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1. Introduction

In a joint paper with V. Ptédk [14], we have given optimal convergence
conditions as well as sharp error bounds for the following iterative pro-
cedure for solving nonlinear equations in Banach spaces:

Wl am — =1
wn_wﬂ _mn—li yn _évn—-li

1
&) wﬁ+1 = fb‘:f,—af(?jm m“)—lf(wg)’ k=0,1,...,m—1,
n=1,2,3,...

For m =1 this reduces to the secant method.

In the above formulae f was a nonlinear operator between two Banach
spaces, and Jf(y, x) was a divided difference of f at the points ¥ and &
(see [24]).

It is known that the order of convergence of this procedure is (m -
+Vm2+4)/2 (see [21]). The natural number m can be chosen, according
to the dimension of the space, to maximize the efficiency (see [9] for the
definition of the efficiency of an iterative procedure).

For example, if the dimension of the space is respectively equal
to 1, 2, 3, then the optimal m is respectively equal to 1, 3, 4.

In what follows we intend to show that the results of [14] remain
valid if instead of divided difference one considers the more general
notion of consistent approximation of the derivative. We algo intend to
study the case which appears in numerical applications, where the itera-
tive procedure (1) can be performed only approximately. More precige-
ly, we ghall investigate the following “perturbed version” of the pro-
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cedure (1):

By = By, Yo = Yos
Q) B, =&, =&y, =T,
Byt = iy — (8 (T Bo) +B) 7 (FER) + €0,0) + G
k=0,1,...,m—1; n=123,...

In the above formulae &f(¥,, &,) +F, and f(@;)+e, , represent our
estimates for of(¥,, #,) and f(#£), while the vector g, , contains the errors
made in the matrix inversion (or in the solution of the corresponding
linear system) occurring in (2).

" Supposing that there exist three positive numbers e,, ,, & such
that

‘(3) “e‘n,lc" g €1y ”En" ‘g €2, "gn.k" g. 85,

for all neN and & =0,1, ..., m—1, we shall prove, under appropriate
hypotheses, that there exists a number 4 such that

r(4’) m '_'mn"
for all ¥ =0,1,...,m and » = 0,1, 2, ...

2. Iterative procedures of type (2,m) and nondiscrete induction

In the study of the iterative procedure (1), we shall use the method of
nondiscrete induction.

For the motivation and the general principles of this method see [15]
or [16]. The iterative procedure (1) being an iterative procedure of type
(2, m) we shall reproduce, in what follows, the results obtained in [14]
concerning the application of the nondiscrete mathematical induction to
the investigation of this type of iterative procedures.

First, let us give the definition of an iterative procedure of type
(2,m). Roughly speaking an iterative procedure of type (2,m) is an
iterative procedure which produces, at each step, from the last two points,
m new points. To be more precise let us introduce some notations.

Let X be a complete metric space. If & is a natural number, X* will
stand for the Cartesian product of & copies of X, In the whole paper,
m will be a fixed positive integer; the elements of X™*! will be finite
sequences of the form z = (2y, 2y, ..., #,), with 2, € X. Foreach j =0, 1, ...

.., m we denote by P, the mapping which assigns to each =z e X™*! its
Jjth coordinate; thus

z = (POZ,PIZ’, ceny .P,m'Z).
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We shall also use the mapping P from X™*! onto X® defined by
Pz = (P, 2, Ppa).
Let 25 be a subset of X2 and let F be a mapping of 95 into X™*,

To simplify some of the formulae it will be convenient to use the ab-
breviations

Fj=-PjF’ j=0,1’...,m’

and to introduce the mapping F_,: X2—»X defined for 4 = (y, ) by

the formula F_,u = y.
Let G be a mapping from 2, into X™ and let F be the mapping
from 2, into X™' defined by setting

(5) F(@/;"D) =(:v,G(y,m)).
The mapping F will evidently satisfy the relation
(6) P, FPz =P,z for all 2 e P Dp.

Conversely, any mapping F: 2, c X*-7Y satisfying (6) will be of
the form (5). _

Let now F: Dy« X*-Y be a mapping which satisfies (6) and let
%y € P be given. The recurrent scheme

(7) o = Fuy; 244, =8Po2, n=12,3,...

will be called an dierative procedure of type (2, m),
Set 2, = 9, and define recursively

Doy ={ue2,; PFue2,}, n=01,2..
The set 2 = () 2, will be called the set of admissible starting points

n=0
for the iterative procedure (7). If u, € 2, then we shall say that the iter-

ative procedure (7) is well defined.
Now, let us see how the method of nondiscrete induction applies

to the study of iterative procedures of type (2, m). First, let us introduce
the notion of a rate of convergence of type (2, m):

Let T be either the set of all positive real numbers or a half open
interval of the form (0, s,], for some s, > 0. Further, let m be a fixed
positive integer and let w be a mapping of T? into I™; its components
will be denoted by w;, wgy ..., @,, 80 that

@(8) = (w,(8), 03(8), vy wy(s)), for each s =(g,r)eT™

It will be convenient to introduce also the functions w_; and w,

by the formulae:

w_y(8) = ol (s) =g, wols) =af)(s)=r; s=(qnr) el

38 — Banach Center t. XIIT
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Let us define the functions of®: T?2—T by the recursive formuls
Wl TH8) = oy (@ (8), @@ (8), k= —1,0,1,...,m;n=0,1,2,..,
We shall attach to the mapping w: T%—->T™ the mapping @: T:->T?
defined by
B(8) = (Wp_1(8), 0y (8)).

If we dencte by @™ the nth iterate of @ in the sense of the usnal
compoemon of functions (ie., @ (s) = s, 8" (s) = w(@™(s)), n =0,
1,2,...), then we have obvmusly

E‘"’(s (@@ 1(s), 0 (s)) for all seT? and n =0,1,2, ...

Considering now for each » = 1,2,... the mapping «™;T2_sJm
with components o™, o{,..., o, it follows that

otV (s) = w(@™(s)) for all seT? and w =0, 1,2, ...

In the sequel we shall omit the brackets or the sign “o” for indicating
the composition of functions. For example we shall simply. write wa!™(s)
instead of w(w®™(s)), or wow™(s).

A function w: T%—T™ with the law of iteration described above
will be called a rate of convergence of type (2, m) on T if the series

(8) o(s) = 22 o™ (s)

is convergent for each s T2
Since w{®*) = af® for all n = 0,1, ..., the above expression for o
may be replaced by the following one

a(8) = r+ ZZcu}?)(s), s =(q,7r)e T
n=1k=l

It will be convenient to introduce the functions ¢g, 0y,..., 0, by
setting

0p =0; oy =0c—(we+...Fw,_,), k=12,...,m
We note the following important functional equation:
(9) 0w (s) = o0,(8), seT-
With the above notation we are able to state the following result:

LeMMA 1. Let X be o complete metric space and let F: By, o XX
be a mapping whioh satisfies condition (6). Let Z be a mapping which assigns
to each tel? a set Z(t) c D5. Let w be a rate of convergence of type
(2,m) on T. Let uy € 25 and 1y € T? be given.
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If the following conditions are fulfilled:

(10) Uy € Z (3y),
(11) PFZ(t) « Zw (1),
(12) a(Fyu, Frpu) < (1),

for all teI? weZ(t) and k = —1,0,...,m—1, then:
(i) the iterative procedure (7) is well defined and it yields a sequence
(@p)nsa Of POINts of P Dp;
(i) there exists a point a* € X such that each of the m-+1 sequences
(PjZp)nzry 00 << my converges to z*;
(iii) the following velations hold for each n =1,2,3, ...

(13) Pz, eZw™ (1,),
(14) A(Pytyy Pry1%,) < wLn) o)y 0k m—1,
(15) A(Pyityy @*) < 0" N (8), O0<k<m;

(iv) suppose that, for some natural number n, we have
(16) Pw,_, eZ(d,),

where d, = (A(Pp_1Zy_yy Ppn_y), 8(Pp®, 1, Pim,)) €T and Pz, = uy;
then

(17) APy, o) < ayld,), O0<k<m. m

The proof of the above lemma is very simple and will be omitted.
The interested reader may find the proof in [14].

In what follows we ghall construet a rate of convergence of type
(2, m) which will then be used in the study of the iterative procedure (1).

There are some differences between the cases m =1 and.m > 2,
but we can study them together if we make the following convention:
if an algorithm requires, at a certain stage, the computation of a quantity
Q, for £ =0,1,...,p, and if p happens to be negative, ignore this in-
struction and pass to the next one; in the same sense the sum a,-4-a; 4-...
.o t+a, will be taken equal to zero if p is negative.

LEMMA 2. Let T denote the set of all positive real numbers, let a be a non-
negative real number, and let m be a positive integer. For all q,r € T con-
sider the functions:

(18) plg, r) = r+Vr(g+7)+a?,

(19) w_i(¢q,r) = ¢, Wo(gy*) =17,
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and define
wp(w_;+ o, +2(we+... + wj,_q)
(20) wpyy = k(oo k2¢+w0 I 1), kE=0,1,...,m—2,
-1
(21) . = DOy —1 (w—1‘|‘wm_1+2(wo—|-...+wm_2))

290_2(0)0 +... +wm—2)"‘wm—1

Then the function © = (wyy wy, ..., w,) 8 & rale of convergence of
type (2, m) and the corresponding o-function ts given by:

(22) o(g,r) = fr—i—]/r(q—l-r)—!-a” —a.
Proof. For the proof let us apply the iterative procedure (1) to the
real polynomial f(x) = 2®>—a*® and initial points x, = s7° = @(q, 7), ¥,
= 81 = p(g, r)+¢. We shall obtain m+1 sequences of positive num-
bers (sf),~:, 0 < k< m, related by the following formulae:
(s)2—a
8t + 8y

k=01,...,m—1;n=1,2,3,...

0 k+1 k
(23) 8, = S?:—-IJ Sn+ =8,— ’

From the convexity of f, it follows that
<l <8, <8 =87,
From the definition of z, and y, we have
spl—s = ¢ = w_4 (g, 1), S—8 =sy—8 =1 = wy(g,7).
One can prove that
sh—g"*l — w.(qg,7), Kk =0,1,...,m—1,
and more generally
(24) skt = oM(g, 1), k=0,1,...,m—1;n=1,2,3,...

It follows that o is a rate of convergence of type (2, m) and that

n

o(g,r) = s —a = p(g, 1) —a.
Moreover, we shall have

(26) 0,@‘"‘”(;1, r=s—a, 0K<k<m. m

3. Sharp error bounds for the iterative procedure (1)

In this section we shall make a semilocal analysis, in the sense of Ortega
and Rheinboldt [8], for the iterative procedurc (1).

First, let us explain what the symbol df(y, #) means. Let X and Y
be two Banach spaces and let 2, be an open convex subset of X. Let
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fi 9, X—Y be a nonlinear operator which is Fréchet differentiable
in 9,. Denote by L(X, Y) the Banach space of all bounded linear oper-
ators from X to Y. A mapping éf: D,xD—~L(Y, ¥) will be called a
(strongly) consistent approximation. of the derivative of f, if there exists a
constant H > 0 such that

(26) 18f (2, y) —F' (&) < H (lo — 2]l + lly — =])

for all =, ¥, 2 € 2,.

Let us note that condition (26), which was also considered in [1]
and [20], is slightly stronger than the condition defining the notion of
gtrongly consistent approximation from [8)].

In (1) the linear operator df(y,,x,) appears to the power —1. In
the sequel we shall use the following well known result concerning the
inversion of linear operators in Banach spaces:

Levma 3. If Ly, e L(X, Y) is invertible and if L € L(X, ¥) satisfies
the condition
LI < I~
then
(Lo =L)< (A= LN 125 ) 1L ] m

We shall investigate the convergence of the iterative procedure (1)
within the class defined below.

Let hy be a positive number and let ¢, and 7, be nonnegative num-
bers. We denote by € (hy, 9., 7,) the class of all triplets (f, #,, y,) satisfying
the properties:

C,) f is a nonlinear operator defined on a subset 2, of a Banach space
X and with values in a Banach space Y;

(0,) 9, belongs to the sphere U = {z e X3 |z — x| < u};

(G,) f is Fréchet differentiable in U;

(C,) f is continuous on U = {g e X; [z —| < p};

(C;) there exists a mapping df: U x U—L(X, Y) such that the linear
operator D, = &f(y,, mo) is invertible and

27)  [|D5H(of (@, 9) —F (@) S Bo(lw—2ll + ly —ell)  for all s, y,2e U;
(C¢) the following 1nequaht1es are gatistied: i

(28) lzo —¥oll < 4o,

(29) IDg f (@)l < 70,

(30) RoGy 42 Vhoro < 1

—hoQo— 1/(1 — hogo)? — 4hot ) .

1
31 2 =
( ) ‘u 4”’0 270
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In the following theorem we shall show that if (f, %y, Y,) € € (hy, gy, 7,),
then each of the m sequences (2f),-; (1 <k < m), produced by (1) con-
verges to a root «* of the equation f(x) = 0. Before stating this theorem
let us male some remarks on the conditions defining the class € (i, g,, 7,).

The constant %, appearing in (27) generally depends on u. In (31)

we ask u to be greater than u, which depends on %,. It is then ugefn!
to note that y0<7'0+l/"‘ o(@o+17,) for all hy > 0, so that we could take

g = 1, +Vr,{go+17,). The most restrictive condition from the, definition
of the class % (h¢, g0, 7o) Seems to be inequality (30). This inequality is
satistied only if g, and r, are small enough. In practical applications g,
can be taken as small as wanted, because having an initial point , we
can choose ¥, very close to it, but 7, can be taken small only if the initial
approximation is “good cnough” (sec (29)). It is not so easy to find such
an initial point! However it turns out that condition (30) is optimal in
gome sensce. Indeed one can show that if this condition is not satisfied
then one cannot assure any more the existence of a root of the equation
f(z) = 0 (see [13] or [14]).
Let us state now the main result of this section,

THEOREM 1. If (f, 24, Yo) € € (o, Qoy 7o) then the iteralive procedure (1)
is well defined and it yields m -1 sequences (#l),-,, 0 <<j < m, with the
following properties: there exisis a point x* € X for which f(x*) = 0, eaoh
of these sequences converges to x*, and the following estimates
(32) llrh, — %] < 0y @™ (o) 7o)

(33) 1], — )| < o (e sy — ol g — ),
hold for all j =0,1,..., mand n =1, 2,3, ..., where w s the rate of con-
vergence defined in Lemma 2, the constant a being given by
1
(34) 0 = —V(1—hyge)? — 4her-
2h,

Proof. The proof is based on Lemma 1, It = (y, x) € U2set Fy(u) = a,
By (w) = Fy(u)— of (y, )" 'fF;(»), 5 =0,1,...,m—1. Let us denote by
Py the set of those u for which the above formulaec make sense (i.e.,
of(y, ») is invertible and F;(u)e U for j=0,1,...,m—1) and let us
define a mapping F: 2,—-X"* by setting

F(u) = (Fo(“)s 7, (u), °-°:Fm(’“))-
This function clearly satisfies the properties
P,FPz = P,2z, P Fuy=TFu, foral zeP'9, and u € Dp.

It will be convenient to introduce a mapping F_, as well by setting
F_,(u) =y.
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Let us assign to each ¢ = (g, r) e I* a subset of X2 defined as follows

(35) Z(t) ={y,2)eX? yeU, ly—sl<q lv—2 < oty) —at),
D = éf(y, @) is invertible, |\D'f(&)[i< 7,
(DFD)7MI < 1/he(20(2)+g)}.

In the above definition of Z(t), ¢, stands for the pair (g,, 7,). Hence
using (31) it follows that Z(f) = U% Consider now the rate of conver-
gence o described in Lemma 2, the constant a being given by (34). Our
theorem will be proved if we show that Z(t) « £, and that conditions
(10), (11), (12) and (16) from Lemma 1 are satisfied. First of all, if %,
stands for (y,, @,) we clearly have u, € Z(f,). Let us prove now that » e Z (%)
implies

(36) F.(u)eU for —-1<k<m
and
(37) By () —Fp o (w)l| < o () for —-1<kgsm—1.
For & = —1 these relations reduce to vy € U and |ly—2| < q; for

L = 0 they follow from = e U and ||&f(y, #)”'f(#)|| < . Consider now an
7, 0 <1< m—1, and suppose that (36) and (37) hold for &k = —1, 0, ...,%
We have then
4
M () — @)l < [ By (w) —all+ o — o]l < 2 1 F 41 (u) —F ()] + [l — @4l

j=0
< Y 0y(t) + ot} — o (t) = 0(t) —0za (1),
5=0

go that B,  (u)e U as well; this establishes (36). Let us remark that
from (35) and (36) it fo]lows that Z(t) ¢ 25. To simplify the formulae
let D, = Of (Fp_1(t), Fpu(w)}, f; = f(F;(u)). The relation defining ¥, (u)
may be thus written in the form f; = D(Fy(u)—F ., (u)). Hence we
may write

(38) B (w)—Fyps(w) = D7y,
= (Dy' D) 'Dy (fi+1 fi—D (-Fi+1('"') "‘Fz(u))) .

At this stage let us note that condition (27) implies that
1D (f (v) =1 (@)l < 2hollys—wall  for all 9y, 9,6 U.
Using a standard argument (see [8], 3.2.12) we deduce that
|1D5* (f(42) —F (w2) —F" (a) (1 —Ha))|| < hollya—%al*  for all i, ¥, € U.
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It follows that for all ¥%,,¥., 2,2, € U we have

(39) ”fol(f(yx) —f(ys) — &f (2, zz)(?h—?/z))”
<[ D7 {f Jl) —f(y2) =" (W2) (g1 —9a))|| +
+”-D "(ya) — Of( zlyzz)) Yri— 3/2)“
< ho(lly2 —zlll + 12— 2all+ Y2 — .l 1y — el
Now from (38) we obtain

(40) "Ft+1 (w)—F;py (u)]
< (D5 DY kg (| () — y ||+ 1 (20) — o))+ | B () — Ty ()] X
X By (%) —F s (w)
< ,(1) (
2¢(t)+ 4

In this manner we have established (37). Now we intend to show
that € Z(t) implies

1)+ 2w (1) ... + s (1)) + @) = w04, (8).

(Finer (), Fop(w)) € Zw(3).

It will suffice to prove the following inequalities:

(41) 1 1 (%) —Fy (U)[§ < 04 (F),
(42) o () — Bl < & (o) — 0,0 (1)
(43) , ID5 fll < @i (2),

~1 -1 1
(44) (D5 D)~ [ <

ho (20 (1) + wp—y (1))

The first inequality is a consequence of (37) and S0 is (42), which
follows from (40) for ¢+ = m —1. By (9), (27) and (37) we have

15 (D, — Dl < ([P (D — £ (@0)) ||+ [P (£ (@6) =D |

< P (I () — @l - 1T (1) — @ll - @6 — Yol
< ho(20(tg) — 20, () + gy — 0y (2))

= 1=y (20(t) + @, (1))

According to Lemma 3 this implies the invertibility of D,, and the in-
equality (44).
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Using the identity f,_, = —D{F,,(u)—F,_,(u)) we obtain
D% fanll = (D5 Da) D5 (fi —fon1) =D (P () — Frpy ()|
< Ao (D" D) I (1B ey (9) — Y1l 4 1By (16) —0]| +
1 F o () = F ey (0)[]) 1 Fp () —F oy ()]

Wy (1)
= 20 () + Wy (1)

=, (1).

(0mmr(8) +2 (w00 (8) . -+ s (1)) + 00—y (1)

Until now we have proved that conditions (10), (11) and (12) of
Lemma 1 are satisfied. Our next task is to prove (16), that is to show that
the inclusion

(45) (27t s Tp—y) € Z (077 —an-yll; gy — o)

holds for each n =1, 2, ...
But according to (13) and (35) we already know that

(46) (i, —1 s Fg1) Ez(w(n—l) (t0), a’(n-l)(to))ﬁ
(47) lep ot — o || < 02D (1),
(48) -y _m'}z” < a’gn) (t) = wg:_l)(to)-

It is easy to see that the function o given by {22) is monotone in the
sense that if ¢, < g, and r, < r, then o(q,, ;) < 0(q;, 7,). Using this prop-
erty, from (46), (47) and (48) it follows that

e — @l < a(fp) — o (|l =y — tnally oy — 23 1),
“( —laf n 1 ) 71:,1— 1“
= [h0(2(p (lon=y —2n—all, |2y — @) + “mm—_ll_wq?—lll)]-d‘

The above relations together with (46) imply (45).

Then Lemma 1 implies that there exists a point 2#* € U which is the
common limit of the sequences ()5, (L <j<m) and that estimates
(32) and (33) are satisfied. Thus the proof of our theorem will be complete
if we demonstrate that x* is a root of the equation f(x) = 0. To show
this let us observe that (27) implies

(49) D (@h o)l = | D5 (£ (@ha) —F (@) — & (a7, &) (@0 — @)
< holl@g sy — o 12—l

From the above inequality, using the continuity of f on U, we deduce
that f(z*) = 0. m



618 F.-A. POTRA

We shall conclude this section remarking that the estimates (32)
and (33) obtained in Theorem 1 are sharp in the class € (hy, gy, 7,). Indeed,
let hy > 0, go>0 and r, > 0 be any numbers satisfying condition (30),
and consider the real polynomial f(#) = hy(@*— a?), with a given by (34).
Take 2, =1/2h¢—q,/2 and ¥y, =1/2h;+¢/2. We have (f,z,,y,)
€ €(hyy Qo, *o) and from the proof of Lemma 2 it follows that in this par-
ticular case the estimates (32) and (33) are attained foralln = 1,2, 3, ..,

4. An error analysis in the perturhed case

In this section we shall investigate the iterative procedure (2) trying
to find estimates for the distances |#°—af| for k¥ =0,1,...,m and
n=1,2,3,... We shall do this for triplets (f, #,, y,) € € (o, qq, 1)
satisfying the following two conditions:

(C*) The nonlinear operator f is Fréchet differentiable in the sphere
U* = {reX; |v—z,| < u*} and the relations

(60)  liaf(@, y)— of(u, I < H(lw—wl+lly—2l), (@, v) =f'(2)

are satistied for all @,y, u, v e U

(C**) The linear operator df(x, y) is invertible for all #, y € U*, and
there exists a positive number ¢ such that

{B1) 1/p > sup {i5f (%, )™ ; @,y € T*}.

Let us remark that condition (50) is stronger than condition (26)
but it is satisfied by the most used examples.

THEOREM 2. Let (f, @y, ¥o) € €(hoy oy 7o) and let (#l),s;, 0K m
be the sequences gemerated by the iterative procedure (1). Suppose that con-
ditions (3), (C*) and (O**) are satisfied. Let v, = max{g,, o}

If the inequalities

(62) Q = ¢g—H(2m+1)v,—2¢, >0,
(53) D = @* —125(31+ €3Vt &3 (@ —52)) =0,
(84) 8 = (@—VD)/6H < p*— iy,

hold, then the iterative procedure (2) is well defined and the estimates

(B5) 13— <t < 8
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are satisfied for all neN and § =0,1,..., m, where
W =1 =0, &7 = (L+Reg,)/(2hy), 85 = 577" — oy Who1 = o,

wfn = Tqy .gn = sn -1 3k+1 = Sf'a, (n—l +3n—) ((3 _az) wk = 8p _3k+1
0 =™, = (zp—sg)-l(H(t;;‘:fo_l-;-t" )i+ (2 H(wy +... +wi_,)+
+ 02 ealty, HHWE (G5 -+ ty) + ey + 8y WE + 63 (9 — 5a)).

Proof. The inequalities (55) are trivially satisfied for » = 0 and
j =m—1,m. Oonsider an ¢> 1 and suppose that they are satisfied for
n =4—1 and j = m—1, m. In this case, according to (b4), the points
§; = &, and ¥, = @7 Will belong to U*. Condition (0**) and Lemma 3
imply then the invertibility of the linear operator &f(¥;, #;) +E; and
the fact that

Il(af(gu ‘f"i) +E,-)”1” < ((}"— 82)"1,

We shall prove now that inequalities (55) are verified for n =4
and j =0,1,...,m. Because a*, =2} and *, = ¢} we may consider
formally that they are also verified for » =4 and j = 0. Suppose they
are satisfied for » =4 and j =0,1,..., %, where 0 < k< m—1, Write
D; = &f(y,, «;) and D, = 8f(#,,,). From (1) and (2) we deduce the
equality

(66) &t —aftt = (D, +E,) 7 [f (af) —f (&) —D(af —F) +
+ (D —D,) D7 f (o) + B, D7 f (wlf) — By (w0 — &) — 4]+ @ 1
From the proofs of Lemma 2 and Theorem 1 it follows that
D3 f(af)l| = |k — || < 0,
Using (50) we obtain the inequalities:
I (@) — F (&) — D (@f — &) < H(llof — &7+ 135 — G2 1) lof — |
< BRS04+
+2(w0+...+w}‘,_1))t?,
(D; —D)D; F (@) < BOBET + 233 |+ 85, — 2, ) wf
< H (G 172, wi
Now, (66) implies
155+ — a2 < (9 — o) ™ B (77 4+ 00 D 6 +
+ (2H (w}+. ..+ wi_y) +wi b+ &) 18+
L HWLER ) 4 &+ eawh + &5 (@ —e0)) = L
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Let us denote B = H (2m -+1)v, and C = g3+ 8,05+ &3(¢ — &,). Because
w} < v, for all n» and j it follows that

1 L (p—ey) " (BH 2+ BEH0) = 4.

Thus inequalities (55) are satisfied for » =i and §j = k-1, so that
they will be satisfied for all neN and § =0,1,...,m. m

The error analysis made above for the iterative procedure (2) is
similar to the error analysis made for Newton’s method by Lancaster [6],
Rokne [17] and Miel [7]. For the case m = 1 more precise results have
been obtained in [12].
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