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1. Introduction

Let A =(a;;) be an mxn matrix. The permanent of A, denoted by per 4, is
defined as follows:

) Y ay,03iy.-- G, if m<n,
perd = {ini
per AT it m> n,

where P}, is the set of m-permutations on {1, ..., n}. Being viewed as a function
of matrices, the permanent has the following properties:

(1) For any mxn matrix A, per 4 = per A”.

(2) Permuting the rows and columns of 4 does not alter its permanent, i.e.,
for any permutation matrices P and Q of order m and n respectively, we have
per(PAQ) = per A.

In this paper we only investigate m x n (0, 1)-matrices with m < n. The
term “m x n matrix” will mean m x n (0, 1)-matrix, 1 < m < n, in the rest of the
paper.

Let A and B be two m x n matrices. They are called equivalent (written
A~ B) if B can be obtained from A by permuting rows and columns.
Evidently, ~ is an equivalence relation. Thus all the mxn matrices are
partitioned into equivalence classes and the permanent of the matrices in an
equivalence class has the same value. A representative in each class that has the
simplest form is called the standard form of the matrices in this class. The
problem of finding the standard forms of square matrices with a given value of
permanent was first investigated by Gordon et al. [1], and later by Li [2].

Before proceeding to study the standard forms of matrices with a given
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value of permanent, we should first have some knowledge of the values the
permanent of matrices can take. This is called the distribution problem of the
values of permanent. In this paper, we treat first the distribution problem, and
then extend the results on the standard forms of square matrices to that of
rectangular matrices. We also give the standard forms of matrices for some
other cases.

2. Distribution of values of permanent

Let [x, y] denote the set of integers between x and y both inclusive, and
Nnn the set of the values of the permanent of m x n matrices:

N,.={perA|A is an mxn matrix}.

We also write N,, as N,.
The distribution problem of the values of permanent is to determine the
set N,.. We observe that the N, , have the following properties:

(i) Ny S Npmss form=21,5s20;
(i) N,, © N, if n; < ny;
(iii) S""Npm+s ENpssform=1, s20,
where s'"Npmis = {81 X|XENpm+s);
(IV) Nlll'an = Nru+rlz’

where N, -N, = {xy|xeN,, YeN,}.

nys

ExaMPLE 1. It is easy to check that

N, = [0, 2], N, = [0, 4]u{6}.
N1.z = [Oa 2]1 N2.3 = [0- 4]U{6}a
Ns.e = [0, T]u{9, 12}, Ny 5 = [0, 10]U[12, 13]u{16, 20},

N6 = [0, 17]U[20, 217U {25, 30},
N, = [0, 18]U[20, 22]U[24, 261U [30, 31]u (36, 42).

0111
E 2. Si D
XAMPLE 2. Since per | o | =9,
1110
0011 0111
1101 1011
- =11
perl 1] =% P00 '
1111 1111
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001 17 01117
1111 11011

= =1

Per |y | = Pl 4,
111 1] 1111
01117 11117
1111 1111

Per ]y p g = Py g =
111 1] 1111]

and [0, 8] = N, by Theorem 2.1 below, we have
N, =[0, 12]u{14, 18, 24}.
Generally, for fixed m and n, N, , contains some maximal segments of

consecutive integers. The problem of determining N, , seems to be hard. We
consider here the first maximal segment of N, ..

LeMMA 2.1. Let H, =[1], H,=[} 1], and
| -
1

et b b
[ R )
(S S S
ek

Hm=(h|‘j)= ) ], m=23,

bt s e
[ )

be an mxm matrix whose element h;; is O if and only if i > j+1. Then
(2.1) pertH, =2""!, m>1.
Proof. The cases of m =1 and 2 are trivial. Expanding the permanent of

H,, by the first column, we have per H, = 2 per H,,_,. Hence (2.1) follows by
induction on m.

THEOREM 2.1. For any m, n with 1 < m < n,
[0,2"7'] = Npp.

Proof. Since N, < N,,,, it is sulficient to prove that

2.2) [0, 2" 1] N,

14 — Banach Center t.25
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Let
(1 1 1 1]
1 101
K,(6,,6,,...,6,)= P
1 1
L R

where &, = 0 or 1. In particular, K, (8,) = (8,), K,(3,, 6,) = [4, 4,]- Obviously,
perK,(8,) = &,, perK,(4,, 6,) = 6, +9,.

By expanding perK,(d,,..., 8,) by the first column it follows from
Lemma 2.1 that

perK, (6,,...,8,)=96,perH,_,+perK,_,(d,,..., 0m-1)
=0,2" 2 +perK,—1(8,,..., Om_1).
By induction on m we have

(23) perK, (6,,...,8,) =0, 2" 246, 12" 4. 46,248,486,

When ¢, (1 < i< m) take 0 and 1 independently, the value of the right-hand
side of (2.3) runs through [0, 2"~ !]. Hence (2.2). This completes the proof.

The permanent of the matrices with relatively small number of 0’s often
has relatively large values. For example, when J is a matrix whose all entries
are ones. then

(24) PerJmcn = (;)m!,

0 J |1 n n—1
(2.5) per[J J:Im_1=(m)m!—(m_l)(m—1)!

01 J |2 n n—1 n—2
(2.6) per||10 =(m)m!—Z(m_1)(m—1)!+(m_2)(m—2)!
J J

m-2

_ (nz—3n+3)(;:22)(m—2)!,
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2 n—-2

0] J7 v _(n\ , (n-1) _
@.7) per[ J J],,._l"(m)'"! 2(m_1)(m 1!

= (n? —3n+2)( )(m 2)!,

3 n—3

011
101 J |3 n n—1
(2.8) per [1 1 0] =(m)m!—3(m_l)(m—1)!

J J m—3
+3(" 2)(m—2)!—(n_3)(m—3)'
-2 n—
=(n3—6n2+14n—13)(n_3)(m—3)!,
m—3
3 n—-3
I:OOI:I J |2 n n—1
29) per|{110 =(m)m!—3(m )(m—l)‘+2( )(m 2)!
J J m—2
= (n*—6n? +13n—10)( )(m I,
2 n—-2
00
(2.10)  per [0 1] J|? =(:l)m!—ii(:;:ll)(m—1)!+(:;i22)(m—2)!
J J m—-2
=(n*—6n*+12n— 8)( )(m 3!,
3 n—3

0oo] J71: n n—1
(2.11) per[ ; J:lm_1=(m)m!—3(m_1)(m—l)!

=(n*—6n*+11n— 6)( )(m 3y,

etc. When m = 3, n > 4, the above values of permanent are strictly decreasing
from (2.4) to (2.11). And when m = 3, n = 5, no two of them can be consecutive.
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We now turn to a related problem. Let k < n be a given integer and
M, = {A4]|A is an mxn matrix with k 0’s}.

We shall determine the extremal values of permanent of matrices in IN,.

—1
THEOREM 2.2. minperA=(")m!—k(" )(m—l)!.
m m—1

ATy,

The minimum is reached by any matrix A whose k O’s are in the same row. When
k <m, it is also reached by the matrices in M, whose k O’s are in the same
column.

Proof. Let AeM,. There are (p)m! terms in the expansion of per A. Every
term is a product of m elemeiits of A which are in different rows and columns.
Denoting by P the set of terms whose values are 1 and by @, the set of terms
whose values are 0, we have

n
P,nQ,=0, |PJ+|0Q, = (m)m!, perdA = |P .

Note that every 0 of 4 appears in exactly (2_1)(m—1)! terms in the expansion
of per A4, so the number of terms that contain 0’s is at most k(j~%)(m—I)!. That
is, there are at most k(5”})(m—1)! terms with value 0 in the expansion
of per A. Hence

perd = (n)m!——lQAl > (n)m!—k(n—l)(m—l)!.
m m m—1

Let A, be any matrix in M, whose k 0’s are in the same row when
m < k < n and in the same row or column when 0 < k < m. Each term in the
expansion of per 4, has at most one 0 as its factor. There are exactly
k(%-1)(m—1)! terms in the expansion of per A, whose values equal 0. So

per 4, = (:l)m! —k(;:ll)(m- ).

This completes the proof.
To find the maximal value of permanent, we first prove

LemMa 2.2, Let u, 22, u; >u, 20, u,+u, <n, and

a-fs} o-f:]

where B is an (m—2) x n matrix whose entries in the first u, +u, columns are all
1’s when u, > 1 and arbitrary when u, =0 and
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u) ua n—=u; —wW2 wi—1 uz+1 n-uy—uz
e, f-—\ ’__,\__\ R N ’__A_\

0..01...11...1 0...01...11...1
B |2 SER R Ll -
1...10...01...1 1...10...01...1
Then perC, < perC,.

Proof. Expanding per C, by its first two rows, we have

perC, = ) perB(-li,)+ Y  perB(—li,))

1€i€y uy+u2+1€i€n
w+1<j€n wit+1<jsn,j+i
= Y  perB(—li,j)+ Y per B(—|i, j)
1€i€u1—-1 ugtuz+1<i€n
ui+l1<j<n nm+1<i€n,j+i

+ Z perB(_'Iu],’j)!

u+1<j<n

where B(—|i, j) denotes the submatrix obtained from B by deleting the ith and
jth columns. Similarly,

perC,= Y perB(—|i,j)+ Y  -perB(—l|i,})

1€iSu; -1 uptuz+1<i<n
ur<j<n Uy SfEm,j*i
= ) perB(—|i,j)+ > per B(—|i, j)
1€igu; -1 wytur+1<i€n
up+1<j<n w1+ 1<j<n,j#i
+ ) perB(—[i,u)+ D per B(—[i, u,).
1€i€u; -1 wytu2+1<5i<n
Thus
perC,—perC, = Z per B(—[i, u)+ Z per B(—|i, u)
1<€i<u;—1 Uy +tuz2+1<i<n
- Y perB(—|u,, j)
u+1<j<n
= Z per B(—|i, uy)— z per B(—|i, u,).
1€i<uy;—~1 1 +1€isu tu;
When u, =0,
perC,—perC, = ¥ perB(—li, uy) > 0.

1€i€u;~1

When u, > 1, since the entries in the first u, +u, columns of B are all 1’s,
per B(—|i, u,) = per B(—|j, u,) for any i, j in [1, u; +u,]. So

perC,—perC, = (u, —1)per B(—|1, ul)—uzpch(—Il, u,)
= (u, —u,—1)per B(—|1, u,) > 0.
This completes the proof.
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LEMMA 23. Let u>2 and
D,=[F,F,E], D,=[F,F,E]

where E is an mx(n—2) matrix and

0 17 0 17

01 “ 01 ¢
(F,F,]= |01 , [F,FJ= 110

11 11

L1 1] 111

Then perD, < perD,.

Proof. From the definition of permanent, we have

perD, = ) per E[—|i;, ..., i.]
1€i1<... <im&n—2
+ Z per[F, F,E[—[i,, ..., in-,]]
1€i1<...<im-2%¥n—-2
+ Z per[FlE[—|il,...,im_1]]
1<iy € <ip_ 1 S0—2
+ Z per(F,E[—|iy, ..., in_.]1],
1<iy <. <im-1Sn—2
perD, = Y per E[—|ij, ..., i,]
1€i1<...<imSn—2
+ Z per(FyF E[—|iy, ..., ip-5]]
1€i1<...<im-2€n—2
+ )y per[F3E[—liy, ..., ip_ 1]
1€h <...<im-1€n-2
+ Y per{F,E[—liy, ..., ip_4]]

1€i1<...<im-1€n—-2

where E[ —|i,, ..., i,] denotes the submatrix consisting of the i,-th, ..., i, -th
columns of E. By Lemma 2.2

per [Fy F E[—liy, ..., im-2]] = per [F3 F E[—[iy, ..., im-2]]"
2per[F F,E[—if, ..., im-2]]7

= per[FleE[—'il’ tery l'm—'..’.]]'
On the other hand,
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per[FlE['—lils"-’im-l]]+per[F2E[_li17---,im-—l]]
=2 Y perE(@liys..rimoi]t Y Eddliys .. im-1]

ut1<d<m 1<d<u
= pcr[FJE[_Ii],’ MRS ] im—l]]+per[F4E[_|i1’ LS im—l]]
where E(d|i,, ..., i,] denotes the submatrix obtained from E[—|i,, ..., i,] by

deleting the dth row. Therefore
perD, < perD,.
This completes the proof.

For the next theorem we write k=mgq+r, q=20, m>r>0.
THEOREM 2.3. Let 0 < k < n. Then
maxperd =) Y (—1)‘(r)(",1_r)(q+l)‘q"'(n—l_)(m—-i)!.
AcTR i=0t=0 ! I—t m-—i

The maximum is reached by the matrices in R, that can by permuting columns be
changed to the following form:

f_'_—A—_\ f__gﬁ

RN g1 q q n—k
A, —t— pm—t— —t— —
= -
0...0

0...0
Ao = 0...0

i 0...0 |

The entries in blank positions are 1s.

Proof. Let AeM,. If there are more than one 0 in some column of A (say
the ith), then A has at least one column (say the jth) with all entries equal to 1.
Let A’ be the matrix obtained by interchanging a 0 in the ith column with the
1 in the jth column and in the same row as the 0. By Lemma 23,
per A’ > per A. Note that the number of columns of A’ that contains 0’s exceeds
by one the same number for 4, and the number of 0’s in each row of 4 remains
unchanged. After a finite number of such interchanges, we can get a matrix A4,
whose k O’s are in different columns and per 4, > per A4.

Obviously, by permuting columns, A, can be changed to the following
form:

Uy u2 Um n—k
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where u; is the number of 0’s in the ith row of A4,. Obviously perA4,
= perA, = per A. )

If there are u; and u, such that u, > u,, then we interchange a 0 in the ith
row of A, with the 1 in the jth row and in the column which the 0 is in. By
Lemma 2.2, per A, does not decrease. Thus we can make the sizes of u; in 4, as
uniform as possible while the value of permanent keeps nondecreasing. Since
k=gm+r, q=0,0<r <m, by a finite number of such interchanges, 4, can
be changed to A,. Thus per A, > per A, > per 4.

In the expansion of per 4,, the number of terms that contain i given 0’s in
different rows and columns of A4, is (3=%)(m—i)!, and there are

(N s

ways of choosing such i 0’s. Applying the inclusion-exclusion principle we find

that _
perdg=Y ¥ (‘”‘(:)(T::)(q* 1)'q‘-'(,';i’,.)(m—i)!.

i=0 t=0

This completes the proof.
3. Standard forms

Gordon et al. [1] find the standard forms of square matrices the values of
whose permanent are 1, 2 and 3 by the methods of graph theory. Li [2]
re-establishes the same results by the methods of matrix theory, and finds
standard forms of matrices with permanent 4. We list their results as follows.

THeorREM 3.1 ([1], [2]). Let A be an m x m matrix. Then perA = 1, 2 and
3 if and only if A is equivalent to the following standard forms respectively:

1 *
3.1) A= .|,
0 1
1
1 )
11
1 -1 -
(3.2) A, = 1
[ 1 1
l .
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_1. . -
, L] »* *
1
11
0 1-.:11 *
1 1
(3.3) Ay = 1
1
0 1 *
1 1
1. »
0 0 0

The entries the asterisks « represent in these matrices may be either 0 or 1.

THEOREM 3.2 ([2]). Let A be an m x m matrix. Then per A = 4 if and only
if A is equivalent to

(3.4) - E,

where E, and E, are of the form (3.1) and E, is one of the following six forms:

—

1

Dl .

[ 1

t] .

L 1

1

-1 .
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1.1. . | [
11
1
1'1'
-
I 1 4 L
(11 1T [[11
. . 1
11 |
1 1 , 1
111n
1
I 1]
| L1
lolu
1
1 1
1011
e
1 1
1

W. WEI ET AL.

r ]

1 1
11
11
llll
11
1
1
-la 1
111
1 1
1.
1
11
11
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We assume that 4 is an m x n matrix with m < n from now on. Every A,
(1 € i< 3) appearing hereafter will have the corresponding form in (3.1)+3.3).

THEOREM 3.3. perA =1 if and only if A is equivalent to
(O x(n-m A 1.

Proof. The permanent of [0, x (n—m A4;] is obviously 1. Now let per 4 = 1.
Then A must have a submatrix A, of order m with per 4, = 1. Since 4,~A4,,
A can be changed to the form [B A4,] by permuting rows and columns of A,
where B = (b;;) is an m x (n—m) matrix. We claim that B = 0. Otherwise there
would be some b; =1. Expanding per[BA,] by the ith row, we have
per A =per[BA,] = 2, a contradiction. This completes the proof.

THEOREM 3.4. per A = 2 if and only if A is equivalent to one of the following
two forms:

(3.5) [Omxn—m 421,
n-m-1 1 m
1]1 *
(3.6) 0 0 8 _
olo 1

The matrices (3.5) and (3.6) are inequivalent.

Proof. Let per A = 2. Then max, ¢;,<...<i,,<nPer A[—|i;, ..., i,] =2 o0r 1.
When maxper A[—1}i,.....i,] =2. A is equivalent to (3.5) by a similar argu-
ment to that used in the proof of Theorem 3.3. When maxperA[—|i,..... i,
= 1, A is equivalent to [B 4,] where B = (b;;) # 0. We claim that B cannot
have two 1's or more. Otherwise there would be b; = by, = 1, (i, j) # (k, ).
When i = k, we expand per [B 4,] by the ith row; when i # k, we expand it by
the ith row and the kth row. In both cases, we have per4 = per[BA,] = 3,
a contradiction. Hence B contains exactly one 1 (say b;; = 1). Let A, = (a,,).
We assert further that a,; =0 for p=1, ..., i—1. Otherwise there would be
a, =1 for some pe[l,i—1]. By interchanging the jth column with the
(n—m+i)th column, the matrix [BA,] would become
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This is imposible. Hence

1 = 0 *
10
(3.7) (BA,1= | 1- 1
10
i 1|

which is equivalent to (3.6).
On the other hand, the values of the permanent of (3.5) and (3.6) are both
2. And (3.5) and (3.6) are evidently inequivalent. This completes the proof.

THEOREM 3.5. per A = 3 if and only if A is equivalent to one of the following
three forms:

(38) [Omx(u—m)AE.]s
n—m-—1 3 m—2
i 011 1.,
0 [1 0 1] ¥
(3.9) 1 ,
O 0 . m—2
n~m-—2 2 m
1 1)1 *
(3.10) 0 O 0 1 I
0 00 1

These matrices are inequivalent to one another.

Proof. All the values of the permanent of (3.8)3.10) are 3. Let per4 = 3.
Then max; ¢; <. <i <aPETA[—]ij, ..., i, ] =3, 2 or 1.

Case 1: maxper A[—|i,, ..., i,,] = 3. In this case, A is equivalent to (3.8)
by an argument analogous to the one used in the proof of Theorem 3.3.

Case 2: maxper A[—|i,, ..., i,] = 2. We shall prove that this is impos-
sible. Otherwise A would be equivalent to [BA,] where B = (b;) # 0. Let
b.,=1 and

ij
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k " m—k—u
[ 1 » ?
: . * k
1
1 1.
A, = 0 1-.'1 * u
11
1 *
0 0 - m-k-u
u 1

Expanding per[BA,] by the ith row, when i<k or i=k+u+l,
we have perd =per{BA,] =22+2=4; when k<i<k+u we have perA4
=per[BA,] > 1+1+2 =4. Both are impossible.

Case 3. maxper A[—|i;,...,in) = 1. In this case, A is equivalent to
[BA,], where B=(b;)#0, and B contains no more than two 1's. Let
Ay = (a,).

(3) B contains one 1. Let b;=1. Obviously at least one of a,
k=1,...,i—1,is 1. We assert that there is only one 1 among them. Otherwise
assume that a; =a,; =1 where 1 <t <s<i—1. By interchanging the jth
column with the (n—m+i)th column [BA,] would become

111 =

1 .

110 1
This is impossible.

Let a,, = 1. We claim further that a,,=a,,=...=a,_,,=0.1f g, =1
for some re[1, u—1], then expanding per A by its rth row, uth row and ith
row gives that per[BA,] > 14+1+1+1 = 4. Hence when B contains one 1,
[BA;] must be

1 «0 = 0 .

0 0

1—1
@3.11) -0
- 1

which is equivalent to (3.9).
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(b) B contains two 1’s. We first prove that the two 1’s are in the same row
or in the same column. Otherwise assume b, = b,, = 1 where s # k and ¢ # u.
Expanding per[BA,] by the sth row and the kth row, we have
perA =per[BA ] > 4, a contradiction.

When the two 1's are in one column, [B A,] must be

[ 1 0 =0 * |
(3.12) 1+—1 ,

14+——1

which is equivalent to (3.11), hence to (3.9).
When the two 1's are in one row, [BA,] must be

B 1 =0 * |

(3.13) D

which is equivalent to (3.10). Evidently, the matrices (3.8){3.10) are in-
equivalent to one another. This completes the proof.

THEOREM 3.6. per A = 4 if and only if A is equivalent to one of the following
seven forms:.

(3.14) [Om x (s ~my A4,
where A, is of the form (3.4);

n—-m-—1 3
i 111 i
0 lo11] * 2
(3.15) 1 s ;
0 0 : m-2
L 0 ]_
n—m-—1 2 m-1
0 |1 1] « 1
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n-m-—1 4 m—3
i 0101 ]
0O 10011 * 3
(3.17) 100 :
1 oo
0 0 m—3
n-m-—1 4 m—3
i 011 i
0 (0011 * 3
(3.18) 1001 :
| *
0 0 m—3
n-m-—2 4 m-—2
[ 101 ]
0 {01 * 2
(3.19) 1 :
0 0 : m-2
- O l -
n—m—3 3 m
111]1 *
(3.20) 0 O O 0 _
00010 1

All the seven matrices are inequivalent to one another.

Proof. The values of the permanent of the matrices (3.14)3.20) are 4. Let
per A = 4. Then max, ¢;,<...<i,<nPETA[—|i}, ..., i,] =4,3,2, or L

Case 1. maxper A[—|i,, ..., i,} = 4. In this case, A4 is equivalent to (3.14)
for some A,.

Case 2: maxperA[—|i,, ..., i,] = 3. By an argument analogous to Case
2 in the proof of Theorem 3.5 we can prove that this case is impossible.

Case 3. maxper A[—|i,,...,i,] =2. In this case A4 is equivalent to
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[B A,] where B = (b;) # 0, and B contains exactly one 1. Let b;; = |. If the ith
row of A, covers a row of the block

11
L,

ap
1 1

of A,, then the order of C must be 2 (otherwise per A = per[B A,] = 5). So
[BA,] must be

C =

[ 1.1-00 *W

"1 00

11 11
o1 1]
1

— -

which is equivdlent to (3.15). If the ith row of 4 does not cover any row of C,
then [B A,] must be one of the following two:

[ 1 =0 tw
o
1+——1

1
(3.22) 11 :
1
1 B
1‘
- .1—
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(3.23)

which are both equivalent to (3.16).

Case 4 maxperA[—|i,,...,i,] =1. In this case, A is equivalent to
[BA,] where B contains no more than three 1’s.

(a) B contains one 1. Then [B A,] must be one of the following two:
1 »0=0=x20 .
.0

—1

(3.24) 00

15 — Banach Center t 25
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1 « 0«00 t-}
00
1—1
-0
-0 0
(3.25) L
0
1 1
i 1

which are equivalent to (3.17) and (3.18) respectively.

(b) B contains two 1's. Let A, = (a;). If the two 1I's are in the same row
(say the ith) of B, then some of a,;, a,;,...,a;_;; must be 1. And then
per{BA,] = 5. This is impossible.

If the two I's are in different columns, then [BA,] must be

i 1 00 |

-
1 1

(3.26)

1

- -

which is equivalent to (3.19). If they are in the same column, then [B 4,] must
be one of the following four:

1 «»0+0 %0 * |

0 .0

lﬁ—l
-0 0
(3.27) 1 1 ‘ : ’
| - 0
1 1 _
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[ 1] «» 0«0 . |
00
1 1—1
(3.28) -0 ,
0
—1
i 1
1 0«00 x|
.o
1 1 - .
0 0
1—1
(3.29) 0 ,
0
1 1.
e .1_4
1 =0 =« 0 =0 x|
L0 0
1—1
.0
(3.30) s
1 1
1 1
- .1_

Evidently, (3.28) is equivalent to (3.21), whence to (3.15); and (3.27), (3.29) and
(3.30) are all equivalent to (3.25), whence to (3.18).

(c) B contains exactly three 1’s. If these 1's are in the same row, then
[BA,] must be
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1 « 0 =

11 14—1

1

=

which is equivalent to (3.20). If the three 1's are in the same colimn, then

[BA,] must be

(3.32)

h

o

1 « 0 =0 =0
.0
1—1 :
.-0
15 1 .
..0
1 1

which is equivalent to (3.24), whence to (3.17).
We now explain that the three 1’s must be in the same row a column.

Otherwise [B A,] would be one of the following:

(3.33)

(3.34)

1 _ *

+—1

L

]
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(3.35) ,

(3.36) 1 -1

"

= -

Expanding the permanent of (3.33) by the kth row and the ith row, we
have per[B A,] > 5, which is impossible. The remaining cases can be proved
similarly. Evidently the matrices (3.14) to (3.20) are inequivalent to one another.
This completes the proof.

From Theorem 2.2 and the formulae (2.4)+2.11) it follows that

THEOREM 3.7. Let A be an m xn matrix where m>3 and n > 4. Then

(i) perA=()m! if and only if A = Jpxs,.
(i) perA = (n—=D@G-1)m—=1)! if and only if

1 n—-1
0 J |1
4 N[J J ]..-1'
(iii) per A = (n>=3n+3)(A-3)(m—2)! if and only if
2 n—2
01
A~ [1 0] s
J J m-2
(iv) perA = (n—=2)(A~ )m—1)! if and only if
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(v) perA = (n*—6n?+14n—13)(2~3)(m—23)! if and only if

3 n—13
011
Aol lror] g
110
J J Im-2

(vi) per A = (n*—6n%+13n—10)(2-3)(m—23)! if and only if

3 n—-3
001
A~ [110] k
J J m-—2

(vii) per A = ("*—6n% +12n—8)(%-3)(m—3)! if and only if
2 n—2
00
A~ [O l:l J |2
.I J m—2

(viii) per4 = (n*—6n2+ 1In—6)(A-3)N(Mm—3)! = m—=3)(A-D(m-1)! if and
only if

1 n—1
3 n—3 O
0oo] J7 o J |s
A~[ J sl A~ o
J J |m-3
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