POLSKA AKADEMIA NAUK, INSTYTUT MATEMATYCZNY

DISSERTATIONES
MATHEMATICAE

(ROZPRAWY MATEMATYCZNE)

KOMITET REDAKCYJNY

BOGDAN BOJARSKI redaktor
WIESLAW ZELAZKO zastepca redaktora
ANDRZEJ BIALYNICKI-BIRULA, ZBIGNIEW CIESIELSKI,
JERZY LOS, ZBIGNIEW SEMADENI

CCCXLII

JERZY TOPP

Domination, independence and
irredundance in graphs

WARSZAWA 1995



Jerzy Topp

Faculty of Applied Physics and Mathematics
Gdansk Technical University

Narutowicza 11/12

80-952 Gdarisk, Poland

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

«Hm-mmFcamm—mm T
Ihcermzam & e
02-240 Warszawa, ul. Jakobinow 23, tel: 846-79-66, fel/fax: 49-89-95

PRINTED IN POLAND

(© Copyright by Instytut Matematyczny PAN, Warszawa 1995

ISSN 0012-3862



CONTENTS

1. Introduction .. ... 5
1.1. Purpose and SCOPE ... ...ttt e e e e 5
1.2. Basic graph-theoretical terms .......... ... .. . 6

2. Domination, independence and irredundance in graphs .............. ... ... ... 9
2.1. Introduction and preliminaries ............ ... .o 9
2.2. Domination parameters of vertex- and edge-deleted subgraphs ........................ 15
2.3. Packing and covering numbers . ............. .. 25
2.4. Conditions for equalities of domination parameters .............. ... .. ... .o i 35

3. Well covered graphis ...... ... ... i 46
3.1. Introduction and preliminary results ............. i 46
3.2. The well coveredness of products of graphs ......... ... .. .. i 55
3.3. Well covered simplicial and chordal graphs .......... ... . ... . i 67
3.4. Well covered line and total graphs ...... ... .. . i i i 73
3.5. Well covered generalized Petersen graphs ......... ... ... i, 78
3.6. Well irredundant graphs ...... ... .. 80

4. Graphical sequences and sets of INtEZETS .. ......uitii e 85
4.1. Domination-feasible SeqUENCES . ... ... ... i 86
4.2. Interpolation properties of domination parameters .............. .. ... i 91

References. . . ... 94

1991 Mathematics Subject Classification: 05C05, 05C35, 05C70, 05CT75.

Key words and phrases: graph, domination, independence, irredundance, well coveredness, inter-
polation.

Received 16.7.1992; revised version 14.11.1994.



1. Introduction

1.1. Purpose and scope. The study of graphs and their various theoretical
and real-world applications have led to the study and development of the theory
of independence and domination in graphs. In fact, graph theorists have studied
independent sets in graphs for a long time, especially in view of their relation-
ships to colorings in graphs. The mathematical study of domination in graphs
was begun by Konig [95], Berge [10, 11, 12] and Ore [111]. Their text-books,
the paper by Vizing [156], and the survey papers by Cockayne [34], Cockayne
and Hedetniemi [38], Laskar and Walikar [100], and Hedetniemi, Laskar and Pfaff
[89] provided the inspiration for many mathematicians working in this field. The
concept of irredundance in graphs was first introduced by Cockayne, Hedetniemi
and Miller [40] while studying domination in graphs. A firm foundation to the
development of irredundance gave Bollobds and Cockayne [20]. During the past
30 years the study of domination has become a significant area of research in
graph theory. Currently the domination theory includes a few hundred papers
written on domination related problems (for example, the recent domination bib-
liography compiled by Hedetniemi and Laskar [88] contains 402 citations) and
over 70 different types of domination related parameters of graphs have been
studied (for example, the paper by Hedetniemi, Hedetniemi and Laskar [87] con-
tains the definitions of 30 domination parameters and some other of them can
be found in “Topics on Domination”, Discrete Mathematics 86 (1990), edited by
S. T. Hedetniemi and R. C. Laskar).

This paper is not a survey paper on domination, independence and irredun-
dance in graphs. Rather, it deals with aspects of the classical cases of domination,
independence and irredundance of particular interest to the author. This paper
was based on the author’s papers [140]-[145] and the papers [117], [126], and
[146]-[155] which the author wrote together with E. Prisner of the Hamburg Uni-
versity, P. D. Vestergaard of the Aalborg University, and L. Volkmann of the
Technical University of Aachen. The work contains also some new results which
have never been published and it includes various references to publications which
are beyond the mainstream development. The paper is organized as follows:

Chapter 1 contains some basic graph-theoretic terms used in this paper. Other
graph-theoretic terms which are not included in this section will be defined when
they are needed (or can be found in [15], [75] or [157]).

In Chapter 2, we introduce the notion of domination, independence and ir-
redundance in graphs. We then give the main properties of independent, domina-
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ting and irredundant sets, and general relationships between the independence,
domination and irredundance numbers of a graph. The principal results of this
chapter are some sufficient conditions for two or more of the domination related
parameters to be equal (Sections 2.3 and 2.4).

Chapter 3 deals with graphs in which every maximal independent set of ver-
tices is maximum. Such graphs are called well covered. This chapter offers some
general properties of the well covered graphs and characterizations of several sub-
classes of the well covered graphs.

In Chapter 4, we investigate sequences and sets of integers which are formed
for a given graph and a domination related parameter.

1.2. Basic graph-theoretical terms. A simple graph G (a graph for short)
is an ordered pair (V(G), E(G)), where V(G) is a finite set and E(G) is a set of
two-element subsets of V(G). The set V(G) is the set of vertices of G and E(G)
is the set of edges of G. The cardinality of the vertex set of a graph G is called the
order of G, while the cardinality of its edge set is the size of G. An edge {u,v} of G
is said to join the vertex u to the vertex v and is denoted by uv. We also say that
the vertices u and v are adjacent and that each of them is incident with the edge
uwv. Two distinct edges are adjacent if they are incident with a common vertex;
otherwise they are nonadjacent. If uv € E(G), then we say that v is a neighbour
of u. The set of all neighbours of u is called the neighbourhood of u and is denoted
by Ng(u). We write Ng[u] instead of Ng(u) U {u}. For a subset X of V(G), we
write Ng(X) and Ng[X] instead of ,cx Na(u) and U,cx Ngul], respectively.
The degree of a vertex w is |[Ng(u)| and is denoted by dg(u). The maximum
(resp. minimum) of the degrees of the vertices of G is called the mazimum (resp.
minimum) degree of G. A vertex of degree zero (one or at least two, resp.) in G is
referred to as an isolated (end or interior, resp.) vertex of G. An edge uv is an end
edge of G if w or v is an end vertex of (G; otherwise it is an interior edge of G. If
all the vertices of G have the same degree, say d, then we say that G is regular of
degree d. A regular graph of degree 3 is called a cubic graph. A graph is complete
if any two of its vertices are adjacent. A complete graph of order n is therefore a
regular graph of degree n — 1 and size n(n — 1)/2; we denote this graph by K,,.
The complete graph having vertex set V' is denoted by K[V]. The complement
G of a graph G is the graph with vertex set V(G) and such that two vertices are
adjacent in G if and only if these vertices are not adjacent in G. The complement
K, of the complete graph K, has n vertices and no edges and is referred to as
the totally disconnected graph of order n.

A graph G is isomorphic to a graph Gs if there exists a bijection ¢ : V(G1) —
V(Ga), called an isomorphism, which preserves adjacency, that is, for all v,u €
V(G1), vu € E(Gy) if and only if ¢(v)p(u) € E(G2). It is easy to see that “is
isomorphic to” is an equivalence relation on graphs. Therefore, if G1 is isomorphic
to G2, we may say that G; and G4 are isomorphic. If G; and G2 are isomorphic,
we write G1 = G4 or simply GG = G4 if there is no danger of confusion. By a
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copy of a graph G we mean a graph isomorphic to G. Two graphs GG; and G9 are
disjoint or vertex-disjoint (resp. edge-disjoint) if their vertex sets (resp. edge sets)
are disjoint.

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(GQ); in
such a case, we also say that G is a supergraph of H. Any graph isomorphic to a
subgraph of G is also referred to as a subgraph of G. A spanning subgraph of a
graph G is a subgraph containing all the vertices of G. If M is a subset of edges
of G, then G — M denotes a spanning subgraph of G with edge set E(G) — M. In
particular, if vu € E(G), then G — {vu} is called an edge-deleted subgraph of G
and we write G —vu instead of G—{vu}. If u and v are nonadjacent vertices of G,
then G + uv denotes the graph with vertex set V(G) and edge set E(G) U {uv}.
For any set X of vertices of G, the induced subgraph G[X] of G is the maximal
subgraph of G with vertex set X. For a subset X of V(G) and a vertex v € V(G),
we also write G — X and G — v instead of G[V(G) — X] and G[V (G) — {v}],
respectively. For v € V(G), G—w is called a vertex-deleted subgraph of G. For any
set M of edges of G, the generated subgraph G(M) of G is the minimal subgraph
of G with edge set M, the graph whose vertex set consists of those vertices of G
incident with at least one edge of M and whose edge set is M.

A set of pairwise nonadjacent edges of a graph G is called a matching in G.
If M is a matching in a graph G with the property that every vertex of G is
incident with an edge of M, then M is a perfect matching in G. Clearly, if G has
a perfect matching M, then G has an even order and G(M) is a regular spanning
subgraph of degree 1 of G. In a graph G, a nonempty subset X of V(G) is said to
be matched into a subset Y of V(G) — X if there exists a matching M in G such
that each edge of M is incident with a vertex of X and a vertex of Y and every
vertex of X is incident with an edge of M.

A path is a graph P having vertex set V(P) = {vg,v1,...,v,} and edge set
E(P) = {vv1,v102,..., 05105} if n > 1 or E(P) = @ if n = 0. This path P
is usually denoted by the sequence (vg,v1,...,v,) of consecutive vertices since
the edges present are then evident. The vertices vy and v,, are the end vertices
of P and n is the length of P. We say that P is a vy—uv, path. Of course, P
is also a v, —vg path. The symbol P, denotes an arbitrary path of length n.
A vertex u is said to be joined to a vertex v in a graph G if there exists a
u — v path in G. A graph G is connected if any two of its vertices are joined.
A graph that is not connected is disconnected. A maximal connected subgraph
of GG is called a connected component or simply a component of G. A connected
regular graph of degree 2 is called a cycle. Thus a cycle is a graph C' of the form
V(C)={v1,v2,...,v,} and E(C)={vive,vovs, ..., Up_1Un, vyv1 }. For simplicity
this cycle is also denoted by (v, ve,...,v,), the sequence of consecutive vertices,
when it is clear from the context. The number n (n > 3) is the length of C'. The
symbol C,, denotes an arbitrary cycle of length n. A cycle is even if its length is
even; otherwise it is odd. A cycle of length n is an n-cycle; a 3-cycle is also called
a triangle. The girth of a graph G, denoted g(G), is the length of a shortest cycle
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in G if there is any; otherwise g(G) = co. A graph G of order at least three is
2-connected if and only if any two vertices of G lie on a common cycle. A unicyclic
graph is a connected graph that contains exactly one cycle. A tree is a connected
graph with no cycles.

The distance dg(u,v) between two vertices u and v in G is the length of
a shortest u—wv path. If there is no u—wv path, then dg(u,v) = co. If X is a
nonempty subset of V(G) and u € V(G), we define dg(u, X) = minyex dg(u,v).
The diameter d(G) of a connected graph G is the maximum distance between two
vertices of G, d(G) = max, ,ev(q) da(u, v).

A graph G is bipartite if its vertex set can be partitioned into two sets
and V5 (called partite sets) such that every edge of G joins a vertex of V; to a
vertex of Vo. A complete bipartite graph G is a bipartite graph with partite sets
V1 and V5 having the added property that if u € V3 and v € Vs, then wv € E(G).
A complete bipartite graph with partite sets V; and Vs, where |Vi| = m and
|V2| = n, is denoted by K, ,,. The graph K , is called a star; its vertex of degree
n is called the center of K ;.

If G and G9 are two graphs, then their union, denoted by G U G35, has
V(G UGy) = V(Gl) UV (G2) and E(G; UG2) = E(Gy) U E(Gg) The disjoint
union of graphs is the union of disjoint copies of the graphs. If a graph G consists
of n disjoint copies of a graph H, then we write G = nH. The corona G1 o Gy of
two graphs G and Gy is the graph obtained from the disjoint union of G and
nGo (where n is the order of G) by joining the ith vertex (of the copy) of G1 to
every vertex in the ith copy of G2 (see Section 3.2). The join G1 + G9 of graphs
G1 and G is obtained from their disjoint union by joining each vertex (of the
copy) of G1 to each vertex (of the copy) of Ga.

The line graph L(G) of a graph G is the graph having vertex set E(G) such
that two vertices in L(G) are adjacent if and only if their corresponding edges in G
are adjacent. The total graph T'(G) of G is the graph with vertex set V(G)UE(G)
in which two vertices u and v are adjacent if and only if either u and v are adjacent
vertices of GG, or u and v are adjacent edges of GG, or u is a vertex of G and v is
an edge of G incident with wu.

A vertex v of a graph G is called a simplicial vertex if any two vertices of
Ng(v) are adjacent in G. Equivalently, a simplicial vertex is a vertex that ap-
pears in exactly one clique of a graph, where a cliqgue of a graph G is a maximal
complete subgraph of G. A clique of a graph G containing at least one simplicial
vertex of G is called a simplex of G. Note that if v is a simplicial vertex of G,
then G[Ng[v]] is the unique simplex of G containing v. A graph G is said to
be simplicial if every vertex of G is a simplicial vertex of G or is adjacent to a
simplicial vertex of G. Certainly, if G is a simplicial graph and 51, ..., .S, are the
simplices of G, then V(G) = UL, V(S;). A graph G is said to be chordal (or
triangulated) if every cycle of G of length four or more contains a chord, i.e., an
edge joining two non-consecutive vertices of the cycle. In the literature there are
many characterizations of chordal graphs, see Berge [13]-][16], Duchet [51] and



Domination, independence and irredundance 9

Golumbic [75]. Dirac [47], Lekkerkerker and Boland [101] and Rose [120] have
proved that a graph G is chordal if and only if every induced subgraph of G
has a simplicial vertex. Certainly, every induced subgraph of a chordal graph is
chordal.

A vertex v of a graph G is called a cut vertex of G if G — v has more compo-
nents than G. A connected graph with no cut vertices is called a block. A block
of a graph G is a subgraph of G which is a block itself and which is maximal
with respect to that property. A block H of a graph G is called an end block of
G if H has at most one cut vertex of G. A graph G is called a block graph if
every block of GG is a complete graph. Note that every block graph is a chordal
graph.

The words maximal and minimal refer as usual to sets with respect to a
prescribed property. Also as usual, the words maximum and minimum refer to
the cardinality of a set with a prescribed property.

2. Domination, independence and irredundance in graphs

2.1. Introduction and preliminaries. First we give a few definitions. Let
G be a graph and let X be a subset of the vertex set V(G) of G. For every x in
X, define

Ig(z, X) = Ngla] = No[X — {z}],

the set of private neighbours of the vertex x relative to the set X. If I (z, X) = 0,
then z is said to be redundant in X. A set X of vertices containing no redundant
vertex is called irredundant. It is apparent that irredundance is a hereditary prop-
erty. The quantities concerning irredundance are the lower and upper irredundance
numbers ir(G) and IR(G) of a graph G which are respectively the minimum and
maximum cardinalities of maximal irredundant sets of vertices of G.

If X and Y are subsets of V(G), X dominates Y if Y C Ng[X]. In particu-
lar, if X dominates V(G), then X is called a dominating set of G. Equivalently,
X C V(G) is a dominating set of G if any vertex x € V(G) — X is adjacent to at
least one vertex y € X. Certainly, every set containing a dominating set is domi-
nating. The lower and upper domination numbers v(G) and I'(G) of G are respec-
tively the minimum and maximum cardinalities of minimal dominating sets of G.

A set X of vertices of G is said to be independent if no two vertices of X
are adjacent in G. Note that every subset of an independent set is independent.
The lower and upper independence numbers i(G) and a(G) of G are respectively
the minimum and maximum cardinalities of maximal independent sets of vertices
of G.

The parameters ir(G), v(G), i(G) and a(G) are sometimes referred to as the
irredundance, domination, independent domination and independence numbers of
G, respectively.
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The concepts of domination and independence in graphs have existed in the
literature for a long time. The modern study of domination and independence can
be attributed initially to Konig [95], Berge [10, 11, 12], Ore [111], Liu [104] and
Vizing [156]. The independent domination number was introduced by Cockayne
and Hedetniemi [37]. The invariants v and « are well known and they have many
applications not only in graph theory, but in game theory, computer science, po-
litical science, safeguards analysis, transportation and communication networks,
combinatorial optimization and analysis of algorithms as well. The literature in-
cludes many papers dealing with the theory of independent sets and the related
topics of coding theory (see Ore [111] and Roberts [119]) and graph colorings.
The notion of dominance is related to the theory of matchings because any max-
imal matching in a graph G corresponds to an independent dominating set in
the line graph L(G) of G. Applications of kernels (i.e. independent dominating
sets) to game theory have been presented in several papers, e.g. see Konig [95],
Neumann and Morgenstern [109], Berge [10, 11, 12, 15|, Kummer [96] and Topp
[137, 138, 139], to quote a few.

One of the best known problems involving dominating sets is the Five Queens
Problem (e.g. see Berge [15] and Ore [111]) in which we are to determine the
minimum number of queens to be placed on the 8 x 8 chessboard so that every
square is either occupied by a queen or can be occupied in one move by at least
one of the queens. It is easy to see that solutions of this problem are dominating
sets in the graph whose vertices are the 64 squares of the chessboard and vertices
u and v are adjacent if a queen may move from u to v in one move.

The problem of determining the dominating sets has obvious applications to
the location of objects, safeguards or facilities on the vertices of a network, see
Roberts [119]. Berge [15] discusses the use of the notion of dominance in devising
optimal methods of radar surveillance. In a similar vein, Liu [104] discusses the
application of dominance to communication networks. Suppose we have commu-
nication links in use between cities, and we want to set up transmitting stations
in some of the cities so that every city can receive a message from at least one
of the transmitting stations. An acceptable set of locations in which to place
transmitting stations corresponds to a dominating set of the network. Irredun-
dant sets in graphs were first defined and studied by Cockayne, Hedetniemi and
Miller [40]. The notion of redundancy is also relevant in the context of com-
munication networks, since any redundant vertex in a set can be removed from
the set without affecting the totality of vertices that may receive communication
from some vertex in the set, see [20] and [89]. The invariants ir and IR seem to
have received less attention, although some significant results have been obtained
by Allan and Laskar [4], Bollobas and Cockayne [20, 21], Cheston, Hare, Hedet-
niemi and Laskar [33], Cockayne, Favaron, Payan and Thomason [36], Favaron
[60], Golumbic and Laskar [76], Jacobson and Peters [90, 91] and in a few other
papers. The bibliography compiled by Hedetniemi and Laskar [88] and survey
papers by Cockayne [34], Cockayne and Hedetniemi [38], Hedetniemi, Laskar and
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Pfaff [89] and Laskar and Walikar [100] are recommended for further information
on this topic.

We shall now briefly mention some results which are concerned with algo-
rithms for computing the lower (upper) irredundance, domination and indepen-
dence numbers and finding related sets of vertices. The questions how difficult it
is to find a minimum (maximum) maximal independent set, a minimum (maxi-
mum) maximal irredundant set, a minimum (maximum) minimal dominating set,
and the lower (upper) irredundance, domination and independence numbers of a
graph have been investigated extensively during the last fifteen years (e.g., see
[44], [73], [75] and [93] for extensive references). The problem of finding a minimum
cardinality dominating set has been discussed in a large number of papers and it
is NP-complete for arbitrary graphs [73]. The problem of determining a minimum
dominating set remains NP-complete for comparability graphs, bipartite graphs
[46] and split graphs [18, 43]. On the other hand, there are other classes, such as
series-parallel graphs [94], k-trees (fixed k) [42], strongly chordal graphs [55] and
permutation graphs [57] for which polynomial time algorithms have been designed
for solving the minimum cardinality dominating set problem. The minimum car-
dinality independent dominating set problem is NP-complete for the classes of
comparability graphs and bipartite graphs [43], but it can be solved in polyno-
mial time for a number of other classes of graphs, see [54, 55, 57]. The problem
of finding a minimum cardinality maximal irredundant set is NP-complete, even
for special classes of graphs, such as bipartite graphs [89] and chordal graphs
[98], and can be solved in linear time for trees [17] and in polynomial time for
weighted interval graphs [19]. It is well known that the problem of determining
the upper independence number is NP-complete even for planar graphs with no
vertex degree exceeding three [73], but very efficient algorithms for determining
the upper independence number have been devised for several classes of perfect
graphs [75] and for many other classes of graphs, see [93]. It appears difficult
to compute the upper domination and irredundance numbers in general, and we
suspect that both the problems are NP-complete. However, for some classes of
graphs their determination is reasonable. For example, if G is a circular arc graph,
a chordal graph or a bipartite graph, then the upper independence number o(G)
can be computed in polynomial time (see [73, 75, 93]) and therefore the upper
domination number I'(G) and the upper irredundance number IR(G) can be de-
termined in polynomial time since IR(G) = I'(G) = «a(G) for such graphs (see
[36, 76, 90, 146]).

There are many generalizations of the independence, domination and irredun-
dance numbers of a graph, see survey papers [34, 38, 88, 89, 100] and papers
by Acharya [1], Chang and Nemhauser [30, 31], Cockayne, Dawes and Hedet-
niemi [35], Colbourn, Slater and Stewart [41], Domke, Hedetniemi and Laskar
[48], Domke, Hedetniemi, Laskar and Allan [49], Domke, Hedetniemi, Laskar and
Fricke [50], Farley and Shacham [58], Fink and Jacobson [69, 70], Golumbic and
Laskar [76], Hedetniemi, Hedetniemi and Laskar [87], Meir and Moon [107], Sam-
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pathkumar [121, 122, 123], Sampathkumar and Walikar [124], Siemes, Topp and
Volkmann [126], Slater [127, 128, 129]. In this paper we consider only some of
them. Here is a natural generalization of the concept of domination and indepen-
dence in graphs (some others will be defined when they are needed).

For a graph G and a positive integer k, a subset I C V(G) is a k-packing of G
if dg(v,u) > k for every pair v and u of distinct vertices from I. The k-packing
number of G is the number oy (G) of vertices in any maximum k-packing of G. A
subset C' C V(Q) is a k-covering of G if dg (v, C') < k for every vertex v € V(G) —
C. The k-covering number of G, denoted as vx(G), is the number of vertices in
any minimum k-covering of G. The k-packing number and the k-covering number
were first introduced by Meir and Moon in [107]. In that paper they studied the
k-packing and k-covering numbers of trees. Some generalizations of their results
and generalizations of the k-packing and k-covering numbers are given in the
excellent papers of Chang and Nemhauser [30, 31], Domke, Hedetniemi, Laskar
and Allan [49], and in a few other papers. Certainly, the 1-packing number oy (G)
and the 1-covering number ~;(G) are the upper independence number and the
lower domination number of a graph G, respectively.

In this section we present various general properties of independent, dominat-
ing and irredundant sets, and general relationships between the independence,
domination and irredundance numbers of a graph. All these results are very often
used in the subsequent sections of this paper. Our first proposition is a gener-
alization of the Berge theorem (see Corollary 2.1.3) and it relates k-packings to
k-coverings of a graph. Some other generalizations of the Berge theorem are given
by Siemes, Topp and Volkmann [126].

PROPOSITION 2.1.1 [152]. For a graph G and a subset I of V(QG), the following
conditions are equivalent:

(1) I is a mazimal k-packing of G;
(2) I is a k-packing and a k-covering of G;
(3) I is both a mazximal k-packing and a minimal k-covering of G.

Proof. Let I be a maximal k-packing of G. Clearly, I is a k-covering of G
(otherwise there would exist a vertex v € V(G) — I such that dg(v,I) > k and
I'U{v} would be a k-packing in G).

Let I be a k-packing and a k-covering of G. Then I is a maximal k-packing
of G (otherwise I would not be a k-covering). Moreover, for every u € I, the set
I' = I — {u} cannot be a k-covering of G because u ¢ I’ and d¢(u,I’) > k. Thus,
I is a minimal k-covering of G.

This suffices to complete the proof of the proposition. m

The next three results are immediate consequences of Proposition 2.1.1.
COROLLARY 2.1.1. For every graph G, v¢(G) < ai(G). =

COROLLARY 2.1.2. If G is a graph with v(G) = ax(G), then every mazimal
k-packing I of G is a maximum k-packing and a minimum k-covering. m
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COROLLARY 2.1.3 [12, 15]. For a graph G and a subset I of V(G), the following
conditions are equivalent:

(1) I is a mazimal independent set of G;
(2) I is an independent dominating set of G
(3) I is both a mazimal independent and a minimal dominating set of G. m

Ore [111] has proved that a dominating set D in a graph G is minimal if and
only if for each vertex z € D either (i) Ng(xz) N D = 0 or (ii) there exists a vertex
y € V(G) — D such that Ng(y) N D = {z}. This characterization of minimal
dominating sets may also be stated in the following form.

PROPOSITION 2.1.2. Let D be a dominating set in G. Then D is a minimal
dominating set in G if and only if Ig(x, D) # 0 for each x € D.

Proof. If D is a minimal dominating set in G, then for each z € D, Ng[x] U
Ng|D — {z}] = Ng[D] = V(G), Ng[D — {z}] is a proper subset of V(G) and
consequently I (x, D) # 0.

Assume D is dominating in G and Ig(x, D) # () for each x € D. Suppose D
is not a minimal dominating set. Then for some z € D, D — {z} is dominating
in G. Therefore Ng[D — {z}] = V(G) and, since Ng[z] C V(G), Ig(z,D) = 0,
contrary to the hypothesis. n

It follows from the definition of an irredundant set and Proposition 2.1.2 that
minimal dominating and maximal irredundant sets are related by the following
result.

COROLLARY 2.1.4. Let X be a dominating set of a graph G. Then X is a
manimal dominating set of G if and only if X is a mazimal irredundant set of G. m

Since every maximal independent set of a graph is minimal dominating (Corol-
lary 2.1.3) and every minimal dominating set is maximal irredundant (Corollary
2.1.4), it follows immediately from the definition of independence, domination
and irredundance numbers that we have the following string of inequalities which
was first observed by Cockayne, Hedetniemi and Miller [40].

PRroroOSITION 2.1.3. For any graph G,
ir(G) <(G) <i(G) < a(G) < I'(G) < IR(G). =

In general all the six parameters of Proposition 2.1.3 are distinct; Cockayne,
Favaron, Payan and Thomason [36] have constructed a graph G with ir(G) = 2,
v(G) =3,i(G) =4, a(G) =7, I'(G) = 9 and IR(G) = 10. On the other hand,
for the corona of graphs G and K all the inequalities of Proposition 2.1.3 turn
out to be equalities.

PROPOSITION 2.1.4. If G is a graph of order n, then
ir(GoKj) =7(GoK;) =i(GoK;j) =a(GoK;) =1'(GoK;) =IR(Go K;) =n.

Proof. Suppose V(G) = {v1,...,v,} and V(G o K1) = V(G) U {v},...,v}},
where v; is the unique neighbour of v} in Go K; (i = 1,...,n). Let X be any
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maximal irredundant set of G o K7. By virtue of Proposition 2.1.3, it suffices to
show that |X| = n. Since X is irredundant, at most one of the vertices v; and
v belongs to X for every i € {1,...,n} (otherwise the set I (v}, X) would be
empty and X would not be irredundant). On the other hand, the maximality of
X implies that for every i € {1,...,n}, v; or v} belongs to X (otherwise X U {v;}
and X U {v/} would be greater irredundant sets). Consequently, |X| =n. =

The next result, due to Bollobds and Cockayne [20], will enable us to obtain
a few new properties of the irredundant sets and the irredundance numbers of
graphs.

THEOREM 2.1.1. Suppose that X is a maximal irredundant set of a graph G
and a vertex u of G is not dominated by X. Then for some x € X,

(a) Ig(z,X) € Ng(u), and

(b) for x1, x9 € Ig(x, X) such that x1 # x4, either x1x9 € E(G) or there exist
Y1, y2 € X — {x} such that x1 is adjacent to each vertex of Ig(y1,X) and zo is
adjacent to each vertex of Ig(y2, X).

Proof. (a) By maximality of X, XU{u} is not irredundant in G, so Ig(z, XU
{u}) = 0 for some x € X U{u}. Since u is not dominated by X, u € I(u, XU{u})
and therefore  # u. Further, since Ig(x, X U{u}) = Nglz] — Ng[X — {z}] —
Nglu]l =0, Ig(z,X) = Ng[z] — Ng[X — {2}] € Nglu] and therefore Ig(z, X) C
Ng(u) as u & Ig(z, X).

(b) Let x1, z2 be two nonadjacent vertices of I (x, X) and suppose on the
contrary that for x; or zo, say for z1, and for all y; € X — {z}, there exists
zi € Ig(yi, X) which is not adjacent to x1. Then zo € Ig(z, X U {x1}), u €
Ig(x1, X U{z1}), 2z € Ig(y;, X U{x1}) for each y; € X — {x} and therefore
X U{x;} is irredundant in G, which contradicts the maximality of X. m

By Proposition 2.1.3, ir(G) < 7(G) for every graph G. The next theorem,
which improves a result of Allan, Laskar and Hedetniemi [5], gives another in-
equality relating v(G) and ir(G).

THEOREM 2.1.2. Let X be a minimum mazimal irredundant set in G. If the
subgraph G[X] has k isolated vertices and k < |X|, then v(G) < 2ir(G) — k — 1.

Proof. Let Xy be the set of isolated vertices of G[X]. Since |Xo| =k < |X],
X — Xog # 0, say X — Xo = {x1,...,2,}. For each x; € X — X, choose any
x} € Ig(x;, X) and form the set X' = X U {af,...,2),}. Since z; & Ig(z;, X),
xf # x; (for i = 1,...,n) and therefore X’ is of cardinality 2ir(G) — k. We
show that X’ is a dominating set. Suppose that X’ is not dominating and let
u € V(G) — Ng[X']. Thus, in particular, u is not dominated by X and it follows
from Theorem 2.1.1 that Ig(x,X) C Ng(u) for some z € X. If z € Xy, then
x € Ig(z, X) and u is dominated by z, contrary to our supposition. If z € X — Xy,
then = =z; (for some i € {1,...,n}) and u is dominated by z}, which again
contradicts our supposition. Therefore X’ is a dominating set. Since X’ properly
contains a maximal irredundant set X, it follows from Corollary 2.1.4 that X’
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is not a minimal dominating set. Therefore, v(G) < |X'| = 2ir(G) — k and
v(G) <2ir(G) —k—1. =

COROLLARY 2.1.5 [4, 5, 20]. For any graph G, v(G) < 2ir(G) — 1.

Proof. Let X be a smallest maximal irredundant set in G. If X is indepen-
dent, then v(G) = ir(G) (by Proposition 2.1.3) and therefore y(G) < 2ir(G) — 1.
If X is not independent and G[X]| has k isolated vertices, then k < |X| and it
follows from Theorem 2.1.2 that y(G) < 2ir(G) —k—1<2ir(G) — 1. =

We now give a brief summary of the main results of this chapter.

In §2.2, we study some relationships between the independence, domination
and irredundance numbers of a graph and the independence, domination and
irredundance numbers of its vertex- and edge-deleted subgraphs. These results are
frequently applied in this paper, particularly in the study of feasible sequences of
integers in §4.1 and in the study of interpolation properties of the independence,
domination and irredundance numbers of a graph.

In §2.3, we analyze some properties of the k-packing and k-covering numbers
of a graph. The main result of this section is a characterization of graphs G of
order (k + 1)n with v;x(G) = n. We also characterize bipartite graphs G with
7(G) = a(G) and trees T with v, (T') = ay(T). We show that ai(G) = sx(G) and
Yk(G) = s9x(G) for any block graph G, where sx(G) denotes the smallest integer
n for which there exists a partition Vi,...,V,, of the vertex set V(G) in which
each set V; induces a subgraph of diameter at most k.

In §2.4, we briefly mention some sufficient conditions for two or more of the
lower and upper independence, domination and irredundance numbers of a graph
to be equal. We also give a list of forbidden subgraphs that is sufficient for the
equality of 7(G) and i(G). Then we show that ir(G) = v(G) = i(G) for domistable
graphs. Finally, we prove that a(G) = I'(G) = IR(G) for all chordal, bipartite
and unicyclic graphs.

2.2. Domination parameters of vertex- and edge-deleted subgraphs.
In this part of the text we investigate the extent to which the lower and upper
irredundance (domination and independence, resp.) number of a graph can vary
when an arbitrary vertex or edge of the graph is removed. Such knowledge is not
only important in its own right, but also if some results are proven by induction.
Consequently, it is desirable to learn as much as possible about such properties.
In fact, the main results of this section are required later to prove some of our
theorems. The behaviour of some of the independence, domination and irredun-
dance parameters after the removal (or addition) of an edge or a vertex from (to)
a graph has already been studied in the existing literature. For example, the
graphs G in which (G — €) > a(G) for any edge e of G have been extensively
studied, in particular by Plummer [114], Berge [13, 14, 15|, Zykov [162], and
others. Harary and Schuster [83] have studied changes of the lower domination
number and the lower and upper independence numbers after removal (and addi-
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tion) of any edge from (to) a graph. Bauer, Harary, Nieminen and Suffel [7], Fink,
Jacobson, Kinch and Roberts [72], and Walikar and Acharya [158] have studied
the smallest number of edges whose removal renders every minimum dominating
set in G a nondominating set in the resulting spanning subgraph. Sumner [133]
and Sumner and Blitch [134] have worked on closely related problems and, among
other things, they studied graphs G in which v(G + e) < 7(G) for any edge e
from the complement G of G. Brigham, Chinn and Dutton [24] analyze graphs
G in which (G —v) < 7(G) for any vertex v of G. In [52], Brigham and Dutton
study graphs in which v(G — e) = v(G) for any edge e of G. Recently Haynes,
Lawson, Brigham and Dutton [86], among other things, have investigated the
changing and unchanging of the upper independence number of a graph G under
three different situations: deleting an arbitrary vertex, deleting an arbitrary edge
and adding an arbitrary edge from the complement of G. Carrington, Harary
and Haynes [29] have investigated similar problems for the lower domination
number. Some relationships between the independence, domination and irredun-
dance parameters of a graph and the independence, domination and irredundance
parameters of its vertex- and edge-deleted subgraphs were also studied in [62]
and [142].

We first focus our attention on vertex-deleted subgraphs of a graph. First of
all let us observe that if G is a star of order n+1, G = K1, and if v is the center
of G, then ir(G) = v(G) = i(G) = 1 and ir(G —v) = v(G —v) = i(G —v) = n.
Consequently, if we delete a vertex v from a graph G, the lower irredundance
(domination and independence, resp.) number can increase dramatically and it is
impossible to give an upper bound on ir(G —v) (y(G—v) and i(G —v), resp.) only
in terms of ir(G) (v(G) and i(G), resp.). Our first theorem gives lower bounds on
v(G—v) and i(G —v) in terms of v(G) and i(G), respectively, and lower and upper
bounds on o(G — v) and IR(G — v) in terms of a(G) and IR(G), respectively.

THEOREM 2.2.1. For any vertex v of a graph G,

(1) 7(G) =1 <A(G = v);

(2) i(G) =1 <i(G —v);

(3) a(G) =1 < a(G —v) < a(G);
(4) IR(G) — 1 < IR(G — v) < IR(G).

Proof. (1) If D is a minimum dominating set of G—wv, then DU{v} dominates
G and therefore v(G) < |[D U {v}| = v(G —v) + 1.

(2) Let I be a minimum maximal independent set in G —v. If Ng(v) NI =0,
then TU{v} is a maximal independent set in G and consequently i(G) < [TU{v}| =
i(G—wv)+ 1. If Ng(v) NI # 0, then I is a maximal independent set in G and
again i(G) < |I| =i(G —v) < i(G —v) + 1.

(3) Since every independent set of vertices in G — v is also independent in G,
we have a(G —v) < a(G). In order to prove the inequality a(G) — 1 < a(G —v),
we let I be a maximum independent set of vertices in G. Then |I| = «(G) and in
the event v ¢ I, it is clear that a(G —v) = a(G) and hence (G —v) > o(G) — 1.
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If v € I, then I — {v} is an independent set of vertices in G — v and therefore
a(G —v) >[I — {v}| = a(G) — 1.

(4) Any irredundant set of vertices of G — v is also irredundant in G. Hence
IR(G—v) <IR(G). Now suppose that J is a maximum irredundant set of vertices
in G. If v € J, then J —{v} is irredundant in G —v and IR(G —v) > |J — {v}| =
IR(G) — 1. Similarly, if v € J but J is irredundant in G — v, then IR(G — v) >
|J| = IR(G) > IR(G) — 1. We therefore examine the situation in which v ¢ J and
J is not irredundant in G —wv. In this case the irredundance of J in GG implies that
there exists exactly one = in G[J] for which Ng[z] — Ng[J — {z}] = {v}. Then
J—{z} is an irredundant set in G—v and hence IR(G—v) > |J—{z}| = IR(G)—1.
This completes the proof. m

In view of Theorem 2.2.1 it is natural to ask: What relationships, if any, exist
between the upper domination number of a graph and the upper domination
number of its vertex-deleted subgraph? The following examples show that no par-
ticular inequalities hold between these two parameters. For a positive integer n,
by A, we denote the graph which consists of two vertex-disjoint complete graphs
with vertices v, v, ...,v,11 and ug, uo, ..., uyt1, respectively, and n additional
edges v;u; for i = 1,2,...,n. For convenience, we denote A, — vs, where v; is a
vertex of minimum degree in A,, by D,. The graphs As and D3 are shown in
Figure 1. Simple verifications show that graphs A, and D, have the following
properties.

PROPOSITION 2.2.1. For every integer n > 2, I'(A,) =2 and I'(D,)) =n. =

v u v u
A3 1 1 D3 1 1

U2 U2 U2 U2
V4 Uq V4

v3 u3 v3 u3

Fig. 1. The graphs A3z and D3 of Proposition 2.2.1

Note that for n > 2, the vertex-deleted subgraph D,, —va of D,, is isomorphic
to A,_1 if va is any vertex of maximum degree in D,. From this and from
Proposition 2.2.1 it follows that I'(A,) = 2, while I'(A,, — vs) = I'(D,,) = n and,
again, I'(D,, —va) = I'(A,—1) = 2. These examples show that the removal of a
vertex need not decrease the upper domination number and may even increase
it. Moreover, if v is a vertex of G, then the difference I'(G) — I'(G — v) as well as
I'(G —v) — I'(G) can be made arbitrarily large.

In the next theorem, we present the relationship between the lower irredun-
dance number of a graph and the lower irredundance number of its vertex-deleted
subgraph. We already know that the deletion of a vertex from a graph can
increase the lower irredundance number and that there is no upper bound on
ir(G — v) only in terms of ir(G). On the other hand, the deletion of a vertex can
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decrease the lower irredundance number and it follows from Proposition 2.1.3,
Theorem 2.2.1(1) and Corollary 2.1.5 that if v is a vertex of a graph G, then
ir(G) <v(G) <v(G—v)+1 < 2ir(G—v). Therefore ir(G)/2 is a lower bound on
ir(G — v). Recently Favaron [62] has proved that if v is a vertex of G such that
ir(G —v) > 2, then (ir(G) + 1)/2 is the best possible lower bound on ir(G — v).
Now it is possible to prove a bit more. The proof of Theorem 2.2.2 given below
is a modification of the proof given by Favaron [62].

THEOREM 2.2.2. If G is a graph of order at least two and v is a verter of G,

then
ir(G) + min{1, [ir(G) — 2|}

2

Proof. Let X = {z1,22,...,2,} be a maximal irredundant set of G — v,
n = ir(G —wv). If n =1, then 1 < ir(G) < 2 and the result is obvious. Thus
assume that n > 2. Certainly, X is an irredundant set in G. If in addition X is
a maximal irredundant set of G, then ir(G) <n < 2n — 1 and therefore

n> ir(G; +1 > ir(G) + min{21, lir(G) — 2|}

ir(G—wv) >

Similarly, if X is a dominating set of G — v, then v(G — v) = n and according to
Proposition 2.1.3 and Theorem 2.2.1(1) we have ir(G) < v(G) < y(G —v) + 1=
n+ 1 < 2n — 1 which again enforces the result. If the set X U {v} is irredundant
in G, then certainly it is a maximal irredundant set of G and ir(G) < [ X U{v}| <
2n — 1 which implies the result. We have the same result if there exists a vertex
y € V(G —v) — X such that X U {y} is a maximal irredundant set of G.

We now assume that neither X is a dominating set of G —v nor X or X U{y}
for y € V(G) — X is a maximal irredundant set of G. Then let Y be a subset
of V(G — v) — X of the smallest cardinality such that |Y| > 2 and X UY is a
maximal irredundant set of G, i.e., Ig(z, X UY) # () for each z € X UY.

We assert that v € Ig(zg, X UY) for some zy € X. First, let us observe that
v € Ig(x,XUY) for some x € X UY; for if v & Ig(x, X UY) for each z € X UY,
then X UY is irredundant in G — v, contrary to the maximality of X in G — wv.
Next, for each y € Y, v & Ig(y, X UY); for if there were yo € Y such that
v € Ig(yo, X UY), then X U (Y — {yo}) would be irredundant in G — v which
again is impossible. Combining the above facts we deduce that v € Ig(zg, X UY)
for some zg € X.

Since X does not dominate all the vertices of G — v, the set Uy = {x €
V(G —v) — X : Ng_y(x) N X = 0} is nonempty, so by Theorem 2.1.1(a) the
set Uy = {x € V(G —v) — X : |[Ng_p(x) N X| = 1} is also nonempty. Denote
Uy = V(G —v) — X — Uy — Uy. By Theorem 2.1.1(a), for each u € Uy, the
set Xy = {zx € X: Ig_y(2,X) C Ng_p(u)} is nonempty. Let M be a subset
of X of the smallest cardinality such that X, N M # @ for each u € Up, say
M = {xy,x9,...,zy}. Each vertex z; of M belongs to X, for some u € Uy, so
Ig—y(x;, X) € Ng—y(u) and therefore x; & Ig_ (2, X) (as x; € Ng—y(u)) and z;
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is a nonisolated vertex in the subgraph induced by X in G —v. For each x; € M,
we choose any z; € Ig_,(z;, X) and form the set D = X U {z,z),...,2},} of
cardinality n +m. Certainly, each vertex of Uy U U, is adjacent to a vertex of X.
Moreover, for each u € Uy, there exists x; € M such that z; € X, so u is adjacent
to ;. We conclude that D is a dominating set of G — v and of G (as v is adjacent
to xg € X C D). Thus, if m < n, then the result follows from the inequalities
ir(G) < v(G) < |D| < 2n — 1. Finally, if m = n, then it follows easily from the
above and from Theorem 2.1.1(b) that for each z; € X — {z¢}, the set D — {x;}
is a dominating set of G and again the result is derived from the inequalities
ir(G) <v(G) < |D — {x;}| = 2n — 1. This completes the proof of the theorem. m

The next two examples concern the above theorem and they show that this
result is the best possible since for every positive integer n there exist a graph
G and a vertex v of G such that ir(G —v) = n = (ir(G) + min{l, |ir(G) —
2|})/2. For n = 1, take G = K3 and any vertex v of G. Then ir(G —v) =1 =
(ir(G) +min{1, |ir(G) — 2|})/2. For n > 2, such a graph G can be constructed as
follows (see Figure 2): Take two vertex-disjoint complete graphs K, and K/ on
vertices x1,xa,...,x, and x), 25, ..., 2}, respectively. Now join the vertices x;
and o} for 1 < i < n. Add a new vertex v adjacent to x,, and z/,. Finally, take
n + n(n — 1)/2 additional sets Yi, Yé, N ,Yn, ZLQ, ZLg, ey Zl,na Z2,3, RN Zn—l,n
each with n mutually nonadjacent vertices, join each vertex of Y; to the vertex
z; (1 <14 < n) and each vertex of Z; j to the vertices x; and z; (1 <7 < j <n).
One can verify that {z1,z2,..., 21} U{a],ah,... 2} and {x1,29,...,2,} are
minimum maximal irredundant sets of G and G — v, respectively, and therefore
ir(G —v) =n = (ir(G) + min{1, |ir(G) — 2|})/2.

Y

Yy

Y3

Yn—l

AL 1]

Yn

Fig. 2. A graph G in which ir(G) = 2n — 1 = ir(G — v — xpz},) and ir(G —v) = n = ir(G — van)
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The following theorem relates the k-packing and k-covering numbers of a graph
and the k-packing and k-covering numbers of its edge-deleted subgraphs.

THEOREM 2.2.3. For any positive integer k and any edge vu of a graph G,

(1) %(G) < %(G —vu) < w(G) +1;
(2) ap(Q) < ak(G —vu) < ag(G) + 1.

Proof. (1) If C is a minimum k-covering of G — vu, then C' is a k-covering
of G and therefore v,(G) < |C| = (G — vu). On the other hand, if D is a
minimum k-covering of G, then at least one of the sets D, D U {v}, and D U {u}
is a k-covering in G — vu and hence V(G — vu) < |D| + 1 =4 (G) + 1.

(2) Since every k-packing of G is a k-packing of G —vu, so ay(G) < ag(G—vu).

In order to prove the inequality ai(G —vu) < ag(G)+1, let I be a maximum
k-packing of G—vu. If I is also a k-packing in G, then ag(G—vu) = |I| < ai(G) <
a(G) + 1. Thus assume that I is not a k-packing in G. Then there are vertices
x,y € I for which dg_yy(z,y) > k, whereas dg(x,y) < k. Let Iy be the set of
all such vertices = and y from I, and define I, = {x € Iy : dg(z,v) < dg(x,u)}
and I, = {y € Iy : da(y,u) < da(y,v)}. It is easy to observe that the sets I,
and I, are nonempty and they form a partition of Iy. Note that if z, y € Iy and
dg(z,y) < k, then any shortest x —y path passes through the edge vu in G. This
implies that dg(z,y) > k if © and y are different vertices of I, (I, resp.).

We claim that |I,| = 1 or |I,] = 1. Suppose, contrary to our claim, that
|I,| > 2 and |I,| > 2. Let z1 € I, be the vertex nearest v in G. Similarly,
let y; € I, be the vertex nearest w in G. Take any xy € I, — {z1} and ys €
I, —{y1}. Tt follows from the choice of the vertices x; and y; that dg(x1,y1) < k,
da(z2,11) < k, dg(y2,21) < k, while dg(z1,22) > k and dg(y1,y2) > k. Let
P, and P, be any shortest 1 — y; and 29 — y; paths in G, respectively. Let 2’
be the vertex nearest x1 in P, which is also in P,. Without loss of generality,
we assume that the 2’ — y; subpaths of P; and P, are the same. Let P; be a
shortest yo — x1 path in G and let 3/ be the vertex nearest 1o in P3 which is also
in P; (and P»). We may assume that the 2’ — 3 subpaths of P; and P; are the
same. Denote dg(2',y) = p, dg(x;, 2') = 1;, and dg(y;,y') = k; for i = 1, 2. Since
da(za,11) = la+p+ k1 < k < dg(x1,22) <1y + 13, so I3 > ki + p. Therefore
da(y2,x1) = ke +p+11 > k1 + ko + 2p > dg(y1,y2) +2p > k + 2p > k. This
contradicts dg(y2,z1) < k, and our claim follows.

According to the above claim, we may assume that I, = {x1}. Then it is easy
to check that I —{z1} is a k-packing in G, so o (G —vu)—1 = |[[ —{z1}| < ar(G).
This completes the proof. m

COROLLARY 2.2.1. Let k be a positive integer. If v and u are two nonadjacent
vertices of a graph H, then

(1) w(H) =1 < (H + vu) <y (H);
(2) Oék(H) -1 < Oék(H + UU) < Oék(H)
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Proof. This follows immediately by applying Theorem 2.2.3 to the edge vu
of the graph G = H 4+ vu. =

The next three theorems are counterparts of the last corollary for the lower
and upper irredundance, domination, and independence numbers of a graph. The
statement (2) of Theorem 2.2.4 and the statements (1) and (2) of Corollary 2.2.2
were proved in [83].

THEOREM 2.2.4. For every graph G and every edge vu of G,

(1) 7(G) <A(CG —vu) <A(G) + 1;

(2) a(G) < a(G —vu) < a(G) + 1;
3)2<I'(G—wu) <I'(G)+1;

(4) IR(G) — 1 <IR(G —vu) <IR(G) + 1.

Proof. Since (1) and (2) follow from Theorem 2.2.3, we only prove (3) and (4).

(3) For any edge vu of G, G — vu is not a complete graph and therefore
I'(G — vu) > 2. To prove the inequality I'(G — vu) < I'(G) + 1, let D be a
maximum minimal dominating set of G — vu. Certainly, D is a dominating set of
G and we consider three cases.

First, if neither v nor u belongs to D, then D is a minimal dominating set of
G and therefore I'(G) > |D| = I'(G — vu) > I'(G — vu) — 1.

Assume now that either v or u belongs to D, say v € D and u € V(G) — D. If
D is a minimal dominating set of G, then certainly I'(G) > |D| = I'(G — vu) >
I'(G — vu) — 1. Thus assume that D is not a minimal dominating set of G.
Then, since D is a minimal dominating set of G —vu, there exists a unique vertex
u' € D—{v} such that Ig_.,(u', D) = {u}. Now it is easy to observe that D—{u'}
is a minimal dominating set of G and so I'(G) > |D — {u'}| = I'(G — vu) — 1.

Finally, assume that both v and u belong to D. If IG_, (v, D) — {v} # 0 and
Ig—yu(u,D) — {u} # 0, then D is a minimal dominating set of G and I'(G) >
|D| > I'(G —vu) — 1. If Ig_yu(v,D) — {v} =0 or Ig_yu(u, D) — {u} = 0, then
D —{v} or D—{u} is a minimal dominating set of G and I'(G) > I'(G — vu) — 1.

(4) In order to prove the inequality IR(G)—1 < IR(G —wvu) (which is obvious if
IR(G) = 1), we assume that IR(G) > 2 and let X be a maximum irredundant set
in G. If the vertices v and u are both either in X or in V(G) — X, then we see at
once that Ig_yy(z, X) 2 Ig(x, X) # 0 for every x € X. Hence X is irredundant
in G — vu and therefore IR(G — vu) > | X| = IR(G) > IR(G) — 1. If exactly one
of the vertices v and v is in X, say v € X and u ¢€ X, then it is easy to check
that Ig_yy(z, X — {v}) = Ig(z, X —{v}) D Ig(z,X) # 0 for every x € X — {v}.
Thus the set X — {v} is irredundant in G — vu, so IR(G — vu) > | X — {v}| =
IR(G) — 1.

We prove the remaining inequality IR(G — vu) < IR(G) + 1 by contradiction.
Thus suppose that IR(G —vu) > IR(G)+ 1 and let Y be a maximum irredundant
set in G — vu. We derive contradictions in three cases.
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If none of the vertices v and u belongs to Y, then I5(y,Y) = Ig_wu(y,Y) # 0
for every y € Y, so Y is irredundant in G and therefore IR(G) > |Y| = IR(G—vu),
contradicting the supposition.

If exactly one of the vertices v and v is in Y, say v € Y and u € Y, then
Io(y,Y —{v}) = Ig—pu(y,Y — {v}) # 0 for every y € Y — {v}. We conclude that
Y —{wv} isirredundant in G, from which we see that IR(G) > |Y —{v}| = IR(G)—1,
a contradiction.

Finally, suppose that the vertices v and u belong to Y. Then Ig(u,Y —{v}) D
Ig_pu(u,Y —{v}) D Ig—pu(u,Y) # 0 and I(y,Y — {v}) = Ig_pu(y, Y — {v}) —
{v} D Ig—ou(y,Y)—{v} = Ig_wu(y,Y) # 0 for every y€ Y —{v,u}. Consequently,
Y — {v} is an irredundant set in G, so IR(G) > |Y — {v}| = IR(G — vu) — 1, our
final contradiction. m

The following examples show that parts (3) and (4) of Theorem 2.2.4 cannot
be improved. For a positive integer n, let H,, denote the graph which consists of
two vertex-disjoint complete graphs with vertices v1,vs, ..., v, and uy,us, ..., Uy,
respectively, and n additional edges v;u; for ¢ = 1,2,,...,n. It is no problem to
observe that I'(H,)=n while I'(H, —v;u;) = 2 fori =1,2,...,n. For any edge vu
of K, withn > 2, I'(K,,—vu) = I'(K,)+1 = 2 and IR(K,,—vu) = IR(K,)+1 = 2.
Finally, the graph G of Figure 3 contains an edge vu such that IR(G —vu) =5
while IR(G) = 6.

G

v u

Fig. 3. A graph with IR(G —vu) =IR(G) —1=5

THEOREM 2.2.5. If vu is an edge of a graph G, then

min{2,i(G)} <i(G —vu) <i(G) + 1.

Proof. Note that if i(G) = 1, then 1 < i(G —vu) < 2, s0 1 = min{2,i(G)} <
i(G —vu). If i(G) > 2, then i(G — vu) > 2 and therefore 2 = min{2,i(G)} <
i(G —vu). On the other hand, if I is a minimum maximal independent set of G,
then at least one of the sets I, I U{v}, and I U{u} is a maximal independent set
of G—ovu, 50 i(G—ovu) <|I|+1=4(G)+1. =

The restriction imposed by the inequalities of Theorem 2.2.5 cannot be im-
proved in the following sense: For any positive integers n and k with min{2,n} <
k < n+ 1, there exist a graph G and an edge vu in G such that i(G) = n and
i(G —vu) = k. For n = k = 1, the complete graph G = K3 and any edge vu
of G have the required properties. For n > 1 and k = n + 1, take G = nKs.
Then i(G) = n and i(G — vu) = n+ 1 for every edge vu of G. For n > 2 and
2 < k < n+1, consider the graph G given in Figure 4 and its edge-deleted
subgraph G — vu. It is easy to check that i(G) = n and i(G — vu) = k.
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n—k+1 . . n—k+1
T o

Fig. 4. A graph with i(G) =n and {(G —vu) =kfor2<k<n+1

G

We now show that the removal of an edge from a graph increases (decreases,
resp.) the lower irredundance number by at most factor 2 (1/2, resp.).

THEOREM 2.2.6. If vu is an edge of a graph G, then

ir(G)+1

5 <ir(G —vu) <ir(G) + max{1,ir(G) — 1}.

Proof. According to Proposition 2.1.3, Theorem 2.2.4 and Corollary 2.1.5,
ir(G) < v(G) < v(G —vu) < 2ir(G — vu) — 1 and therefore (ir(G) +1)/2 <
ir(G — vu). Similarly, ir(G —vu) < (G —vu) <Y(G)+1 < (2ir(G) — 1)+ 1 =
2ir(G). Of course, ir(G—vu) = 2ir(G) if and only if equality holds at each point in
the above sequence of inequalities. Furthermore, 2ir(G)=ir(G)+max{1,ir(G)—1}
if and only if ir(G) = 1. Therefore in order to prove the inequality ir(G — vu) <
ir(G) + max{1,ir(G) — 1} it is enough to assume v(G — vu) = y(G) + 1, v(G) =
2ir(G) — 1 with ir(G) > 2, and then to show that ir(G —vu) < 2ir(G) — 1.

Let X = {z1,29,...,2,}, n = ir(G), be any minimum maximal irredundant
set of G, and let Uy, Uy and U, be subsets of V(G) — X, where Uy = {z €
V(G) — X : |[Ng(z)NnX| > 2} and U; = {z € V(G) — X : |[Ng(x) N X| = i}
for i = 0, 1. Certainly, the sets X, Uy, Uy, Us form a partition of V(G). Since
|X| =n < 2n—1=~v(G), the set Up is nonempty and therefore it follows from
Theorem 2.1.1 that the set U; is nonempty, either. For each u € Uy, define
Xy ={x € X: Ig(z,X) C Ng(u)}. Again by Theorem 2.1.1, the set X, is
nonempty for each u € Uy. Let M be a subset of X of the smallest cardinality
such that X,, N M # 0 for each u € Uy, say M = {z1,..., 2y} For each z; € M,
x; € X, for some u € Uy, so Ig(x;, X) € Uy N Ng(u) and therefore x; & Ig(x;, X)
(as x; &€ Ng(u)) and z; is not isolated in G[X], the subgraph of G induced by
X. For z; € M, choose any z} € Ig(x;, X) and define D = X U {a,..., 2, }. Tt
follows from the definition of the sets U; and Us that every vertex of Uy U Us is
adjacent to a vertex of X. In addition, for each u € Uy, there exists i € {1,...,m}
such that z; € X,,, hence u is adjacent to 2. Thus D is a dominating set of G.
However, since D contains X, D is not irredundant. Therefore D properly contains
a minimal dominating set (by Corollary 2.1.4) and hence 2n —1 = v(G) < n+m.
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Consequently, m = n and then M = X, G[X] is without isolated vertices, and
it follows from the above facts and from Theorem 2.1.1(b) that D — {x;} is a
minimum dominating set of GG for each x; € X. Furthermore, for any two vertices
zi, v; € X, x; # xj, there exists a vertex « € Uy such that Ng(z) N D = {z;,z;},
as otherwise the set D — {x;,z;} would be dominating in G which is impossible.

We now show that one of the vertices v and u belongs to Uy and the other to
Uy if v(G — vu) = v(G) + 1. First it is easy to observe that for every minimum
dominating set D’ of G we have |D'N{v,u}| = 1. Moreover, if 2 € D'N{v,u} and
y € {v,u} — D', then Ng(y) N D' = {x}. Consequently, {v,u} cannot be a subset
of Uy U U, as otherwise each of the sets D — {z;}, x; € X, would be a minimum
dominating set of G — vu which is impossible. Similarly, neither [{v,u} NUs| =1
and |[{v,u}N(XUU7)| = 1 nor |[{v,u}NX| =1and [{v,u}NU;| = 1 nor {v,u} C X
because otherwise at least one of the sets D — {x;}, z; € X, would be a minimum
dominating set of G — vu which again is impossible. We now claim that {v,u}
cannot be a subset of U;. For if not, then either {v,u} C Ig(zg,X) for some
xp € X orv € Ig(x;, X) and v € Ig(zj, X) for some z;, x; € X with z; # x;. In
these cases, if the vertices of D — X are chosen in such a way that z) € {v,u},
say xj, = v, when {v,u} C Ig(wt, X) (resp. x; = v and z; = u if v € Ig(z;, X)
and u € Ig(xj, X)), then for the minimum dominating set D — {z;} of G (with
[ # k) we have {v,u} N (D —{x;}) = {v} and {v,x} C Ng(u)N (D —{z;}) (resp.
{v,u} € D—{x;}) and therefore v(G —vu) = v(G), a contradiction. We therefore
have {v,u} € U;. Since no vertex of Uy is adjacent to a vertex of X, it follows
from the above and from the assumption v(G — vu) = v(G) + 1 that one of the
vertices v and u belongs to U; and the other to Uy, say v € Uy and u € Uy.

Let x; be the unique vertex of Ng(v)NX. Certainly, v € Ig(x;, X). Moreover,
v is the unique vertex of I(z;, X ), i.e. v = 2, as otherwise if 2, € I(z;, X)—{v},
then none of the vertices v and u belongs to D — {z;} (I =1,...,n) and therefore
v(G—wvu) = v(G), a contradiction. Hence we have I (z;, X) = {v}. We now show
that Ng(u) NU; = {v}. Suppose on the contrary that Ng(u) NU; — {v} # 0.
Then there exists z; € X — {z;} such that I¢(z;, X) C Ng(u). But now for the
minimum dominating set D—{x;} of G we have {;,2%} C Ng(u)N(D—{z;}) and
consequently v(G —vu) = (@), a contradiction. It follows that Ng(u)NU; = {v}
and in particular Ig(xg, X) N (Ngu] — {v}) = 0 for each x € X.

In order to complete the proof, we show that X U{u} is a maximal irredundant
set of G — vu. Since u is isolated in the subgraph of G — vu induced by X U {u}
and IG_UU(:L'k,X @] {u}) = NG—vu[fL'k] — NG—UU[(X — {ﬂjk}) U {u}] = Ig(:L'k,X) —
(Ngu] = {v}) = Ig(z, X) # 0 for each x € X, the set X U {u} is irredundant
in G — vu. By maximality of X (in G), for every vertex d of V(G) — X, there
exists some vertex yg in X U {d} such that Ng[ys] C Ng[(X U {d}) — {ya}].
In particular, for d € V(G) — X — {v,u}, there exists y4 € X U {d} such that
Ne—vulya] = Nelyal © Nel(X U{d}) = {ya}] = No—w[(X U{d}) — {ya}] C
Na—wu[(X U{d}) — {ya}] U Na—wu|u] = Na—wu[(X U {u,d}) — {yaq}]. Therefore
X U{u,d} is not irredundant in G — vu for each d € V(G) — X — {v,u}. Finally,
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X U{u, v} is not irredundant in G —vu since Ig(x;, X) = Ng[z;]— Ng[X —{x;}] =
{v} and hence Ig_yy(xi, X U{v,u}) = No_pu[zi] — No—wu[(X — {2:}) U{v,u}] =
Nglz;] — Ng[X — {x;}] — Ng[{v,u}] = {v} — Ng[{v,u}] = 0. We conclude that
X U{u} is a maximal irredundant set of G—vu. Therefore ir(G—vu) < | XU{u}| =
ir(G) +1 < 2ir(G) — 1. This completes the proof. m

Note that both the lower and upper bounds on the lower irredundance number
of an edge-deleted subgraph imposed by the inequalities of Theorem 2.2.6 are
attainable in the following sense: For any positive integer n there exist a graph
G and an edge vu in G such that ir(G —vu) = n = (ir(G) + 1)/2. Similarly,
for a positive integer n there exist a graph F and an edge vu in F' such that
ir(F) = n and ir(F — vu) = ir(F) + max{1,ir(F) —1}. Forn = 1, let G =
K+ (K1 UK3), and let vu be the unique edge of G such that dg(v) = dg(u) = 2.
Then (ir(G) +1)/2 = ir(G —vu) = 1 = ir(G) + max{1,ir(G) — 1}. For n > 2, let
G be the graph defined after Theorem 2.2.2, see Figure 2. Then (ir(G) +1)/2 =
n=ir(G —vxy,), as {x1,x2, ..., xp_1 U {2, 2h, ..., 2} and {21, 29,...,2,} are
minimum maximal irredundant sets of G and G — vx,,, respectively. Finally, take
the subgraph F = G — v of G. Then ir(F — zp2)) = 2n —1 = 2ir(F) — 1 =
ir(F) + max{1,ir(F) — 1}, as {x1,29,...,2,} and {z1,..., o1} U {2}, .., 2}
are minimum maximal irredundant sets of F' and F — x,x/,, respectively.

COROLLARY 2.2.2. If v and u are two nonadjacent vertices of a graph H, then

D) y(H) =1 <~(H +vu) <~(H);

)a(H)—1<a(H+vu) <alH);

3) D(H) — 1 < I(H + vu):

) IR(H) — 1 < IR(H +vu) < IR(H) + 1

) i(H) - 1< i(H + vu);

6) (ir(H) +min{l,|2 —ir(H)|})/2 < ir(H 4+ vu) < 2ir(H) — 1.

Proof. This follows immediately by applying Theorems 2.2.4-2.2.6 to the
edge vu of the graph G = H + vu. u

2.3. Packing and covering numbers. In the rest of this chapter we are
mainly interested in classes of graphs for which some of the parameters ir, -, 4,
a, I') IR, v and oy are equal. Many results of this type have been given during
the last few years and most of them give sufficient conditions, usually in terms of
forbidden subgraphs. However, forbidden subgraph characterizations for equality
of parameters have been hard to obtain; in fact, it is impossible in general. This is
easy to see since the corona of graphs G and K; produces the graph G’ = G o K;
containing G as an induced subgraph and ir(G') = v(G') = i(G') = a(G') =
I'(G") = IR(G'") by Proposition 2.1.4. The same comment applies to the forbidden
subgraph characterizations of graphs G for which v, (G) = ay(G), see Proposition
2.3.2 in this section.

In 1970, Szamkotowicz [135] (see also [136]) posed the problem of characteriz-
ing those graphs for which the domination number is equal to the independence
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number (see also Problem 1(c) in [100]). Such graphs have been studied in [22, 23],
[66] and [146, 148, 149, 150, 152, 153]. In this section, we first give a complete
description of connected graphs G of order (k+1)n with 7;(G) = n. Then we char-
acterize bipartite graphs G with v(G) = a(G) and trees T with v,(T) = ai(T).
We go on to show that ax(G) = sx(G) for any block graph G, where si(G) de-
notes the smallest integer n for which there exists a partition Vi,...,V, of the
vertex set V(G) in which each set V; induces a subgraph of diameter at most
k. Finally, we prove a theorem from which we can get an effective algorithm for
determining the numbers ay(G), si(G), a maximum k-packing, and a decompo-
sition of a block graph G into s;(G) graphs each of diameter at most k. (Other
classes of graphs G for which v(G) = a(G) are given in the next chapter.)

We shall apply the following result due to Meir and Moon [107].
PrOPOSITION 2.3.1. If T is a tree on p > k + 1 wvertices, then i (T) <

lp/(k+1)].

Proof. Let P = (vg,v1,...,vq) be any longest path in T. If d < k, then the
vertex vy constitutes a k-covering of T"and v, (T) = 1 < |p/(k+1)]|. Thus assume
d > k and denote

D; ={veV(T) :dp(vy,v) =i(mod(k+ 1))}

fori=0,1,...,k We now show that each set D; is a k-covering of T.

Let z be any vertex of T and suppose that dp(vg,z) = I. If I > 4, then
i+m(k+1) <l<i+ (m+1)(k+1) for some nonnegative integer m. Let u be
the unique vertex of the vy — z path such that dp(vg,u) =i+ m(k + 1). Then
u € Dy, dp(z,u) = dp(z,v9) — dr(u,v9) =1 —i—m(k+ 1) < k and therefore
dr(z,D;) < k as required.

If | < i, then dp(z,v;) = dp(z,vq) — dp(vi,vq) < dr(ve,vg) — dp(vi,vg) =
dr(vg,v;) =1 < k and again dr(z, D;) < dr(z,v;) < k as required.

Since the k-coverings Dy, D1, ..., Dy form a partition of V(T'), at least one of
them has at most |p/(k + 1)| vertices. Thus, v(T) < |p/(k+1)]. =

COROLLARY 2.3.1. If G is a connected graph on p > k+ 1 vertices and T is a
spanning tree of G, then v, (G) < v(T) < |p/(k+1)].

Proof. It follows from Theorem 2.2.3 that 4 (G) < v (T') for every spanning
tree T of G. Consequently, by Proposition 2.3.1, 7.(G) < v (T) < |p/(k+1)]. =

For a graph G and a positive integer k, we denote by G ok the graph obtained
by taking one copy of G and |V (G)| copies of the path P;_; of length k£ — 1, and
then joining the ith vertex of G to exactly one end vertex in the ith copy of Py_1.
It follows from the definition that G o k has exactly (k+1)|V (G)| vertices. If G is
without isolated vertices, then G ok has exactly |V (G)| end vertices. For a vertex
u of G we denote by @ the only end vertex of G o k which is at distance k from
u. In addition, for a vertex v of G o k we denote by ¢(v) the unique vertex of G
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such that v belongs to the t(v) — t(v) path. Note that G o1 is the corona G o K
of the graphs G and K;.

PROPOSITION 2.3.2. For any graph H of order n, vx(H o k) = ax(H o k) = n.

Proof. Assume that H is a graph on n vertices. Let D and I be a smallest
k-covering and a largest k-packing of H ok, respectively. Let v be a vertex of H.
It follows from the minimality of D (the maximality of I, resp.) and the structure
of H o k that exactly one vertex of the v — ¥ path belongs to D (I, resp.). Since
the vertices of the v — T paths, v € V(H), form a partition of the vertex set of
H o k, we conclude that |D| = |I| = n. This finishes the proof. m

According to Corollary 2.3.1, if G is a connected graph of order (k + 1)n,
then ~;(G) < n. The following two theorems characterize connected graphs G of
order (k+ 1)n for which the upper bound is achieved for ~,(G). For k = 1, these
two theorems were first established by Fink, Jacobson, Kinch and Roberts [71].
Theorem 2.3.1 for k£ = 1 has also been announced in [100]. The proofs given here
are reproduced from the paper by Topp and Volkmann [152].

THEOREM 2.3.1. Let T be a tree on (k+ 1)n vertices. Then vy(T) = n if and
only if at least one of the following conditions holds:

(1) T is any tree on k + 1 vertices;
(2) T = Rok for some tree R on n > 1 vertices.

Proof. Let T be a tree on (k+ 1)n vertices. Since v,(T') > 1, it follows from
Proposition 2.3.1 that v, (7)) = 1 if T has k + 1 vertices. If T'= R o k for some
tree R on n vertices, then v;(T) = n by Proposition 2.3.2.

Conversely, we shall show that T satisfies the conditions (1) or (2) of the
theorem if T is a tree of order (k+ 1)n with vx(T") = n. We proceed by induction
on n. The result is clear for n = 1. Suppose the result is true for trees of order
(k4+1)n (n > 1) and let T be a tree of order (k+1)(n+1) with v (T) = n+1. We
denote by d(T') = d the diameter of T', and by P = (vg,...,v4) any longest path
in T. Since 7 (T) = n+ 1 > 2, it follows that d > 2k; for if d < 2k, then {v;},
where | = |d/2], would be a smallest k-covering of T" and this would contradict
the assumption 7%(7) = n + 1 > 2. From this we conclude that each component
of the graph T — vgvgsq has at least k + 1 vertices. Let T (75, resp.) be the
component of 7' — vpvk41 which contains (does not contain, resp.) the vertex vy.
It follows from the choice of P that dr, (v,v) < k for each v € V(T1). Hence {vy }
is a k-covering of 77 and ;(71) = 1. Now either 71 = Py or T} # Pj; we consider
the two cases.

Case 1: Ty # P. In this case, T» has less than (k + 1)n vertices and
v, (T2) < n by Proposition 2.3.1. Hence with the vertex vy, we get v,(T) < n+1,
a contradiction. This implies that we have

Case 2: Ty = P;. Then T, has (k + 1)n vertices and it is easily seen that
vk (T2) = n. Thus, by the induction hypothesis, either 75 is a tree on k+ 1 vertices
ifn=1o0r Ty = R ok for some tree R’ on n vertices if n > 2.
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First assume that T» has k + 1 vertices. In this case T" has (k + 1)2 vertices.
Since d = d(T') > 2k, T is a path on 2k+2 vertices, T' = Pyjy1. Hence T'= Kyok
and T satisfies (2).

Next assume that Tp = R o k, where R’ is a tree on n > 2 vertices. We claim
that vgy1 is a vertex of the tree R'. Suppose, contrary to our claim, that vgq &
V(R'). Then vy belongs to the t(vky1) —t(vgs1) path in Ty and vgy1 # t(vks1)-
It is a simple matter to observe that (V(R') — {t(vgs1)}) U {vx} is a k-covering
of T and therefore 74 (T") < [(V(R') — {t(vk+1)}) U {vx}| < n, contradicting our
hypothesis. From this we see that vi; € V(R'). In addition, the subgraph R of
T induced by V(R') U{vy} is a tree. Because R’ is a tree such that R ok = T,
vk is an end vertex of the path P, = T, and vivi41 is a unique edge joining a
vertex from 77 to a vertex from 75, we conclude that T'= Ro k. Thus T satisfies
the condition (2). The result follows by the principle of induction. =

THEOREM 2.3.2. Let G be a connected graph of order (k-+1)n. Then v,(G) =n
if and only if at least one of the following conditions holds:

(1) G is any connected graph of order k + 1;
(2) G = Copy2;
(3) G = H ok for some connected graph H of order n.

Proof. Suppose that G is a connected graph of order (k+1)n. It follows easily
from Corollary 2.3.1, simple observation, and Proposition 2.3.2 that 7;(G) = 1 if
G has k + 1 vertices, v, (G) = 2 if G = Copio, and 1 (G) = n if G = H o k and
H has n vertices, respectively.

It clearly suffices to prove the converse for n > 2. Assume that G is a connected
graph of order (k + 1)n such that v, (G) = n. We first prove that G = Coy49 or
G = Py1 = Kook if n = 2. Suppose on the contrary that G is different from
Coiy9 and Pop 1. Then G has a spanning tree, say T', which is not a path. Since T’
is not a path and has 2k +2 vertices, its diameter d(7') = d is not greater than 2k.
Let P = (vy,...,vq) be any longest path in T and [ = [d/2]|. Then dp(v,v;) <k
for each vertex v of T and therefore {v;} is a k-covering of T'. This implies that
{v1} is a k-covering of G and ~(G) = 1, which is impossible. Thus, G = Coo
or G = Ky ok, and G has the desired properties.

The proof will be completed by showing that G = H o k for some connected
graph H if n > 3. In order to get this, let T' be a spanning tree of G. It follows
from Corollary 2.3.1 that v;(T) = n. Then, by Theorem 2.3.1, T = Ro k for
some tree R of order n. Moreover, the set V(R) containing n vertices is a smallest
k-covering of G. Let H be the subgraph of G induced by V(R). We claim that
G=H ok. Suppose on the contrary that G # H ok. Then G contains two vertices
v e V(G)—V(H) and u € V(G) such that vu € E(G) — E(H ok). There are two
cases to consider.

Case 1: t(v) = t(u). Then k > 2 and vu is a chord of the t(v) — #(v) path.
Choose any neighbour z of t(v) in R. Certainly, each vertex of the t(v) —t(v) path



Domination, independence and irredundance 29

is at distance at most k from z. This makes it obvious that the set V/(R) — {t(v)}
of order n — 1 is a k-covering of GG, a contradiction.

Case 2: t(v)#t(u). First suppose that dr(v,t(v)) = dr(u,t(u)). Sincen > 3
and R is connected, there is a vertex z € V(R) — {t(v), t(u)} which is adjacent to
t(v) or t(u), say z is adjacent to t(v) in R. It is easy to verify that each vertex of
the t(v) — t(v) path is at distance at most k from z or u. Then it is easily seen
that the set (V(R) — {t(v),t(u)}) U {u} containing n — 1 vertices is a k-covering
of G, a contradiction. Therefore dr(v,t(v)) # dr(u,t(u)) and if without loss of
generality dp(v,t(v)) > dp(u,t(u)), then we choose any neighbour z of ¢(v) in R.
It is again easy to observe that each vertex of the t(v) — ¢(v) path is at distance
at most k from z or ¢(u) and then one can check that the set V(R) — {t(v)} of
order n — 1 is a k-covering of G, a contradiction.

Since both Case 1 and Case 2 lead to contradictions, it follows that G = Hok,
which completes the proof. m

The equivalence of the statements (1) and (3) of the next theorem is the
content of a theorem established by Fink, Jacobson, Kinch and Roberts [71] and
it follows from Theorem 2.3.2. In [146], Topp and Vestergaard have given an
independent and considerably shorter proof of this equivalence. The technique of
this proof can be used to obtain slightly more general results.

THEOREM 2.3.3. Let G be a connected graph of order 2n. Then the following
statements are equivalent:

(1) G=Cy or G = H o Ky for some connected graph H;
(2) ir(G) =n;
(3) 1(G) = n.

Proof. The implication (1)=-(2) is obvious if G = C4 and follows from Propo-
sition 2.1.4 if G = Ho K. The implication (2)=-(3) follows from Proposition 2.1.3