Wn

graph (n≥2). This implies that the cartesian products K2 ×C3 and K2 ×C5 are
well covered. We conclude this section with the observation that the cycles C3,
C5, and the graph K1 + (K2 ∪ nK1) (for n ≥ 1) are the only unicyclic graphs G
for which the cartesian product K2 ×G is well covered. We begin by proving the
following useful proposition.

Proposition 3.2.14. Suppose that a connected graph G contains a bridge v1v2

such that v1 is not an end vertex in G and the set NG(v1) is independent. Then

the cartesian product K2 × G is not well covered.

P r o o f. Let V (K2) = {a, b}, U = NG(v1) − {v2}, and let Gi = G′
i − vi,

where G′
i is the connected component of G − v1v2 that contains the vertex vi

(i = 1, 2). Let S be a maximal independent set in G1 − U , let T be a maximal
independent superset of U in G1 −S, and let W be a maximal independent set in
K2×G−NK2×G({b}×(V (G′

1)∪{v2})) (= K2×G2−NK2×G((b, v2))). Notice that
W ∪({a}×S)∪({b}×T )∪{(a, v1), (b, v2)} and W ∪({b}×S)∪({a}×T )∪{(b, v2)}
are maximal independent sets of different cardinality in K2 ×G. Thus K2 ×G is
not well covered.

Proposition 3.2.15. If G is a connected unicyclic graph, then the cartesian

product K2 ×G is well covered if and only if G = C3, G = C5 or G = K1 + (K2 ∪
nK1) for some positive integer n.

P r o o f. We consider two cases.
C a s e 1: G is a cycle, G = Cn. Since K2×Cn is a cubic, planar, 3-connected

graph, it follows from Theorem 3.1.3 that K2 × Cn is well covered if and only if
n = 3 or n = 5.

C a s e 2: G is not a cycle. Let C be the unique cycle of G, V (K2) = {a, b},
and assume that K2 × G is a well covered graph. Then it easily follows from
Proposition 3.2.14 that C is a cycle of length three and each end vertex of G is
adjacent to a vertex of C. Let V (C) = {v1, v2, v3} be the vertex set of C and
denote pi = |NG(vi) − V (C)| (i = 1, 2, 3). We may assume that p1 ≥ p2 ≥ p3.
We claim that p2 = p3 = 0. For if not, then p2 > 0 and the sets I = ({a} ×
(V (G) − V (C))) ∪ {(b, v3)} and I ′ = ({a} × (NG({v1, v2}) − {v1, v2})) ∪ ({b} ×
(NG(v3)−{v2})) are maximal independent sets of different cardinality in K2×G,
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a contradiction. Hence, G = K1 + (K2 ∪nK1) (for n = p1) and it is easy to check
that K2 × (K1 + (K2 ∪ nK1)) is well covered.

To conclude this section, let us observe that there are a number of questions
raised by the results presented here. For example, the problem of finding a “nice”
characterization of well covered graphs G1 and G2 for which G1 ∧ G2 is well
covered has not been solved in this section. The results of the last subsection
indicate the difficulty to find a characterization of graphs G1 and G2 for which
G1×G2 is well covered. Finally, is it possible to find a pair of graphs, G1 and G2,
for which G1 × G2 is well covered but both G1 and G2 are not well covered?

3.3. Well covered simplicial and chordal graphs. It is quite easy to
embed, as an induced subgraph, any graph G in a well covered supergraph. Indeed,
for any graph G, the corona H = G◦K1 contains G and it is a well covered graph.
The last graph is a simplicial graph as well. It also follows from other results
presented in this chapter that well covered graphs are very often (but not always)
simplicial graphs. In this section, we describe well covered and well dominated
simplicial graphs. Next we characterize well covered and well dominated chordal
graphs. Again it follows from this characterization that every well covered chordal
graph is a simplicial graph. Finally, we discuss the concept of well coveredness
for circular arc graphs and for C(n)-trees. We begin with the following property
of simplices in well covered graphs.

Proposition 3.3.1. If G is a well covered graph, then all its simplices are

pairwise vertex-disjoint.

P r o o f. Assume G is a well covered graph and suppose that S1, S2 are two
distinct simplices of G containing a common vertex v. Let I be any maximal
independent set of G containing the vertex v. Select two simplicial vertices v1

and v2 from S1 and S2, respectively. Since v1 is not adjacent to v2 and neither
v1 nor v2 is adjacent to any vertex of I − {v}, the set (I − {v}) ∪ {v1, v2} is
independent in G and contains one vertex more than I, a contradiction to the
well coveredness of G.

As a converse to Proposition 3.3.1 we now prove Proposition 3.3.2 below.

Proposition 3.3.2. If a graph G has n simplices and every vertex of G belongs

to exactly one simplex of G, then γ(G) = i(G) = α(G) = Γ (G) = n.

P r o o f. Let S1, . . . , Sn be the simplices of G and assume that every vertex of
G belongs to exactly one of S1, . . . , Sn. Then the sets V (S1), . . . , V (Sn) form a
partition of V (G). Proposition 2.1.3 implies that in order to prove the result, it
suffices to show that every minimal dominating set of G has exactly n vertices. Let
D be any minimal dominating set of G. First let us observe that D∩V (Si) 6= ∅ for
i = 1, . . . , n; otherwise D∩V (Si0) = ∅ for some i0 ∈ {1, . . . , n} and then D would
not be dominating because NG[v]∩D = V (Si0)∩D = ∅ for any simplicial vertex v
of G belonging to Si0 . Hence |D∩V (Si)|≥1 for i = 1, . . . , n. On the other hand, it
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follows from the minimality of D that |D ∩ V (Si)| ≤ 1 for i = 1, . . . , n; otherwise
|D ∩ V (Sj0)| ≥ 2 for some j0 ∈ {1, . . . , n} and then, for any u ∈ D ∩ V (Sj0),
D − {u} would be a smaller dominating set of G. Consequently, |D ∩ V (Si)| = 1
for i = 1, . . . , n and therefore |D| = n. This completes the proof.

The following theorem gives a simple characterization of the well covered sim-
plicial graphs.

Theorem 3.3.1. A graph G is simplicial and well covered if and only if every

vertex of G belongs to exactly one simplex of G.

P r o o f. If G is a simplicial graph and S1 . . . , Sn are the simplices of G, then
V (G) =

⋃n
i=1 V (Si). In addition, if G is well covered, then by Proposition 3.3.1,

the sets V (S1), . . . , V (Sn) are disjoint and therefore every vertex of G belongs
to exactly one simplex of G. The converse implication follows from Proposition
3.3.2.

The main result of this section is a characterization of well covered chordal
graphs. This characterization is given in Theorem 3.3.2 and it follows from a
more general characterization of well covered graphs without induced cycles of
length four given in Proposition 3.3.4. The following property of C4-free graphs is
required for our proof of Proposition 3.3.4. This property is a simple generalization
of a property established by Farber [56, Lemma 5].

Proposition 3.3.3. Let S and T be disjoint sets of vertices of a C4-free graph

G. If the subgraphs G[S] and G[T ] are complete, then there exists a vertex s0 in

S such that NG(s0) ∩ T = NG(S) ∩ T .

P r o o f. The proof is by induction on m = |S ∩ NG(T )|. If m ≤ 1, then the
result is trivially true. Suppose m > 1 and that the result is valid for all m′ < m.
Take any s ∈ S ∩ NG(T ). By the induction hypothesis, there exists s′ ∈ S − {s}
such that NG(S − {s}) ∩ T = NG(s′) ∩ T . Certainly, if NG(s) ∩ T ⊆ NG(s′) ∩ T
or NG(s′) ∩ T ⊆ NG(s) ∩ T , then s′ or s, respectively, is the desired vertex.
Thus the proof will be complete if we can show that at least one of the two sets
NG(s) ∩ T and NG(s′) ∩ T contains the other one. Suppose to the contrary that
neither NG(s) ∩ T ⊆ NG(s′) ∩ T nor NG(s′) ∩ T ⊆ NG(s) ∩ T . Then, for every
t ∈ (NG(s) −NG(s′)) ∩ T and every t′ ∈ (NG(s′) − NG(s)) ∩ T , the vertices s, s′,
t, t′ form an induced cycle of length four in G, a contradiction. This completes
the proof of the proposition.

Proposition 3.3.4. If G is a C4-free graph, then the following statements are

equivalent :

(1) Every vertex of G belongs to exactly one simplex of G;

(2) i(G) = α(G) = θ(G).

P r o o f. Let S1, . . . , Sn be the simplices of G. If every vertex of G belongs to
exactly one of them, then i(G) = α(G) = n (by Proposition 3.3.2) and θ(G) ≤ n.
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From this and from the obvious inequality α(G) ≤ θ(G), we also have α(G) =
θ(G). This proves the implication (1)⇒(2).

Let S1, . . . , Sn be a clique covering of G, where n = θ(G) = α(G) = i(G). To
prove the implication (2)⇒(1), it suffices to prove the following two claims.

Claim 1. S1, . . . , Sn are mutually disjoint .

Claim 2. S1, . . . , Sn are simplices of G.

P r o o f o f C l a i m 1. Suppose to the contrary that v is a common vertex of
Si and Sj (i 6= j), and let I be any maximal independent set of G containing v.
Then, since |I ∩ (V (Si) ∪ V (Sj))| = 1 and |I ∩ V (Sk)| ≤ 1 for k = 1, . . . , n, we
have |I| ≤ n − 1 < α(G), a contradiction.

P r o o f o f C l a i m 2. Suppose to the contrary that at least one of the cliques
S1, . . . , Sn is not a simplex of G, say Sn is not a simplex of G. Then n ≥ 2
and every vertex of Sn is adjacent to some vertex of V (G) − V (Sn). Let I be
any minimal subset of V (G) − V (Sn) such that V (Sn) ⊆ NG(I), say |I| = k.
We claim that the set I is independent in G. Suppose not, and let v and u be
adjacent vertices of I. Applying Proposition 3.3.3 to {v, u} and V (Sn), we have
that NG({v, u})∩V (Sn) = NG(v)∩V (Sn) or NG({v, u})∩V (Sn) = NG(u)∩V (Sn).
But then V (Sn) ⊆ NG(I −{u}) or V (Sn) ⊆ NG(I −{v}) and this contradicts the
minimality of I. Thus I is independent and this implies that |I ∩ V (Si)| ≤ 1 for
i = 1, . . . , n− 1. Hence, k = |I| ≤ n− 1 and we may assume that |I ∩ V (Si)| = 1
for i = 1, . . . , k. Let J be any (possibly empty) maximal independent set in the
subgraph G − NG[I]. Since J ⊆ V (G) − NG[I] ⊆

⋃n−1
j=k+1 V (Sj), it is immediate

that |J | ≤ n−k−1. Moreover, since J∩NG[I] = ∅, I∪J is a maximal independent
set of G and |I ∪ J | ≤ n − 1 < α(G), a final contradiction.

The following simple characterization of well covered chordal graphs due to
Prisner, Topp and Vestergaard [117] follows from Proposition 3.3.4.

Theorem 3.3.2. Let G be a chordal graph. Then G is well covered if and only

if every vertex of G belongs to exactly one simplex of G.

P r o o f. Let G be a chordal graph. Since α(G) = θ(G) (by Proposition 2.3.3)
and since every chordal graph is C4-free, the result follows from Proposition
3.3.4.

Corollary 3.3.1. If G is a chordal or simplicial graph, then the following

statements are equivalent :

(1) γ(G) = Γ (G), i.e. G is well dominated ;

(2) γ(G) = α(G);
(3) i(G) = Γ (G);
(4) i(G) = α(G), i.e. G is well covered ;
(5) Every vertex of G belongs to exactly one simplex of G.

P r o o f. The implications (1)⇒(2)⇒(4) and (1)⇒(3)⇒(4) are obvious from
Proposition 2.1.3. The implication (4)⇒(5) follows from Theorem 3.3.1 if G is
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a simplicial graph and from Theorem 3.3.2 if G is a chordal graph. Finally, the
implication (5)⇒(1) is the content of Proposition 3.3.2.

Corollary 3.3.1 generalizes previously known equivalences for trees [59, 118,
131] and block graphs [149, 150]. Because of the equivalence (2)⇔(5), the chordal
graphs in which every vertex belongs to exactly one simplex form a solution to
the Szamko lowicz problem posed in [135] (and to Problem 1(c) of Laskar and
Walikar [100]) for chordal graphs.

For a positive integer k, k-trees are defined recursively as follows. A complete
graph on k vertices is the smallest k-tree, and a k-tree with n + 1 > k vertices
is obtained by adding to a k-tree with n vertices a new vertex adjacent to k
mutually adjacent old vertices. Certainly, every 1-tree is a tree and vice versa. It
is also easy to observe that every k-tree is a chordal graph and therefore Theorem
3.3.2 implies the following characterization of well covered k-trees.

Corollary 3.3.2. A k-tree G is a well covered graph if and only if every

vertex of G belongs to exactly one simplex of G.

The last corollary again generalizes previously known results for trees [59, 118,
131] and 2-trees [141] and completely solves the problem posed in [141]. Since
every simplicial vertex of a k-tree of order at least k + 1 is a vertex of degree
k (and vice versa), as a consequence of the last corollary we have the following
property of well covered k-trees.

Corollary 3.3.3. If G is a well covered k-tree of order at least k + 1, then G
is a graph of order (k + 1)n for some positive integer n.

From Theorem 3.3.2 we can also deduce a characterization of well covered
circular arc graphs. First we mention some definitions. A graph G is a circular

arc graph if the vertices of G can be put in a one-to-one correspondence with a
set of arcs on a circle such that two distinct vertices of G are adjacent if and
only if their associated arcs intersect. Circular arc graphs were introduced as a
generalization of interval graphs (similarly defined, except that intervals on a real
line are used instead of arcs on a circle) and they have been extensively studied.
The reader is referred to [75, Chapter 8.6] for more details. The class of circular
arc graphs is not comparable to the class of chordal graphs. (See Figure 15.)
However, it is easy to observe that if G is a circular arc graph, then for each
vertex v, its subgraph G − NG[v] is an interval graph and therefore a chordal
graph. One can verify that the complete bipartite graph K2,3 is not an induced
subgraph of any circular arc graph. It is obvious that a graph G with i(G) = 1 is
well covered if and only if G is a complete graph. Therefore in the next theorem
we consider only circular arc graphs with i(G) > 1.

Theorem 3.3.3. Let G be a circular arc graph with i(G) > 1. Then the fol-

lowing statements are equivalent :

(1) G is a well covered graph;

(2) For each vertex v of G, G − NG[v] is a well covered graph;
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(3) For each vertex v of G, every vertex of G − NG[v] belongs to exactly one

simplex of G − NG[v].

P r o o f. The implication (1)⇒(2) follows from Proposition 3.1.5. If G is a
circular arc graph, then for every vertex v of G, the subgraph G−NG[v] is a chordal
graph and therefore the statements (2) and (3) are equivalent by Theorem 3.3.2.
Finally, the implication (2)⇒(1) follows from Theorem 3.1.2 and the observation
that every circular arc graph is a K2,3-free graph.

The classes of graphs which we have considered in this section are not com-
parable, i.e. no one of them is a subclass of any of the others. However, it follows
from Theorem 3.3.2 that well covered chordal graphs are simplicial graphs. Figure
15 illustrates relationships between these classes of graphs.

A graph G is a C(n)-tree if it can be constructed from a cycle of length n by a
finite number of applications of the following operation: add a new cycle of length
n and identify an edge of this cycle with an edge of the existing graph. Note that
every 2-tree of order at least 3 is a C(3)-tree and vice versa. A cycle of length n in a
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C(n)-tree is called an elementary cycle. Let c(G) denote the number of elementary
cycles in a C(n)-tree G. An elementary cycle C of a C(n)-tree G is called an end

cycle of G if C has exactly two adjacent vertices of degree three or more in G.
A simple induction on the number of elementary cycles shows that if n is even,
then every C(n)-tree is a bipartite graph and possesses a perfect matching. In the
next proposition we show that there is no well covered C(n)-tree G with n ≥ 4
and c(G) ≥ 2. Then we show that a C(n)-tree is well covered if and only if it is a
well covered 2-tree of order at least three or it is a cycle of length 4, 5, or 7.

Proposition 3.3.5. Let G be a C(n)-tree with n ≥ 4 and c(G) ≥ 2. Then G is

not a well covered graph.

P r o o f. We distinguish two cases: n = 4, n ≥ 5.

C a s e 1: n = 4. Let M be any perfect matching of G. By Corollary 3.1.3,
it suffices to show that G[NG({v, u})] is not a complete bipartite graph for some
edge vu of M . Let C be an arbitrary end cycle in G, say V (C) = {a, b, c, d},
E(C) = {ab, bc, cd, da}, dG(a) ≥ 3, and dG(b) ≥ 3. Since M is a perfect matching
in G, there exists a vertex x in NG(a) such that ax ∈ M . If x ∈ V (C), then
either x = b or x = d. In both cases the vertex c belongs to NG(x) and it is not
adjacent to all the vertices of NG(a) as |NG(c)| = 2 and |NG(a)| ≥ 3. Therefore
G[NG({a, x})] is not a complete bipartite graph. If x 6∈ V (C), then c 6∈ NG(x)
and again G[NG({v, u})] is not a complete bipartite graph because d ∈ NG(a)
and d is not adjacent to all the neighbours of x as NG(d) ∩ NG(x) = {x} and
|NG(x)| ≥ 2.

C a s e 2: n ≥ 5. Since G has girth n ≥ 5, by Theorem 3.1.4, it is sufficient to
show that neither G belongs to the family PC nor G is one of the graphs given
in Figures 12 and 13.

First, since c(G) ≥ 2 and every end cycle in G has exactly n − 2 vertices of
degree 2 and two adjacent vertices of degree at least three, none of the five graphs
in Figures 12 and 13 is a C(n)-tree and therefore G is none of the graphs in Figures
12 and 13.

Furthermore, G does not belong to the family PC; for if G were in PC, then,
since G does not have any end edge, every vertex of G would be in exactly one
basic 5-cycle of G and therefore every end cycle of G would be a basic 5-cycle
which is impossible as every end cycle of G contains exactly two adjacent vertices
of degree three or more.

We now have the following characterization of well covered C(n)-trees.

Theorem 3.3.4 [141]. Let G be a C(n)-tree with n ≥ 3. Then G is a well

covered graph if and only if one of the following conditions is satisfied :

(a) G is a cycle of length 3, 4, 5, or 7;

(b) G is a C(3)-tree in which every vertex belongs to exactly one end cycle

of G.
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P r o o f. If G is a cycle of length n, then i(G) = ⌈n/3⌉, α(G) = ⌊n/2⌋, and
⌈n/3⌉ = ⌊n/2⌋ if and only if n = 3, 4, 5, or 7. Therefore G is well covered if and
only if G is a cycle of length 3, 4, 5, or 7.

Assume now that G is a C(n)-tree with c(G) ≥ 2. If n = 3, then G is a 2-tree of
order at least four and the result follows from Corollary 3.3.2. Finally, it follows
from Proposition 3.3.5 that G is not well covered if n ≥ 4.

3.4. Well covered line and total graphs. In this section we shall consider
edge and total versions of well covered graphs. A graph G is said to be edge well

covered if every maximal independent set of edges of G is also maximum. Since
there exists a one-to-one correspondence between independent sets of edges of a
graph G and independent sets of vertices of the line graph L(G) of G, G is edge
well covered if and only if L(G) is well covered. A graph G is equimatchable if every
maximal matching of G is maximum, i.e., if all maximal matchings of G have the
same cardinality. Our first theorem shows a relationship between equimatchable
graphs, well covered graphs, and graphs for which the domination number equals
the independence number.

Theorem 3.4.1. For a graph G and its line graph L(G), the following state-

ments are equivalent :

(i) G is equimatchable;

(ii) L(G) is well covered ;
(iii) γ(L(G)) = α(L(G)).

P r o o f. The equivalence of (i) and (ii) is obvious. Since every line graph is a
K1,3-free graph, it follows from Corollary 2.4.2 that γ(L(G)) = i(L(G)) for every
graph G. This and Proposition 2.1.3 imply the equivalence of (ii) and (iii).

The problem to determine which graphs are equimatchable (and therefore
which line graphs are well covered) has been completely solved by Lewin [103]
and Lesk, Plummer and Pulleyblank [102] (see also [61], [106], [132] and [148]).
However, the application of their results to particular graphs is not easy. For this
reason, in the next theorem we establish simple necessary and sufficient conditions
for a tree to be equimatchable.

Theorem 3.4.2. Let T be a tree of order at least three and let Ω be the set of

end vertices of T . Then the following statements are equivalent :

(1) T is equimatchable;
(2) L(T ) is well covered ;
(3) For each interior edge uv of T , precisely one of u and v is incident with

an end edge of T ;

(4) The sets NT (Ω) and V (T ) − NT (Ω) form a bipartition of T .

P r o o f. The equivalence of (1) and (2) follows from Theorem 3.4.1.

(2)⇔(3). Let v1, . . . , vn be the vertices of NT (Ω). For vi∈NT (Ω), let Ei be the
set of edges incident with vi in T and let Li be the subgraph of L(T ) induced by
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Ei. Because every Ei contains an end edge of T and every end edge of T belongs
to exactly one of the sets E1, . . . , En, the graphs L1, . . . , Ln are the simplicies of
L(T ). For the same reason, the sets E1, . . . , En form a partition of the edge set
of T if and only if every interior edge of T (if any) belongs to exactly one of the
sets E1, . . . , En. The last condition is nothing but the statement that for each
interior edge uv of T , exactly one of u and v is incident with an end edge of T .
Since L(T ) is a chordal graph, it follows from Theorem 3.3.2 that L(T ) is well
covered if and only if the vertex sets of L1, . . . , Ln form a partition of the vertex
set of L(T ). Equivalently, L(T ) is well covered if and only if the sets E1, . . . , En

form a partition of the edge set of T . Combining the above facts we obtain the
equivalence of (2) and (3).

(3)⇔(4). Assume (3) holds. Since T has at least three vertices, we have Ω∩
NT (Ω) = ∅ and therefore Ω ⊆ V (T ) − NT (Ω). To prove (4), it suffices to show
that every edge e of T joins a vertex of V (T ) − NT (Ω) to a vertex of NT (Ω).
This is clear if e is an end edge of T . If e = uv is an interior edge of T , then
{u, v} ∩ Ω = ∅ and, in addition, it follows from (3) that neither {u, v} ⊆ NT (Ω)
nor {u, v} ⊆ V (T ) − NT [Ω]. Consequently, e = uv has one vertex in NT (Ω) and
the other in V (T )−NT [Ω] ⊆ V (T )−NT (Ω). This proves the implication (3)⇒(4).
The converse implication (4)⇒(3) is obvious.

We proceed now to the investigation of the total version of well covered graphs.
For a graph G, a subset X of V (G)∪E(G) is a totally independent set of G if no
two elements of X are adjacent or incident in G. A graph G is said to be totally

well covered if all maximal totally independent sets of G have the same cardinality.
Since a subset of vertices and edges of a graph G is totally independent in G if and
only if it is an independent set of vertices of the total graph T (G), G is totally well
covered if and only if T (G) is well covered. For this reason, in the next theorem
we characterize well covered total graphs. First, we state some definitions and
four propositions. A graph G is factor-critical if G− v has a perfect matching for
every vertex v of G. Certainly, every factor-critical graph is a connected graph
of odd order. For a graph G, let D, A, C be the partition of V (G), where D
is the set of all vertices in G which are not covered by at least one maximum
matching of G, A = NG(D) − D, and C = V (G) − A − D. The Gallai–Edmonds
structure theorem (see [105, p. 52] or [106, p. 94]) says that: (a) the components
of G[D] are factor-critical, (b) G[C] has a perfect matching, and (c) if M is
any maximum matching of G, then it contains a maximum matching of each
component of G[D], a perfect matching of each component of G[C], and matches
all vertices of A with vertices in distinct components of G[D]. It follows from
this theorem that a connected graph G is factor-critical if and only if D = V (G)
(and so A = C = ∅). Thus, we have the following property of factor-critical
graphs.

Proposition 3.4.1. A connected graph G is factor-critical if and only if every

vertex of G is uncovered by at least one maximum matching of G.
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In the proof of Theorem 3.4.3, we will use the following structural characteriza-
tion of equimatchable factor-critical graphs with a cut vertex due to Favaron [61].

Proposition 3.4.2. A connected graph G with a cut vertex is equimatchable

and factor-critical if and only if :

(1) G has exactly one cut vertex c, say ;

(2) Every connected component Gi of G−c is isomorphic to K2mi or to Kmi,mi

for some positive integer mi;

(3) c is adjacent to at least two adjacent vertices of each component Gi of

G − c.

A graph G is randomly matchable if every maximal matching of G is perfect.
Certainly, every randomly matchable graph is equimatchable. The next proposi-
tion (due to Sumner [132]) gives a characterization of randomly matchable graphs.
The proof given here is due to Lesk, Plummer and Pulleyblank [102].

Proposition 3.4.3. A connected graph G is randomly matchable if and only

if G = K2n or G = Kn,n for some positive integer n.

P r o o f. Clearly K2n and Kn,n are randomly matchable.

Conversely, suppose G is a connected randomly matchable graph. It is then
easy to see that, in fact, either G = K2 or G must be 2-connected.

Now suppose G is bipartite but not complete. Let V1 and V2 be partite sets of
G and u ∈ V1, v ∈ V2 be nonadjacent. Since G is connected there is an odd path
P joining u and v. Put the first, third, ..., and last edges of P into a matching
and extend this matching to a perfect matching M for G. Then the symmetric
difference M ⊗ P is a matching for G which leaves only points u and v exposed.
Hence M ⊗ P cannot be extended to a perfect matching, a contradiction. Hence
G = Kn,n for some n ≥ 1.

Now we consider the non-bipartite case.

Claim 1. If G is any 2-connected non-bipartite graph, every vertex lies on an

odd cycle.

For let u be any vertex and let C be any odd cycle. If u ∈ V (C) we are done,
so suppose u 6∈ V (C). Then by Menger’s theorem there exist two openly disjoint
paths from u to two different vertices of C and these two paths, together with
one of the two parts of C intercepted, form an odd cycle.

Claim 2. If G is any 2-connected non-bipartite graph, then every pair of ver-

tices is joined by an odd path.

Let u and v be any two vertices of G. If uv ∈ E(G), there is nothing to prove,
so suppose uv 6∈ E(G). By Claim 1 we know there is an odd cycle C containing
v. If u ∈ V (C) again we are done, so suppose u 6∈ V (C). Then there is a path P
from u to the cycle C. If P meets C in a vertex different from v, we are done.
Thus assume that all such paths P meet C at v. Then v is a cut vertex of G, a
contradiction, and Claim 2 is proved.
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Let u and v be any pair of nonadjacent vertices in G. By Claim 2, there is an
odd path P joining u and v. Now proceed as in the bipartite case to get the same
contradiction. Thus G = K2n for some n ≥ 1.

For a set of edges M of a graph G, we denote by V (M) the set of vertices of
G incident with at least one edge of M . The next proposition (due to Yannakakis
and Gavril [160]) shows a connection between maximal matchings of a graph G
and maximal independent sets of vertices of the total graph T (G) of G.

Proposition 3.4.4. If M is a maximal matching of G, then M ∪ (V (G) −
V (M)) is a maximal independent set of vertices of T (G). Also |M ∪ (V (G) −
V (M))| = |V (G)| − |M |.

P r o o f. Since M is a maximal matching of G it follows that V (G) − V (M)
is an independent set of G, hence M ∪ (V (G) − V (M)) is independent in T (G).
Since every vertex of T (G) which is not in M is incident or adjacent to M or is in
V (G)−V (M), it follows that M∪(V (G)−V (M)) is a maximal independent set in
T (G). Certainly, |M ∪ (V (G)−V (M))| = |M |+ |V (G)|−2|M | = |V (G)|− |M |.

With the above terminology and propositions, we now describe all connected
graphs whose total graphs are well covered. The following theorem shows that
the class of totally well covered graphs is quite restricted.

Theorem 3.4.3 [148]. If G is a connected graph, then the total graphT (G) of G
is well covered if and only if G is one of the graphs Kn, Kn,n and K1 +

⋃n
i=1 K2mi

for any positive integers n and m1, . . . ,mn.

P r o o f. A trivial verification shows that each of the total graphs T (Kn),
T (Kn,n) and T (K1 +

⋃n
i=1 K2mi) is well covered.

Conversely, assume that G is a connected graph such that T (G) is well covered.
By Proposition 3.4.4, for any maximal matching M of G, M ∪ (V (G) − V (M))
is a maximal (and therefore maximum) independent set of vertices in T (G), say
p = |M ∪ (V (G) − V (M))| = |V (G)| − |M |. This observation implies that G
is equimatchable. In addition, if G has a perfect matching, then every maximal
matching of G is perfect and it follows from Proposition 3.4.3 that G = K2n or
G = Kn,n for n ≥ 1. Thus assume that G is equimatchable but G has no perfect
matching. Then it suffices to show that G = K2n−1 or G = K1 +

⋃n
i=1 K2mi for

some positive integers n,m1, . . . ,mn. In the proof we frequently use the following
claim.

Claim 1. Let M be a maximum matching of G. Then for every xy ∈ M and

t ∈ V (G) − V (M), either {x, y} ⊆ NG(t) or {x, y} ∩ NG(t) = ∅.

Suppose that x ∈ NG(t) and y 6∈ NG(t). If A = NG(x) ∩ NG(y) ∩ (V (G) −
V (M)) = ∅, then I = (M −{xy})∪{x}∪ (V (G)− (V (M)∪NG(x))) is a maximal
independent set of T (G) and |I| < p, a contradiction. If A 6= ∅, then for any
s ∈ A, I ∪ {ys} is a maximal independent set of T (G) and |I ∪ {ys}| < p, a
contradiction.
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Claim 2. G is factor-critical.

Let D(G) be the set of vertices of G which are uncovered by at least one
maximum matching of G. By Proposition 3.4.1, it suffices to prove that D(G) =
V (G). Since G is connected and D(G) 6= ∅ (as G has no perfect matching), it
suffices to show that NG(t) ⊆ D(G) for every t ∈ D(G). Take any t ∈ D(G)
and a maximum matching M of G that does not cover t. Then t 6∈ V (M) and
NG(t) ⊆ V (M). Take any x ∈ NG(t). Since x ∈ V (M), there is y ∈ V (M) such
that xy ∈ M . By Claim 1, {x, y} ⊆ NG(t). Now M ′ = (M − {xy}) ∪ {yt} is a
maximum matching avoiding x. Therefore x ∈ D(G) and consequently NG(t) ⊆
D(G).

To complete the proof of the theorem, we consider two cases.

C a s e 1: G contains a cut vertex c, say. Since G is equimatchable and factor-
critical, Proposition 3.4.2 implies that c is the only cut vertex of G. In addition,
if Gi is a component of G− c, then Gi = K2mi or Gi = Kmi,mi , and c is adjacent
to at least two adjacent vertices of Gi. Let n be the number of components of
G− c. For i = 1, . . . , n, let vi

1, . . . , v
i
mi

, ui
1, . . . , u

i
mi

be the vertices of Gi. We may
assume that vi

1 and ui
1 are neighbours of c in G and every vi

l is adjacent to every
ui

k, l, k = 1, . . . ,mi. We shall prove that G = K1 + (K2m1
∪ . . . ∪ K2mn).

It is obvious that Mi = {vi
kui

k : k = 1, . . . ,mi} is a perfect matching of
Gi (i = 1, . . . , n) and M =

⋃n
i=1 Mi is a maximum matching of G. We shall

prove that c is adjacent to every vertex of Gi, and that Gi is a complete graph,
i = 1, . . . , n. This is clear if mi = 1. Thus assume that mi ≥ 2. For k = 2, . . . ,mi,
Mik = (M − {vi

1u
i
1, v

i
ku

i
k}) ∪ {vi

1u
i
k, v

i
ku

i
1} is a maximum matching of G. Since

c 6∈ V (Mik) and c is adjacent to the vertex vi
1 (ui

1, resp.) of the edge vi
1u

i
k (vi

ku
i
1,

resp.) which belongs to Mik, we conclude from Claim 1 that c is adjacent to ui
k

(vi
k, resp.). Thus c is adjacent to every vertex of Gi. Now for k = 1, . . . ,mi, the

set M ′
ik = (M − {vi

ku
i
k}) ∪ {ui

kc} is a maximum matching of G which does not
cover vi

k. Since vi
k is adjacent to every vertex ui

l and vi
lu

i
l ∈ M ′

ik if l 6= k, vi
k is

adjacent to every vertex vi
l with l 6= k (by Claim 1). Similarly, replacing M ′

ik by
M ′′

ik = (M − {vi
ku

i
k}) ∪ {vi

kc}, we observe that ui
k is adjacent to every vertex ui

l,
l 6= k. Thus Gi is a complete graph of order 2mi, Gi = K2mi . Finally, since the
cut vertex c of G is adjacent to every vertex of Gi, i = 1, . . . , n, we conclude that
G = K1 + (K2m1

∪ . . . ∪ K2mn).

C a s e 2: G has no cut vertex. We claim that G is a complete graph (of
odd order). Suppose this is not true. Then there exists a vertex p in G for which
NG[p] 6= V (G). Consequently, since G is connected, the two sets S = {v ∈ NG(p) :
NG(v) 6⊂ NG[p]} and R = {x ∈ V (G)−NG[p] : NG(x)∩NG(p) 6= ∅} are nonempty.
Let M be a perfect matching of G − p. For a vertex w of G − p, let w∗ denote
the unique neighbour of w such that ww∗ ∈ M . It is clear from Claim 1 that for
every vertex w of G− p, either {w,w∗} ⊆ NG(p) or {w,w∗} ⊆ V (G)−NG[p]. We
make four additional observations.
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(1) For every v ∈ S and x ∈ R, either {x, x∗} ⊂ NG(v) or {x, x∗}∩NG(v) = ∅.

Assume {x, x∗}∩NG(v) 6= ∅. Because M ′ = (M−{vv∗})∪{v∗p} is a maximum
matching of G for which v 6∈ V (M ′) and xx∗ ∈ M ′, we conclude from Claim 1
that {x, x∗} ⊂ NG(v).

(2) For every v ∈ S and x ∈ R, if {x, x∗} ⊂ NG(v), then {x, x∗}∩NG(v∗) = ∅.

Assume {x, x∗} ⊂ NG(v) and suppose that {x, x∗} ∩ NG(v∗) 6= ∅. Then
{x, x∗} ⊂ NG(v∗) by (1). But now M ′ = (M − {vv∗, xx∗}) ∪ {vx, v∗x∗} is a
maximum matching of G. Because p 6∈ V (M ′) and vx, v∗x∗ ∈ M ′ while {v, x}
and {v∗, x∗} are contained neither in NG(p) nor in V (G) − NG[p], we get a con-
tradiction to Claim 1.

(3) For every v ∈ S and x ∈ R, if x ∈ NG(v), then NG(x) ∩ S = {v}.

Assume x ∈ NG(v) and suppose that there exists u ∈ NG(x) ∩ S − {v}. It
follows from (2) that u 6= v∗. Then M ′ = (M − {xx∗, vv∗, uu∗}) ∪ {vx, ux∗, pu∗}
is a maximum matching of G and it does not cover v∗. Since vx ∈ M ′ and neither
{v, x} ⊆ NG(v∗) nor {v, x} ∩ NG(v∗) = ∅, we reach a contradiction to Claim 1.

(4) The set S has exactly one vertex v, say.

Suppose |S| ≥ 2 and u ∈ S − {v}. Let x ∈ NG(v) ∩ R and y ∈ NG(u) ∩ R.
It follows from (1) and (3) that xy 6∈ M ; for otherwise (1) implies that {x, y} ⊂
NG(v) and {x, y} ⊂ NG(u) which contradicts (3). If vu ∈ M , then considering a
maximum matching M ′ of G containing (M−{vu, xx∗, yy∗})∪{vx, uy} (and then
necessarily also x∗y∗), we get a contradiction just as in the proof of (2). If vu 6∈ M ,
then let M ′ be a maximum matching of G containing (M −{vv∗, uu∗, xx∗, yy∗})∪
{vx, uy, pu∗}. Because the vertex v∗ is adjacent neither to x (see (2)) nor to y∗

(see (3)), v∗ 6∈ V (M ′). But now since vx ∈ M ′ and neither {v, x} ⊆ NG(v∗) nor
{v, x} ∩ NG(v∗) = ∅, we get a contradiction to Claim 1.

It is obvious from (4) and from definitions of S and R that v, the unique vertex
of S, is a cut vertex of G. This, however, contradicts the assumption that G has
no cut vertex and completes the proof of the theorem.

3.5. Well covered generalized Petersen graphs. Let n and k be positive
integers with n ≥ 3 and 1 ≤ k ≤ n − 1. The generalized Petersen graph Pn,k is
defined in the following way. It has 2n vertices v0, v1, . . . , vn−1, u0, u1, . . . , un−1

and edges vivi+1, viui, and uiui+k for all i satisfying 0 ≤ i ≤ n − 1 with all
subscripts taken modulo n. It is no problem to observe that each vertex vi is of
degree three in Pn,k. Similarly, each ui is a vertex of degree three if k 6= n/2 but
its degree is two if k = n/2. It is also easy to see that Pn,k is isomorphic to Pn,n−k

and therefore we may always assume that k ≤ ⌊n/2⌋. A simple analysis shows
that Pn,k is a graph of girth three if and only if n = 3k for k ≥ 1. Analogously,
Pn,k is a graph of girth four if and only if k = 1 and n ≥ 4, k = 2 and n = 4 or
k ≥ 1 and n = 4k.

The following theorem characterizes well covered generalized Petersen graphs.
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Theorem 3.5.1 [148]. There are exactly five well covered generalized Petersen

graphs and they are shown in Figure 16.
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Fig. 16. The well covered generalized Petersen graphs

P r o o f. It is easy to check that the generalized Petersen graphs P3,1, P4,2,
P5,1, P6,2, P7,2 (given in Figure 16) are well covered.

Conversely, assume that a generalized Petersen graph Pn,k is well covered. We
first dispose of the case k = 1. It is easy to check that P3,1 and P5,1 are well covered
while P4,1 is not well covered. For n ≥ 6, the set I = {u1, u5} is independent in
Pn,1 and Pn,1 −NPn,1 [I] has a non-well covered component K1,3 with vertices v2,
v3, v4 and u4. Thus, by Proposition 3.1.5, Pn,1 is not well covered if n ≥ 6.

We next dispose of the case that n is even and k = n/2. Certainly, P4,2 is well
covered. If n ≥ 6, then I = {u1, v2, u3, . . . , un/2} is an independent set in Pn,n/2.
Since Pn,n/2 − NPn,n/2

[I] is a non-well covered tree, it follows from Proposition
3.1.5 that Pn,n/2 is not well covered if n ≥ 6.

For the remainder of the proof, we assume that 1 < k < n/2. In this case Pn,k

is cubic and therefore it does not belong to the family PC. Thus, if the girth of
Pn,k is at least 5, Theorem 3.1.4 forces that Pn,k must be isomorphic to the graph
P14 = P7,2 in Figures 13 and 16. The proof of the theorem will be complete if we
show that P6,2 is the only well covered generalized Petersen graph Pn,k of girth
three or four with 1 < k < n/2.

We first consider the case that Pn,k is of girth three. The restriction 1 <
k < n/2 implies that every 3-cycle of Pn,k consists of vertices ui, ui+k, ui+2k for
i = 0, 1, . . . , n − 1 and therefore it must be n = 3k. For k = 2, we get the well
covered graph P6,2. If k ≥ 3, then I = {u0, u1, . . . , uk−1} is an independent set in
P3k,k and its subgraph P3k,k −NP3k,k

[I] (shown in bold in Figure 17) is a non-well
covered path of length 2k ≥ 6. This and Proposition 3.1.5 imply that P3k,k is not
well covered if k ≥ 3.

This now leaves us with the case that Pn,k is of girth four. The restric-
tion 1 < k < n/2 implies now that every 4-cycle of Pn,k consists of vertices
ui, ui+k, ui+2k, ui+3k for i=0, 1, . . . , n − 1 and n=4k. If k=2, then a simple ver-
ification shows that P8,2 is not well covered. If k ≥ 3, then I = {u0, u1, . . . , uk−1}
is an independent set in P4k,k and it is easy to check that its subgraph P4k,k −
NP4k,k

[I] (shown in bold in Figure 17) is a non-well covered tree of order 4k ≥ 12.
This and Proposition 3.1.5 imply that P4k,k is not a well covered graph if k ≥ 3.
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This completes the proof of the theorem.

Fig. 17. The generalized Petersen graphs P3k,k and P4k,k

In conclusion, let us observe that for the graphs of Figure 16 we have α(P3,1) =
2 < Γ (P3,1) = 3, α(P4,2) = 3 < Γ (P4,2) = 4, α(P5,1) = 4 < Γ (P5,1) = 5,
α(P6,2) = 4 < Γ (P6,2) = 6 and α(P7,2) = 5 < Γ (P7,2) = 7. This implies that none
of the graphs of Figure 16 is well dominated (or well irredundant).

3.6. Well irredundant graphs. In this section, we focus our attention on
well irredundant graphs. We characterize well irredundant graphs within the fol-
lowing three families: bipartite graphs, chordal graphs, graphs of girth at least
five. It follows from Proposition 2.1.4 that for any graph G, the corona G ◦ K1

is a well irredundant graph. The next theorem, among other things, proves that
the converse is true for connected bipartite graphs except for K1 and C4. Other
proofs of the theorem can be found in [146, 149, 150]. The equivalence of (vi) and
(vii) is also given in [66] but with a longer proof.

Theorem 3.6.1. Let G be a connected bipartite graph. Then the following

statements are equivalent :

(i) ir(G) = IR(G), i.e. G is well irredundant ;

(ii) ir(G) = Γ (G);

(iii) ir(G) = α(G);

(iv) γ(G) = α(G);

(v) γ(G) = IR(G);

(vi) γ(G) = Γ (G), i.e. G is well dominated ;

(vii) G ∈ {K1, C4} or G = H ◦ K1 for some connected bipartite graph H.

P r o o f. The statements (i)–(iii) ((iv)–(vi), resp.) are equivalent according to
Theorem 2.4.6. The implication (iii)⇒(iv) follows from Proposition 2.1.3. The
implication (vii)⇒(i) is obvious if G ∈ {K1, C4} and follows from Proposition
2.1.4 if G = H ◦ K1 for some graph H. Finally, the equivalence of (iv) and (vii)
is the content of Corollary 2.3.2.
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It follows from Theorem 3.6.1 that a bipartite graph G is well irredundant
if and only if it is well dominated. Moreover, it follows from Proposition 2.1.3
and Theorem 3.6.1 that for a bipartite graph G, each of the equations (i)–(vi) of
Theorem 3.6.1 implies the following nine equations: i(G) = α(G), i(G) = Γ (G),
i(G) = IR(G), α(G) = Γ (G), α(G) = IR(G), Γ (G) = IR(G), ir(G) = γ(G),
ir(G) = i(G), and γ(G) = i(G). Each of the converse implications is false, as G2

of Figure 9 and K1,2 demonstrate.

The following two propositions are required for our proofs of characterizations
of well irredundant chordal and block graphs.

Proposition 3.6.1. Let X be a set of vertices of a graph G. If every vertex

of X belongs to at least one simplex of G but no two of them belong to the same

simplex , then X is irredundant in G.

P r o o f. For x ∈ X, let S be a simplex containing x and let s be a simplicial
vertex from S. Since x is the only vertex of X ∩ V (S), s ∈ IG(x,X) and this
implies the irredundance of X.

Proposition 3.6.2. Let G be a graph of order n, and let H = {Hv : v ∈ V (G)}
be a family of nonempty graphs indexed by the vertices of G. Then (i) ir(G◦H) = n
and (ii) G ◦ H is a well irredundant graph if and only if H consists of complete

graphs.

P r o o f. The proposition is a direct consequence of the following four observa-
tions: (1) V (G) is a maximal irredundant set in G◦H, (2) a subset J of V (G◦H)
is a maximal irredundant set in G ◦ H if and only if for each v ∈ V (G), either
v ∈ J and J ∩ V (Hv) = ∅ or v 6∈ J and J ∩ V (Hv) is a maximal irredundant set
of Hv, (3) IR(G ◦ H) =

∑

v∈V (G) IR(Hv), and (4) for each v ∈ V (G), IR(Hv) = 1
if and only if Hv is a complete graph.

The next result due to Topp and Vestergaard [146] characterizes well irredun-
dant chordal graphs.

Theorem 3.6.2. A chordal graph G is well irredundant if and only if

(1) every vertex of G belongs to exactly one simplex of G and

(2) if G has an induced subgraph A given in Figure 18, then the unique vertex

of degree two in A is not a simplicial vertex of G.
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Fig. 18

P r o o f. Let G be a chordal graph. Let S1, . . . , Sn be the simplices of G and S
a set of n vertices containing exactly one simplicial vertex si, say, from each Si.
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Assume G is well irredundant. Then G is well covered and by Theorem 3.3.2,
every vertex of G belongs to exactly one of the simplices S1, . . . , Sn. In addition,
S is a maximal irredundant set in G. Suppose G has an induced subgraph A (see
Figure 18) whose unique vertex s of degree two is a simplicial vertex of G, say
s = s1. Then the neighbours a and b of s belong to S1 but their neighbours c
and d belong to two other simplices of G, say c is in S2 and d is in S3. Now
S′ = {a, b} ∪ {s4, . . . , sn} is another maximal irredundant set in G and |S′| < |S|
which contradicts the well irredundance of G.

Conversely, assume G has properties (1) and (2). It is obvious from (1) that
every minimal dominating set of G contains exactly one vertex from each simplex
of G. Therefore γ(G) = Γ (G) = n. Let J be a maximal irredundant set of G.
The proof will be complete if we show that |V (Si)∩ J | = 1 (i = 1, . . . , n), which,
in turn, implies that |J | = n. First we show that |V (Si) ∩ J | ≤ 1. If this is not
the case, let a and b be distinct vertices from V (Si) ∩ J . Note that neither a
nor b can be a simplicial vertex, else J would not be irredundant. On the other
hand, if a and b are nonsimplicial vertices from Si, then for any c ∈ IG(a, J) and
d ∈ IG(b, J), G[{si, a, b, c, d}] is isomorphic to A, a contradiction to (2). Hence,
|V (Si)∩ J | ≤ 1. Finally, V (Si)∩ J 6= ∅, for otherwise J ∪ {si} is irredundant (by
Proposition 3.6.1) and this contradicts the maximality of J . This completes the
proof.

It is easy to observe that in the characterization of well irredundant chordal
graphs, condition (2) of Theorem 3.6.2 may be replaced by each of the following
conditions: (2′) if G has an induced subgraph A′ given in Figure 18, then at least
one simplicial vertex of A′ is a nonsimplicial vertex of G; (2′′) if vertices x and y
belong to the same simplex of G, then at least one of the sets NG[x]−NG[y] and
NG[y] − NG[x] is empty.

Corollary 3.6.1. If G is a connected block graph, then the following state-

ments are equivalent :

(1) G is well irredundant ;

(2) Every vertex of G belongs to exactly one end block of G;

(3) G = K1 or G = H ◦ {Hv : v ∈ V (H)} where H is a connected block graph

and every graph of the family {Hv : v ∈ V (H)} is complete.

P r o o f. The result is obvious if G = K1 or G = K1 ◦ Kn−1 = Kn for n ≥ 2.
Thus assume that G is a connected noncomplete block graph and let C be the
set of all cut vertices of G.

Assume that every vertex of G belongs to exactly one end block of G. For
v ∈ C, let Bv be the end block of G that contains v. Certainly, the subgraphs
Hv = Bv−v are nonempty and complete. In addition, G[C] = G−

⋃

v∈C V (Hv) is a
connected block graph. Further, the corona G[C]◦{Hv : v∈C} is well irredundant
by Proposition 3.6.2. Thus, G is well irredundant since G is isomorphic to G[C]◦
{Hv : v ∈ C}. This proves the implications (2)⇒(3)⇒(1).
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Assume G is a well irredundant block graph. Then, by Theorem 3.6.2, every
vertex of G belongs to exactly one simplex and it remains to show that every
simplex of G is an end block. Suppose G has a simplex S which is not an end
block. Then S has a simplicial vertex s, say, and distinct cut vertices c1, c2 of
G. Further, since ci has a neighbour di such that di and c3−i belong to different
components of G − ci (i = 1, 2), the set {s, c1, c2, d1, d2} induces in G a graph
A which contradicts Theorem 3.6.2. This proves the implication (1)⇒(2) and
completes the proof.

We now turn our attention to well irredundant graphs of girth at least five.
The following theorem due to Topp and Vestergaard [146] is a counterpart of
Theorem 3.1.5 for well irredundant graphs.

Theorem 3.6.3. If a graph G belongs to the family PC, then G is well irredun-

dant if and only if for every pair of basic 5-cycles there is either no edge joining

them, exactly two edges and they are vertex disjoint , or four edges.

P r o o f. If G ∈ PC and G is well irredundant, then G is well dominated and
the “only if” part of the theorem follows from Theorem 3.1.5.

Conversely, assume G ∈ PC and for every pair of basic 5-cycles of G there is
either no edge joining them, exactly two edges and they are vertex disjoint, or
four edges. Let J be a maximal irredundant set in G. To prove that G is well
irredundant, it suffices to show that |J | = |Ee| + 2|C| where Ee is the set of
end edges of G and C is the set of basic 5-cycles of G, respectively. Since J is
irredundant, every end edge of G has at most one vertex in J and every basic
5-cycle has at most three vertices in J . Thus, Ee can be partitioned into two
subsets Ei

e = {vu ∈ Ee : |{v, u}∩J | = i}, i = 0, 1. Similarly, C can be partitioned
into four subsets Ci = {C ∈ C : |V (C) ∩ J | = i}, i = 0, 1, 2, 3. Certainly, |J |
= |E1

e |+ |C1|+2|C2|+3|C3| = |Ee|+2|C|+(|C3|− |E0
e |−2|C0|− |C1|) and it suffices

to prove that |C3| = |E0
e | + 2|C0| + |C1|.

We now give a few remarks needed for the rest of proof. We omit simple proofs
of the first four properties.

(1) If C ∈ C0, then C has two vertices of degree three or more.

(2) If C ∈ C1, then C has two vertices of degree three or more and the unique

vertex of V (G) ∩ J is adjacent to exactly one of them.

(3) If C ∈ C3, then one vertex of V (C)∩J is of degree at least three, we denote

it by t(C), and the other two are of degree two and adjacent to t(C).

(4) IG(x, J) ∩ Ω 6= ∅ if x ∈ J ∩ Vp, where Ω is the set of end vertices of G.

(5) Let x and v be vertices such that x ∈ J , v ∈ V (G)−(J ∪Ω) and IG(x, J) =
{v}. If x and v do not belong to the same basic 5-cycle, then x = t(D) for a cycle

D ∈ C3.

The assumptions and (4) imply that x belongs to some basic 5-cycle D =
(x1, . . . , x5), say x = x1. Since IG(x1, J) = {v} is disjoint with V (D), it follows
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that V (D)∩J = {x1, x2, x5}; otherwise {x2, x5}∩IG(x1, J) 6= ∅ or J is redundant.
Thus, D ∈ C3 and x = t(D).

(6) For any C ∈ C3, no vertex of IG(t(C), J) belongs to Ω or to a cycle from

C2 ∪ C3.

Since G ∈ PC, no vertex of Vc is adjacent to an end vertex of G and so
IG(t(C), J) ∩ Ω = ∅. Suppose C = (x1, . . . , x5) ∈ C3, V (C) ∩ J = {x1 =
t(C), x2, x5} (see (3)), and a vertex x of IG(x1, J) belongs to a basic 5-cycle
D = (y1, . . . , y5). We may assume that x = y1 and x3 is adjacent to y3 (and
possibly to y1 but then x1 is also adjacent to y3). Since y1 ∈ IG(x1, J), no vertex
of NG[y1]−{x1} belongs to J . In particular, {y1, y2, y5} ∩ J = ∅. Similarly, since
x3 ∈ IG(x2, J), no vertex of NG[x3] − {x2} belongs to J and so y3 6∈ J . Thus,
|V (D) ∩ J | ≤ 1 and so D 6∈ C2 ∪ C3.

Let S = P0 ∪ P1 ∪ P2, where P0, P1 and P2 are vertex sets defined by

P0 = {v ∈ Vp − Ω : v is incident with an end edge from E0
e},

P1 = {v ∈ Vc : dG(v) ≥ 3 and v ∈ V (C) − NG[V (C) ∩ J ] for some C ∈ C1},
P2 = {v ∈ Vc : dG(v) ≥ 3 and v ∈ V (C) for some C ∈ C0}.

Certainly, |P0| = |E0
e |. Similarly, it follows from (1) and (2) that |P2| = 2|C0| and

|P1| = |C1|, respectively. Hence, |S| = |E0
e | + 2|C0| + |C1|. From (3), (6) and the

definition of private neighbourhood it follows that {IG(t(C), J) : C ∈ C3} is a
family of nonempty disjoint subsets of S. Thus,

|S| ≥
∣

∣

∣

⋃

C∈C3

IG(t(C), J)
∣

∣

∣ =
∑

C∈C3

|IG(t(C), J)| ≥ |C3|.

The proof will be complete if we show that for every v ∈ S there is D ∈ C3 such
that IG(t(D), J) = {v}, which, in turn, implies that |S| ≤ |C3| and consequently
|C3| = |S| = |E0

e | + 2|C0| + |C1|. To prove this, we consider three cases.
C a s e 1: v ∈ P0. Let u ∈ Ω be such that vu ∈ E0

e . Since u 6∈ NG[J ] and
NG(u) = {v}, there exists x in J such that IG(x, J) = {v}. This and (5) imply
that x = t(D) for some D ∈ C3.

C a s e 2: v ∈ P1. Let C = (a1, . . . , a5) ∈ C1 be the cycle containing v. By
(2) we may assume that dG(a1) ≥ 3, dG(a3) ≥ 3, V (C) ∩ J = {a4} and v = a1.
Now a2 6∈ NG[J ], so there is x ∈ J such that IG(x, J) ⊆ NG(a2) = {a1, a3}. Since
a4 ∈ IG(a4, J) and a3 ∈ NG(a4), we have x 6= a4 and IG(x, J) = {a1}. By (5),
there is D ∈ C3 such that IG(t(D), J) = {a1}.

C a s e 3: v ∈ P2. Let C = (a1, . . . , a5) ∈ C0 be the cycle containing v. By
(1) we may assume that dG(a1) ≥ 3 and dG(a3) ≥ 3, so v ∈ {a1, a3}. Since
{a2, a4, a5}∩NG[J ] = ∅, there are x, y∈J such that IG(x, J) ⊆ NG(a5) = {a1, a4}
and IG(y, J) ⊆ NG(a4) = {a3, a5}. Consequently, IG(x, J) = {a1}, IG(y, J) =
{a3} (and IG(x, J) ∪ IG(y, J) = NG(a2)) since a4, a5 6∈ NG[J ]. Now it follows
from (5) that there are cycles D and D′ in C3 such that IG(t(D), J) = {a1} and
IG(t(D′), J) = {a3}, respectively.

This completes the proof.
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It is easy to verify that the graphs C7 and P10 of Figure 13, together with K1,
are well irredundant, whereas P14 is not well irredundant because {1, 2, 3, 4, 5, 6, 7}
and {a, 2, 4, 5, 7} are both maximal irredundant sets in P14. This observation,
Corollaries 3.1.5 and 3.1.6, and Theorem 3.6.3 immediately imply the following
corollary.

Corollary 3.6.2. (i) Let G be a connected graph of girth at least five. Then

G is well irredundant if and only if either G = K1, or G is one of the graphs C7

and P10 of Figure 13, or G belongs to the family PC and for every pair of basic

5-cycles there is either no edge joining them or exactly two edges and they are

vertex disjoint.

(ii) If G is a connected graph of girth at least six , then the following statements

are equivalent : (a) G is well irredundant ; (b) G is well dominated ; (c) G is well

covered ; (d) G ∈ {K1, C7} ∪ {H ◦ K1 : H is a connected graph of girth ≥ 6}.

Note that all well dominated graphs of the family PC are well irredundant
and, certainly, vice versa. Moreover, the graph P14 (shown in Figure 13) is the
generalized Petersen graph P7,2 and it is the only connected well dominated graph
of girth at least five which is not well irredundant.

We conclude this section with a characterization of well irredundant unicyclic
graphs. A graph is unicyclic if it is connected and has exactly one cycle. Let U be
the set of all unicyclic graphs, and we let KU = {H ◦ K1 : H ∈ U}. We say that
a graph G is in the family S5 if G ∈ U ∩ PC and it has a basic 5-cycle. Finally,
a unicyclic graph G is in the family S1

3 if G = T ◦ H where T is a tree and the
family H = {Hv : v ∈ V (T )} consists of K2 and |V (T )|−1 copies of K1. The next
corollary may be obtained by routine arguments from Proposition 3.6.2, Theorem
3.6.1, and Corollaries 3.6.1 and 3.6.2.

Corollary 3.6.3. A unicyclic graph G is well irredundant if and only if G∈
{C4, C7} ∪ S1

3 ∪ S5 ∪ KU .

4. Graphical sequences and sets of integers

The literature of graph theory contains many graphical sequences and sets
of integers that concern graphical invariants (see Buckley and Harary [25]). For
a given graph G and a given graphical invariant π, such sequences and sets of
integers are usually lists of π-values of all (or some) vertices or subgraphs of G.
An advantage of studying and using such sequences and sets of integers is that
they are often nearly as easy to calculate as single numerical invariants yet they
carry far more information about graphs they represent and about invariants
for which they are formed. In §4.1 of this chapter we discuss some sequences
concerning the irredundance, domination and independence numbers. In §4.2, we
study interpolation properties of the independence, domination and irredundance
numbers.



86 J. Topp

4.1. Domination-feasible sequences. Let π be an integer-valued graphical
invariant. A sequence (a0, a1, . . . , an) of positive integers is said to be a π-feasible
sequence if there exists a graph G with distinguished vertices v1, v2, . . . , vn such
that π(G)=a0 and π(G − v1 − v2 − . . . − vi)=ai for i=1, 2, . . . , n. π-feasible se-
quences describe possible behaviors of the invariant π in successive vertex-deleted
subgraphs and they have been studied by Harary and Kabell [78] for π being the
connectivity κ, the line connectivity λ, the chromatic index χ′, the diameter d,
the number of edges q, the minimum degree δ, and the maximum degree ∆ of a
graph. In this section, we characterize π-feasible sequences for the parameter π
being the upper irredundance number IR, the lower (upper) independence num-
ber i (α), and the lower domination number γ. Since the deletion of a vertex
from a graph can change dramatically the lower irredundance number and the
upper domination number (see Theorem 2.2.2 and Proposition 2.2.1), it is not
easy to find a complete characterization of all ir- and Γ -feasible sequences. For
this reason, for ir- and Γ -feasible sequences we only have partial results. The next
two theorems due to Topp [142] characterize γ-, i-, α-, and IR-feasible sequences.

Theorem 4.1.1. Let η = (a0, a1, . . . , an) be a sequence of positive integers.

Then the following three statements are equivalent :

(1) η is a γ-feasible sequence;

(2) η is an i-feasible sequence;

(3) al ≥ al−1 − 1 for l = 1, 2, . . . , n.

Moreover , each of the statements (1)–(3) implies the statement

(4) η is an ir-feasible sequence.

P r o o f. The implications (1)⇒(3) and (2)⇒(3) easily follow from Theorem 2.2.1.
We shall prove that (3) implies (1), (2), and (4). Assume that η = (a0, a1, . . .
. . . , an) is a sequence of positive integers with al ≥ al−1−1 for l = 1, . . . , n. Let p
be any integer greater than max{n+ai : i = 0, 1, . . . , n}, and let Y and W be two
disjoint sets of cardinality p and an +n, respectively, say Y = {y1, y2, . . . , yp} and
W = {w1, w2, . . . , wan+n}. For the sake of convenience, we order the set {y1}∪W
by stipulating that y1 < w1 < w2 < . . . < wan+n. Taking elements of the set
W and the complete graph K[Y ] on the vertex set Y , we construct successively
graphs Gn, Gn−1, . . . , G1, and G0. First, let Gn be the graph with vertex set
Y ∪ {w1, w2, . . . , wan} and edge set E(K[Y ]) ∪ {yiwi : i = 1, 2, . . . , an}. It is easy
to observe that Jn = {y1} ∪ {wi : 2 ≤ i ≤ an} (Jn = {y1} if an = 1) is a smallest
maximal irredundant set and a maximal independent set in Gn. From this and
from Proposition 2.1.3 we have ir(Gn) = γ(Gn) = i(Gn) = |Jn| = an. Suppose
now that for some integer m, n≥m≥1, the graphs Gn, Gn−1, . . . , Gm are already
constructed. In addition, assume that for every integer i, n≥ i≥m, there exists a
subset Ji of {y1}∪{w2, w3, . . . , wan+n−i} which is a smallest maximal irredundant
set and a maximal independent set of cardinality ai in Gi. Then we construct
Gm−1 by taking Gm and the vertex t = wan+n−m+1, and joining t to the vertex
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yan+n−m+1 of Gm if am−1 = am + 1, or to all the vertices of Gm if am = 1. If 1 <
am−1 ≤ am and Jm = {x1, x2, . . . , xam}, where the elements of Jm are arranged
increasingly, then we join the vertex t to the vertices of NGm[{xi : am−1 ≤ i ≤
am}]. Let Jm−1 be the set defined by Jm−1 =Jm∪{t} if am−1 =am +1, or Jm−1 =
{t} if am−1 = 1, or Jm−1 = (Jm−NGm−1

(t))∪{t} if 1 < am−1 ≤ am, respectively.
One sees immediately that Jm−1 is a maximal independent set of cardinality
am−1 in Gm−1. Thus ir(Gm−1) ≤ γ(Gm−1) ≤ i(Gm−1) ≤ |Jm−1| = am−1. We
now claim that Jm−1 is a smallest maximal irredundant set in Gm−1. This claim
is trivial if am−1 = 1. Thus assume that am−1 ≥ 2 and suppose to the contrary
that ir(Gm−1) < am−1 = |Jm−1|. Let J be a smallest maximal irredundant set
in Gm−1. It is no problem to observe that if Jm−1 = {u1, u2, . . . , uam−1

}, where
the elements of Jm−1 are again written in the increasing order, then the sets
V1 = NGm−1

[u1] −
⋃am−1

i=2 NGm−1
[ui], V2 = NGm−1

[u2], . . . , Vam−1
= NGm−1

[uam−1
]

are nonempty and form a partition of the vertex set of Gm−1. Since the cardinality
of J is smaller than am−1, at least one of the sets J ∩ Vi, 1 ≤ i ≤ am−1, is empty.
Let i0 be the smallest integer i, 1 ≤ i ≤ am−1, such that J ∩ Vi = ∅. There are
two cases to be considered: i0 = 1, i0 > 1.

Case 1: i0 = 1. In this case it follows from the construction of the graphs
Gn, Gn−1, . . . , Gm−1 that u1 = y1 if aj ≥ 2 for each j ∈ {m,m + 1, . . . , n− 1} or
u1 = wan+n−j0, where j0 is the smallest integer j ∈ {m,m + 1, . . . , n − 1} such
that aj = 1. Since J ∩ V1 = ∅ and NGm−1

[w1] = {y1, w1} ⊂ V1 if u1 = y1 or
NGm−1

[w1] ⊂ {y1, w1, w2, . . . , wan+n−j0} ⊂ V1 if u1 = wan+n−j0, w1 is an isolated
vertex in NGm−1

[J ∪ {w1}] and the maximality of J implies that J ∪ {w1} is
not an irredundant set in Gm−1. Thus, there exists a vertex x in J such that
IGm−1

(x, J ∪{w1}) = ∅, while IGm−1
(x, J) 6= ∅. Consequently, the set IGm−1

(x, J)
is a subset of NGm−1

[w1]. This forces that x belongs to the set Y . In addition, x
is the unique vertex which belongs to J ∩Y ; for if there were another x′ in J ∩Y ,
then since NGm−1

[x′] ∩ NGm−1
[w1] = NGm−1

[x] ∩ NGm−1
[w1], the set IGm−1

(x, J)
would be empty and this would contradict the irredundance of J in Gm−1. Since
J∩Y = {x} and p > max{ai +n : 0 ≤ i ≤ n}, it is easy to observe that {y1}∪{yi :
an + n − m + 1 < i ≤ p} is a subset of IGm−1

(x, J). Hence |Y ∩ IGm−1
(x, J)| ≥ 2

and this contradicts the fact that IGm−1
(x, J) is a subset of NGm−1

[w1] since
|Y ∩ NGm−1

[w1]| = 1.

Case 2: i0 > 1. Since J is a maximal irredundant set in Gm−1 and J is dis-
joint to Vi0 = NGm−1

[ui0 ], J∪{ui0} is not an irredundant set in Gm−1. Therefore,
as in the first case, there exists x ∈ J such that IGm−1

(x, J ∪ {wi0}) = ∅ and
IGm−1

(x, J) 6= ∅. Thus IGm−1
(x, J) is a subset of NGm−1

[ui0 ]. Moreover, in this
case the structure of Gm−1 forces that IGm−1

(x, J) is a subset of Y ∩NGm−1
[ui0 ],

and the vertex yp does not belong to NGm−1
[ui0 ]. On the other hand, a simple ver-

ification shows that Y is a subset of NGm−1
[x] and, in particular, yp ∈ NGm−1

[x].
In addition, yp 6∈ NGm−1

[J −{x}], as otherwise, if yp ∈ NGm−1
[J −{x}], then Y ⊂

NGm−1
[x′] for some x′ ∈ J−{x} and the set IGm−1

(x, J) would be empty, contrary
to the assumption that J is an irredundant set in Gm−1. Hence, yp ∈ IGm−1

(x, J)
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and this contradicts the fact that IGm−1
(x, J) is a subset of Y ∩NGm−1

[ui0 ] (since
yp 6∈ NGm−1

[ui0 ]).
Since both the cases lead to contradictions, we must reject the assumption

that ir(Gm−1) < am−1. Consequently, ir(Gm−1) = γ(Gm−1) = i(Gm−1) = am−1.
Finally, for m = 1, we have ir(G0) = γ(G0) = i(G0) = a0. Moreover, since
G0 − wan+n − wan+n−1 − . . . − wan+n−i+1 = Gi and ir(Gi) = γ(Gi) = i(Gi) = ai

for i = 1, 2, . . . , n, the sequence η is ir-feasible, γ-feasible, and i-feasible. This
proves the implications (3)⇒(1), (3)⇒(2), (3)⇒(4) and completes the proof.

Figure 19 illustrates the proof of Theorem 4.1.1 for η = (3, 2, 3, 2, 1, 2).

r r r r r r

w1 w6 w7

w2 w5

w3 w4

y1 y2 y3 y4 y5 y6 y7 y8

K8 = K[{y1, y2, . . . , y8}]

rr

r r r rr r r

Fig. 19. A graph to illustrate the proof of Theorem 4.1.1

For the upper independence, irredundance and domination numbers, we have
the following counterpart of Theorem 4.1.1.

Theorem 4.1.2. If η = (a0, a1, . . . , an) is a sequence of positive integers, then

the following three statements are equivalent :

(1) η is an α-feasible sequence;
(2) η is an IR-feasible sequence;
(3) al−1 ≥ al ≥ al−1 − 1 for l = 1, 2, . . . , n.

Moreover , each of the statements (1)–(3) implies the statement

(4) η is an Γ -feasible sequence.

P r o o f. The implications (1)⇒(3) and (2)⇒(3) follow from Theorem 2.2.1.
Thus it suffices to prove that (3) implies (1), (2), and (4). Assume that η =
(a0, a1, . . . , an) is a sequence of positive integers with al−1 ≥ al ≥ al−1 − 1 for
l = 1, 2, . . . , n. Let Kn+1 and Ka0

be disjoint complete graphs with vertex sets
{x1, v2, . . . , vn+1} and {y1, . . . , ya0

}, respectively, and define the graph G to be
the join Kn+1 +Ka0

where Ka0
is the complement of Ka0

. Then α(G) = Γ (G) =
IR(G) = a0. Now let v1, v2, . . . , vn be vertices of G such that

vi =

{

xi−k if ai = ai−1 and a0 − ai = k
yk if ai = ai−1 − 1 and a0 − ai = k

for i = 1, . . . , n. Then for i = 1, . . . , n, if ai = a0−k for some nonnegative integer
k, the graph G − v1 − . . . − vi is obtained from Kn+1 + Ka0

by the removal of
k vertices belonging to the subgraph Ka0

and of i − k vertices belonging to the
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subgraph Kn+1 and so G − v1 − . . . − vi is isomorphic to Kn+1−(i−k) + Ka0−k

which, in turn, implies that α(G − v1 − . . . − vi) = Γ (G − v1 − . . . − vi) =
IR(G− v1 − . . .− vi) = a0 − k = ai. Thus the sequence η is α-, Γ - and IR-feasible
and the proof is complete.

Proposition 2.2.1 and the remarks following it indicate some difficulties in find-
ing a characterization of Γ -feasible sequences. In fact, we do not know a complete
characterization of Γ -feasible sequences. Instead, we give a characterization of
Γ -feasible sequences (a0, a1, . . . , an) with an ≥ 2. In the proof, we will use graphs
An and Dn defined in §2.2 and the following two propositions.

Proposition 4.1.1. For any two graphs F and H, we have Γ (F + H) =
max{Γ (F ), Γ (H)}, where F + H is the join of F and H.

P r o o f. If both F and H are complete graphs, then F + H is a complete
graph and the result is obvious; so we assume that F or H is not complete. Then
Γ (F + H) ≥ 2 and max{Γ (F ), Γ (H)} ≥ 2. It is easy to observe that if D is
a minimal dominating set of one of the graphs F and H, then D is a minimal
dominating set of F +H and therefore Γ (F +H) ≥ max{Γ (F ), Γ (H)}. To prove
that Γ (F + H) ≤ max{Γ (F ), Γ (H)}, let D be a largest minimal dominating
set of F + H. First, if both D ∩ V (F ) and D ∩ V (H) are nonempty sets, then it
follows from the minimality of D that |D∩V (F )| = |D∩V (H)| = 1 and therefore
Γ (F + H) = 2 ≤ max{Γ (F ), Γ (H)}. Finally, if exactly one of the sets D ∩ V (F )
and D ∩ V (H) is nonempty, say D ∩ V (F ) 6= ∅, then D is a minimal dominating
set of F and so Γ (F + H) = |D| ≤ Γ (F ) ≤ max{Γ (F ), Γ (H)}. This completes
the proof.

If G1 and G2 are graphs having exactly one common vertex c, say, then let
G1 ∗ G2 be the graph in which V (G1 ∗ G2) = V (G1) ∪ V (G2), NG1∗G2

(c) =
NG1

(c) ∪ NG2
(c) and G1 ∗ G2 − c = (G1 − c) + (G2 − c).

Proposition 4.1.2. If graphs F and H have exactly one common vertex c, say ,
then Γ (F ∗H) = max{Γ (F ), Γ (H)} and Γ (F ∗H−c) = max{Γ (F −c), Γ (H−c)}.

P r o o f. The equality Γ (F ∗ H − c) = max{Γ (F − c), Γ (H − c)} follows from
Proposition 4.1.1 and from the fact that F ∗ H − c = (F − c) + (H − c). Thus it
remains only to verify that Γ (F ∗ H) = max{Γ (F ), Γ (H)}. The last equality is
obvious if F and H are complete graphs. Therefore we assume that F or H is not
a complete graph. Then Γ (F ∗ H) ≥ 2 and max{Γ (F ), Γ (H)} ≥ 2. It is easy to
observe that every minimal dominating set of F or of H is a minimal dominating
set of F ∗H, which, in turn, implies the inequality Γ (F ∗H) ≥ max{Γ (F ), Γ (H)}.
To prove the inequality Γ (F ∗H) ≤ max{Γ (F ), Γ (H)}, let D be a largest minimal
dominating set of F ∗ H. We consider two cases.

C a s e 1: c 6∈ D. If both D ∩ V (F ) and D ∩ V (H) are nonempty sets, then
it follows from the minimality of D that |D| = 2 and so Γ (F ∗ H) = 2 ≤
max{Γ (F ), Γ (H)}. If exactly one of the sets D∩V (F ) and D∩V (H) is nonempty,
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say D ∩ V (F ) 6= ∅, then D is a minimal dominating set of F and therefore
Γ (F ∗ H) = |D| ≤ Γ (F ) ≤ max{Γ (F ), Γ (H)}.

C a s e 2: c ∈ D. In this case D ∩ NF∗H(c) = ∅; otherwise IF∗H(c,D) = ∅
and D would not be a minimal dominating set of F ∗ H. Assume first that both
D ∩ V (F − c) and D ∩ V (H − c) are nonempty sets. Then, since D is a minimal
dominating set, |D∩V (F−c)| = 1 = |D∩V (H−c)| and therefore Γ (F ∗H)=3. Let
x and y be the unique vertices of D∩(F−c) and D∩V (H−c), respectively. Since x
is adjacent to y and to every other vertex of H−c, IF∗H(y,D) is a nonempty subset
of V (F−c). Now, for any z ∈ IF∗H(y,D), the set {x, z, c} is independent in F and
so 3 ≤ α(F ) ≤ Γ (F ). Consequently, Γ (F ∗H) = 3 ≤ Γ (F ) ≤ max{Γ (F ), Γ (H)}.
Finally, assume that either D ∩ V (F − c) or D ∩ V (H − c) is nonempty, say
D ∩ V (F − c) 6= ∅. Then D is a minimal dominating set of F and Γ (F ∗ H) =
|D| ≤ Γ (F ) ≤ max{Γ (F ), Γ (H)}. This completes the proof.

Theorem 4.1.3. Let η = (a0, a1, . . . , an) be a sequence of positive integers with

an ≥ 2. Then η is a Γ -feasible sequence if and only if ai ≥ 2 for i = 0, 1, . . . , n−1.

P r o o f. Assume first that (a0, a1, . . . , an) is a Γ -feasible sequence with an ≥
2. Then there exists a graph G with distinguished vertices v1, . . . , vn such that
Γ (G) = a0 and Γ (G−v1− . . .−vi) = ai for i = 1, . . . , n. Now, if there were ai = 1
for some i < n, then G − v1 − . . . − vi (or G if i = 0) and each induced subgraph
of G − v1 − . . . − vi (of G if i = 0) would be a complete graph. In particular,
G−v1− . . .−vn would be a complete graph and so an = Γ (G−v1− . . .−vn) = 1,
contradicting the assumption that an ≥ 2.

To prove the “only if” part of the theorem, we assume that (a0, a1, . . . , an)
is a sequence of positive integers with ai ≥ 2 for i = 0, 1, . . . , n. Take n + 1
disjoint graphs Da0

, Da1
, . . . ,Dan . Since ai ≥ 2, Dai contains exactly one vertex

ui, say, adjacent to every vertex of maximum degree in Dai , i = 1, . . . , n. Now, for
i = 1, . . . , n, let vi be a fixed vertex of maximum degree in Dai−1

and consider the
graph Aai obtained from Dai by adding the vertex vi and joining it to all vertices
of Dai − NDai

[ui]. Note that v1 is the only common vertex of Da0
and Aa1

. For
i = 2, . . . , n, vi is the only common vertex of (. . . (Da0

∗Aa1
) ∗ . . . ∗Aai−2

) ∗Aai−1

and Aai . Thus, the graph

G = (. . . ((Da0
∗ Aa1

) ∗ Aa2
) ∗ . . . ∗ Aan−1

) ∗ Aan

is well-defined and it easily follows from Propositions 2.2.1 and 4.1.2 that Γ (G) =
a0. Moreover,

G − v1 = (. . . (((Da0
− v1) + (Aa1

− v1)) ∗ Aa2
) ∗ . . . ∗ Aan−1

) ∗ Aan

is isomorphic to (. . . ((Aa0−1 + Da1
) ∗ Aa2

) ∗ . . . ∗ Aan−1
) ∗ Aan and therefore it

follows from Propositions 2.2.1, 4.1.1 and 4.1.2 that Γ (G − v1) = a1. Finally, for
i = 2, . . . , n, the graph G − v1 − . . . − vi = (. . . ((Da0

− v1) + (Aa1
− v1 − v2) +

. . . + (Aai−1
− vi−1 − vi) + (Aai − vi)) ∗Aai+1

∗ . . . ∗Aan−1
) ∗Aan is isomorphic to

(. . . (Aa0−1 + Aa1−1 + . . . + Aai−1−1 + Dai) ∗ Aai+1
∗ . . . ∗ Aan−1

) ∗ Aan and again
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it follows from Propositions 2.2.1, 4.1.1 and 4.1.2 that Γ (G− v1 − . . . − vi) = ai.
This proves that (a0, a1, . . . , an) is a Γ -feasible sequence.

4.2. Interpolation properties of domination parameters. In 1980, G.
Chartrand [32] raised the following problem: If a graph G possesses a spanning
tree having m end vertices and another having M end vertices, where M > m,
does G possess a spanning tree having k end vertices for every k between m and
M? This question was answered affirmatively in [125] and it led to a number of
papers studying the interpolation properties of parameters of spanning trees of
a given graph. In [82], the various known interpolation results are examined and
classified on the basis of the proof techniques used in establishing them. Motivated
by results of the papers [82] and [83], we investigate the interpolation properties
of the irredundance, domination, and independence numbers of a graph. For the
sake of completeness we give a few definitions here. For a connected graph G, let
T (G) be the set of all spanning trees of G. Let T be a spanning tree of G and
let e be an edge of G which is not in T . If f is an edge which is in the unique
cycle of T + e, then T + e − f is a spanning tree of G and the transformation
T → T + e − f is called a fundamental exchange. If e and f are adjacent edges
of G, then the transformation T → T + e − f is called a neighbour exchange.
A neighbour exchange T → T + e − f is called an end-edge exchange if f is an
end edge in T . It is known that any spanning tree T ∈ T (G) can be transformed
into a spanning tree T ∗ ∈ T (G) by a sequence of neighbour exchanges. Lovász
[105, p. 269] and Harary, Mokken and Plantholt [81] have proved that if G is a
2-connected graph, then any T ∈ T (G) can be transformed into any T ∗ ∈ T (G)
by a sequence of end-edge exchanges.

An integer-valued graph function π is said to interpolate over a connected

graph G if the set π(T (G)) = {π(T ) : T ∈ T (G)}, listed in increasing order, is a
set of consecutive integers. A function π interpolates over a family F of graphs,
if π interpolates over each graph of the family F . Finally, we shall say that π is
an interpolating function if π interpolates over each connected graph.

Our first theorem indicates that unicyclic graphs play a significant role in
investigating of the interpolation properties of integer-valued graph functions.
Among other things, it follows from Theorem 4.2.1 that if an integer-valued graph
function π is not an interpolating function, then there exists a unicyclic graph G
such that π does not interpolate over G.

Theorem 4.2.1. An integer-valued graph function π is an interpolating func-

tion if and only if π interpolates over the family of all unicyclic graphs.

P r o o f. The necessity of the condition is clear. To prove the sufficiency, as-
sume that π interpolates over the family of all unicyclic graphs and let G be
any connected graph. Then it suffices to show that π(T (G)) is a set of consec-
utive integers if G has at least two cycles and |π(T (G))| ≥ 2. Let m and M be
the smallest and the largest integer of π(T (G)), respectively. Let T0, T ∗ ∈ T (G)
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be such that π(T0) = m and π(T ∗) = M , and let T0, T1, . . . , Tn = T ∗ be a se-
quence of neighbour exchanges transforming T0 into T ∗. For i = 0, 1, . . . , n − 1,
let ei and fi be the edges of G such that Ti+1 = Ti + ei − fi. Since Ti + ei is
a unicyclic graph, according to our hypothesis π(T (Ti + ei)) is a set of consec-
utive integers for 0 ≤ i ≤ n − 1. Moreover, since Ti, Ti+1 ∈ T (Ti + ei), the sets
π(T (Ti + ei)) and π(T (Ti+1 + ei+1)) are not disjoint and therefore their union
π(T (Ti + ei)) ∪ π(T (Ti+1 + ei+1)) is a set of consecutive integers. Consequently,
the union

⋃n−1
i=0 π(T (Ti + ei)) is a set of consecutive integers. Finally, we have

{m,m + 1, . . . ,M} ⊆
⋃n−1

i=0 π(T (Ti + ei)) ⊆ π(T (G)) ⊆ {m,m + 1, . . . ,M} and
therefore π(T (G)) = {m,m + 1, . . . ,M} is a set of consecutive integers.

The following corollary gives a useful sufficient condition for an integer-valued
graph function to be an interpolating function. This corollary was first observed
by Harary and Plantholt [82] and it follows immediately from Theorem 4.2.1.

Corollary 4.2.1. An integer-valued graph function π is an interpolating func-

tion if one of the conditions is satisfied :

(1) For every graph H and every edge vu of H, π(H) ≤ π(H−vu) ≤ π(H)+1;

(2) For every graph H and every edge vu of H, π(H) − 1 ≤ π(H − vu) ≤
π(H).

Corollary 4.2.2. For any positive integer k, the k-packing number αk and

the k-covering number γk are interpolating functions.

P r o o f. The result follows from Theorem 2.2.3 and Corollary 4.2.1.

Corollary 4.2.3 [83]. The independence number α and the domination num-

ber γ are interpolating functions.

P r o o f. This follows from Corollary 4.2.2 and the observation that for any
graph H, α(H) = α1(H) and γ(H) = γ1(H).

Corollary 4.2.4. The upper domination number Γ and the upper irredun-

dance number IR are interpolating functions.

P r o o f. Let G be any connected graph. It follows from Theorem 2.4.6 that
α(T ) = Γ (T ) = IR(T ) for every tree T ∈ T (G). Thus, Γ (T (G)) = IR(T (G)) =
α(T (G)) and the result follows from Corollary 4.2.3.

r r r r r r r r r r r r
r r r r r r r r rr r rr r rG T1 T2

Fig. 20. A graph G and its nonisomorphic spanning trees T1 and T2 with i(T1) = 2 and
i(T2) = 4

Harary and Schuster [83] have observed that the lower independence number
i is not an interpolating function. This follows from the simple counter-example
shown in Figure 20, in which the graph G has only two nonisomorphic spanning
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trees T1 and T2 with i(T1) = 2 and i(T2) = 4. Next the following theorem was
shown by Harary and Plantholt [82].

Theorem 4.2.2. The lower independence number i interpolates over any 2-
connected graph.

P r o o f. Assume G is a 2-connected graph such that |i(T (G))| ≥ 2. Let m and
M be the smallest and the largest integer of the set i(T (G)), respectively, and let
T0, T

∗ ∈ T (G) be such that i(T0) = m and i(T ∗) = M . As it was shown in [105,
p. 269] and [81], there exists a sequence of end-edge exchanges T0, T1, . . . , Tn = T ∗

transforming T0 into T ∗.
We claim that i(Tk+1) ≤ i(Tk)+1 for 0 ≤ k ≤ n−1. To prove this, let I be any

minimum maximal independent set in Tk and suppose that Tk+1 = Tk + wv− vu,
where v is an end vertex of Tk (and Tk+1). We consider four cases.

C a s e 1: v ∈ I, w 6∈ I. If u ∈ NTk
(I − {v}) (u 6∈ NTk

(I − {v}), resp.), then I
(I ∪ {u}, resp.) is a maximal independent set in Tk+1.

C a s e 2: v ∈ I, w ∈ I. If u ∈ NTk
(I − {v}) (u 6∈ NTk

(I − {v}), resp.), then
I − {v} ((I − {v}) ∪ {u}, resp.) is a maximal independent set in Tk+1.

C a s e 3: v 6∈ I, w 6∈ I. Here u ∈ I and I ∪ {v} is a maximal independent set
in Tk+1.

C a s e 4: v 6∈ I, w ∈ I. Again u ∈ I and it is easy to observe that I is a
maximal independent set in Tk+1.

In each case the tree Tk+1 has a maximal independent set of cardinality at
most |I| + 1. Thus, i(Tk+1) ≤ i(Tk) + 1. The last property implies that the
sequence (i(T0), i(T1), . . . , i(Tn)) contains (m,m + 1, . . . ,M) as a subsequence.
Hence, i(T (G)) = {m,m + 1, . . . ,M}, so i interpolates over G.

It follows from Corollary 2.2.2 and Theorem 2.2.6 that adding a new edge
to a graph G or removing an edge from G may cause an increase or decrease
of the lower irredundance number ir and that the extent to which the lower ir-
redundance number can vary may be arbitrarily large. Therefore the analysis used
for establishing Corollary 4.2.2 or Theorem 4.2.2 fails to yield any knowledge of
the interpolating character of the lower irredundance number ir. Our preliminary
observations that have been made so far convince us to formulate the follow-
ing conjecture: The lower irredundance number ir is an interpolating function.
Certainly, according to Theorem 4.2.1 it is enough to check whether the lower
irredundance number ir interpolates or not over the unicyclic graphs.

Some other results concerning the interpolation properties of covering and
domination numbers of a graph can be found in [84] and [143, 144, 145, 147].
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Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 113–121.



Domination, independence and irredundance 97

[78] F. Harary and J. A. Kabel l, Monotone sequences of graphical invariants, Networks 10
(1980), 273–275.

[79] F. Harary and M. Livingston, Characterization of trees with equal domination and
independent domination numbers, Congr. Numer. 55 (1986), 121–150.

[80] —, —, Caterpillars with equal domination and independent domination numbers, in: Re-
cent Studies in Graph Theory, Vishwa, Gulbarga, 1989, 149–154.

[81] F. Harary, R. J. Mokken and M. J. Plantholt, Interpolation theorem for diameters of
spanning trees, IEEE Trans. Circuits and Systems 30 (1983), 429–432.

[82] F. Harary and M. J. Plantholt, Classification of interpolation theorems for spanning
trees and other families of spanning subgraphs, J. Graph Theory 13 (1989), 703–712.

[83] F. Harary and S. Schuster, Interpolation theorems for the independence and domination
numbers of spanning trees, Ann. Discrete Math. 41 (1989), 221–228.

[84] F. Harary, S. Schuster and P. D. Vestergaard, Interpolation theorems for the invari-
ants of spanning trees of a given graph: edge-covering , Congr. Numer. 59 (1987), 107–114.

[85] J. H. Hatt ing and M. A. Henning, A characterization of block graphs that are well-k-
dominated , J. Combin. Math. Combin. Comput. 13 (1993), 33–38.

[86] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and
unchanging of the graphical invariants: minimum and maximum degree, maximum clique

size, node independence number and edge independence number , Congr. Numer. 72 (1990),
239–252.

[87] S. M. Hedetniemi, S. T. Hedetniemi and R. Laskar, Domination in trees: models and
algorithms, in: Graph Theory with Applications to Algorithms and Computer Science,
Kalamazoo, MI, 1984, Wiley, New York, 1985, 423–442.

[88] S. T. Hedetniemi and R. Laskar, Bibliography on domination in graphs and some basic
definitions of domination parameters, Discrete Math. 86 (1990), 257–277.

[89] S. T. Hedetniemi, R. Laskar and J. Pfaff, Irredundance in graphs: a survey , Congr.
Numer. 48 (1985), 183–193.

[90] M. S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domi-
nation and independence, Discrete Math. 86 (1990), 59–69.

[91] —, —, A note on graphs which have upper irredundance equal to independence, Discrete
Appl. Math., to appear.

[92] M. S. Jacobson, K. Peters and D. F. Rall, On n-irredundance and n-domination, Ars
Combin. 29B (1990), 151–160.

[93] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms 3 (1982),
182–195; 5 (1984), 147–160; 6 (1985), 434–451; 8 (1987), 438–448.

[94] T. Kikuno, N. Yoshida and Y. Kakuda, Linear algorithm for the domination number
of a series-parallel graphs, Discrete Appl. Math. 5 (1983), 299–311.

[95] D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936.

[96] B. Kummer, Spiele auf Graphen, Deutscher Verlag Wiss., Berlin, 1979.

[97] R. Laskar and K. Peters, Vertex and edge domination parameters in graphs, Congr.
Numer. 48 (1985), 291–305.

[98] R. Laskar and J. Pfaff, Domination and irredundance in split graphs, Tech. Rept. 430,
Department of Mathematical Sciences, Clemson University, August 1983.

[99] —, —, Domination and irredundance in graphs, Tech. Rept. 434, Department of Mathe-
matical Sciences, Clemson University, September 1983.

[100] R. Laskar and H. B. Walikar, On domination related concepts in graph theory , in:
Lecture Notes in Math. 885, Springer, 1981, 308–320.

[101] C. Lekkerkerker and J. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math. 51 (1962), 45–64.

[102] M. Lesk, M. D. Plummer and W. R. Pulleyblank, Equi-matchable graphs,
in: Graph Theory and Combinatorics, Academic Press, London, 1984, 239–254.



98 J. Topp

[103] M. Lewin, Matching-perfect and cover-perfect graphs, Israel J. Math. 18 (1974), 345–347.

[104] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

[105] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1979.
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