CONTENTS 1. Summary..............................................................................................................5 2. Spectral measure theory for Boolean and Heyting algebras................................5 2.1. Introduction.......................................................................................................5 2.2. Spectral measures for Boolean algebras..........................................................5 2.3. Spectral supermeasures for Heyting algebras.................................................11 3. Theory of the integral for Boolean and Heyting algebras...................................14 3.1. Introduction.....................................................................................................14 3.2. Theory of the integral......................................................................................14 4. Some numerical characteristics of random variables on Heyting algebras.........18 4.1. Introduction.....................................................................................................18 4.2. Expectation and variance................................................................................18 4.3. Other fundamental numerical characteristics of random variables..................24 References............................................................................................................28
[1] A. A. Borovkov, A Course in Probability Theory, "Nauka", Moscow 1972 (in Russian).
[2] G. M. Fikhtengol'ts, Course of Differential nad Integral Calculus, "Nauka", Moscow 1969 (in Russian).
[3] N. B. Haaser and I. A. Sullivan, Real Analysis, Van Nostrand Reinhold, New York 1971.
[4] S. Mazurkiewicz, Foundations of Probability, PWN, Warsaw 1956 (in Polish).
[5] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN, Warsaw 1968.
[6] D. E. Rutherford, Introduction to Lattice Theory, Hafner, New York 1965.
[7] E, Rydzyńska, The conditional probability on Heyting algebras and new geometry of the space of events, J. Math. Phys. Sci. 21(5) (1987).
[8] E, Rydzyńska, Probability Heyting agebras, Demonstratio Math. 19 (1986), 573-589.
[9] E, Rydzyńska, Radial hypothesis, Astrophys. and Space Sci. 137 (1987), 183-187.
[10] R. Sikorski, Advanced Calculus. Functions of Several Variables, PWN, Warsaw 1969.
[11] V. I. Sobolev, On half-ordered measure of sets, measurable functions and some abstract integrals, Dokl. Akad. Nauk SSSR 91 (1953), 23-26 (in Russian).
[12] D. A. Vladimirov, Boolesche Algebren, Akademie-Verl., Berlin 1972.
[13] B. Z. Vulikh, Introduction to the Theory of Half-ordered Fields, Gos. Izd. Fiz.-Mat. Lit., Moscow 1961 (in Russian).