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The aim of this paper is to give a survey ol the singularity problem
concerning the equation 4u = g(u) when g is a nondecreasing function.

0. Introduction

Let Q be an open subset of R, N > 2, containing 0 and
A: QxRxR"-RY, B: QxRxR"-R

two Carathéodory functions. Suppose u is continuous in Q' = Q— {0}, with
first derivatives belonging to some local Lebesgue space L% _(€2'), and satisfies
in &' (Q)

(0.1) div A(x, u, Du)+ B(x, u, Du) = 0;

then the singularity question at Q0 can be stated with these two problems.

(P1) Under what conditions can u be extended to Q as a continuous
function u satisfying (0.1) in 2'(£)? In that case the singularity of u at 0 is said
to be removable.

(P2) If u cannot be extended to Q, what is the behaviour of u near Q?

A very general answer to those problems has been given by Serrin in his
celebrated paper [13] when 4 and B have the same growth, that is, when
they satisfy

0.2) A, r, Pl < aylpP*™ ' +a, "7 +as,
(0.3) IB(x, r, P < by lpl*™ ! +b,|rI* ™" + by,
(0.4) A(x,r, p)-p 2 |pI*—cyrl* —cs,

where « > 1 and q,, a,, aj, b,, b,, by, c;, c3 are nonnegative constants. He

[311]
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proved the following

THeoreM 0.1. Suppose u is a weak solution of (0.1) in Q such that for
some ¢ > 0 the following holds:

O(lxfe=Mle=re N >q,

(0) “O) =) 0((Log (1) ). N =

then u can be extended to Q as a Hdolder continuous function u with first
derivatives in L _(Q) and satisfying (0.1) in @’'(Q).

THEOREM 0.2. Suppose u is a weak solution of (0.1) in ' which is bounded
below but not above. Then there exists a positive constant ¢ such that the
relations

(0.6) ¢ Hxjem e Cu(x) < c|x|@ e N > a,
(0.7) ¢! Log(l/Ix]) S u(x) < c Log(l/ix)), N =a,
hold for |x| small enough.

Moreover, in the linear case a = 2 the removability condition (0.5) can
be replaced by the following weaker one:

a v .
: u(x) =
o(Log (1/x))), N =ua.

The situation is completely different when the growth of B is bigger than
that of A and in its full generality the problem is now beyond reach.
However, in the last five years many results have been obtained concerning
the [ollowing semilinear case:

(0.9) Au = g(u),

in particular when g(u)= —uf, ¢ > 1 and u >0, or when g(u) = ulu?"",
g > 1, where many explicit computations can be done. As a simple illustra-
tion between Serrin's framework and the superlinear case let us consider the
equation

(0.10) Au=uul* !,

with ¢ > 1, and let us look for solutions of it in R of the form x —a|x|®. We
immediately find § = —2/(q—1) and a = ((2/q—1))(29/g—1)— N))4~ " and
that last quantity is defined only if ¢ < NN —2). So under the condition
that 1 < ¢ < N/(N —2) there exist singular solutions of (0.10) in RY— {0} and
their blow up at 0 is much bigger that the potential one, |x|2~*, obtained in
Theorem 0.2. Moreover, it must be noticed that « no longer exists when ¢

= N/N—2) and to this corresponds a very general result due to Brézis and
Véron [5]
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THeEOREM 0.3. Suppose g is a continuous function on R such that

(0.11) lim ()2 >0, lim g@)rM P <o,

r—++ a re—-a
and ue C' () is a solution of (0.9) in &' (). Then u can be extended to Q as
a C! function i satisfying (0.9) in &' (Q).

We shall not give the original proof of that result but a more general
one due to Vazquez and Véron [20], [21] and using the concepts of isotropy
and weak and strong singularities. When 1 <g < N/(N—2) there exists a
complete classification of isotropic singularites of solutions of (0.10) and they
are of two types:

(i) either |x|*9~Vu(x) converges to +[(2/(q—1))(29/(g—1)—N)]*/e~V
as x tends to 0 (strong singularity),

(1)) or u(x)/u(x) converges to some c, which can take any nonzero value,
as x tends to zero where u(x) = x>~ (N > 2) or Log(1/|x]) (N = 2) (weak
singularity),

(ili) or u can be extended to Q@ as a C? solution of (0.9) in Q (regular
solution).

In fact, all the singularities of solutions of (0.10) are not isotropic when 1
< g <{N+1)/(N-1). To see that we consider the following nonlinear eigen-
value problem on S¥ 1:

2 (g

. —A 1=~ (2 _Nlo,
0.12) Ay-10+olo| q—l(q—l )a)

where Ay, is the Laplace-Beltrami operator on §"° ' As 1 <g<(N

F1)/N=1), .
——(—q—N)> N—1
g—1\g—1

which is the second eigenvalue of —Agn-1; so (0.12) admits nonconstant
solutions which also change sign on SY~!. For such a solution w the
function u,, defined in R¥—{0} by

(0.13) iy (%) = |X| 727 Ve (x/)x))

is a solution of (0.10) with a strong nonisotropic singularity at 0.
In Section 1 we prove a general isotropy result due to Vdzquez and
Véron [20], [21]. A particular case of it reads as follows:

Suppose g is a nondecreasing continuous function and ucC'(Q') is a
solution of (0.9) such that
(0.14) lim |x|¥ ' u(x) = 0.

x—0

Then u(x)/u(x) admits a limit in Ru {— o0, + 0} as x tends to 0.
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For a solution of (0.9) such that u(x)/u(x) admits a limit in RuU {— o0,
+ oo} (that is, an isotropic singularity) we introduce two concepts of singular-
ity generalizing the ones obtained in the power case: if the limit of
u(x)/u(x) is +oo0 or —oo (resp. finite but nonzero) we say that u admits a
strong (resp. weak) singularity at 0. In Sections 2 (N > 2) and 3 (N = 2) we
study those two notions, we give applications to removability problems and
list some open questions.

In Section 4 we give the proof of the complete classification theorem
concerning isotropic singularities of solutions of (0.10).

In Section 5 we study nonisotropic singularities of solutions of (0.10) in
the plane, and in Section 6 the symmetries of singular solutions.

The contents of this survey is the following:

. The isotropy theorem

. Weak and strong singularities in R, N >3

Weak and strong singularities in the plane

. Isotropic singularities in the power case

Nonisotropic singularities in the power case

. Symmetry and broken symmetry of singular solutions

. Appendix to Section 5. A nonlinear eigenvalue problem on §!

NN AW -

Acknowledgements. The author wishes to thank Professor B. Bojarski
and the people from the S. Banach Center and the Mathematical Institute of
the Polish Academy of Sciences for their warm and generous hospitality.
This survey was written as the author was visiting the SI1S.S.A. in Trieste in
the fall 1984.

1. The isotropy theorem

Let (r, 0) be the spherical coordinates in R" (N >2), r >0, geS"™ 1, [S"71
the (N — 1)-measure of the unit sphere in R, and for any function v defined
in R* xS¥ ! let v be its average on SV !:

1
(11) ﬁ(r)=——N—_T I v(r, O')dO'.
N
We also recall that u(x) = |x|>~" (N = 3) or Log(1/|x|]) (N = 2). The isotropy
result of Vazquez and Véron [20], [21] is the following:

THEOREM 1.1. Suppose that g is a continuous nondecreasing function and
ue CY(Q) is a solution of

(12) Au = g(u)
in the sense of distributions in ' such that
(13) l.ll];l) rN—l ”u(ra ')_a(r)"LZ(SN—l) =0.

Then u(x)/u(x) admits a limit in Ru{—cc, +0o0} as x tends to 0.
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The proof in the case N =2 can be found in [20] and we give here a
sketch of the proof in the (more difficult) case N > 3 (see also [21]). Without
any loss of generality we can assume that Q o B, = {xeR¥: |x| < 1}. From
regularity results for elliptic equations, (1.2) is satisfied a.e. and we have in
spherical coordinates

Fu N—1du 1

(1.4) ?*‘ " §+FASN_1u=g(u)

ae. in (0, 1] xS~ where 4,y is the Laplace-Beltrami operator. We make
the following change of variables and the unknown function:

rN—Z

(1.5) S = X5 u(r, o) =r>"Yu(s, 0);

so the function v satisfies
0%v 1
a2 T (N_22 dsn1?

(1.6) 5?2 =(N—2)“‘")/(N*Z)SNl(Nfz)g( v )

s(N—2)

ae. in (0, 1/(N—2)] xS"~'. if ©(s) is the average of v(s, ) on S"~1, the
following estimate is the keystone of the proof of Theorem 1.1.

LemMma 1.1. Under the hypotheses of Theorem 1.1, there exists a constant
C independent of s such that

(L7) llv(s, ‘)—E(S)HLCD(SN_I) < CsN~DIN=-2)
for any se(0, 1/(N-2)].
Before proving (1.7) we need the following L? version of it.

LemMA 1.2. Under the hypotheses ot Theorem 1.1, there exists a constant
C independent of s such that

(1.8) lo(s, )= 5(S)l, 2 gn—1, < CsN™HN=2
for any se(0, 1/(N-2)].

Proof. We let g(v/[s(N—2)]) be the average of g(v/[s(N—2)]) on S¥~1,
hence

@5, 1
ds? ' (N—2)?

(19 s? As~-1l7=(N—2)““”’“”—2)3”/”"“2)9( v )

s(N—-2)
As N—1 is the second eigenvalue of —d4.y_, and vis the projection of v
onto the first eigenspace [3] we have

(1.10) - | (0-DAgun-1(0—Ddo>(N-1) | (v—D)do.

sN- s
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Moreover, from monotonicity

; v v
(1.14) s~"— , (g (S(N—Z))_g (S(N—2) ))(v_-)da

v v
= (g (s(N~2))"g (s(N—z)))(”_ﬁ)d“ >0

so we deduce from (1.6) and (1.9)

0? N-1
1.12 s? w-0)==s@—-0do——— (v—7)*do = 0.
( ) SNI—I 552 (N_2)2 SNI—I
If we set Y(S) = lv(s, )~ (Ml 2 gn—1, and I = {se(0, 1/(N~2)]: Y(s) >0},
then I is open and we have a.e. on [

113) Yo r oz | 2 w-d
(1. s 03 s /SN_ﬂl(v ﬁ)-és—z—(v v)da,
which yields
2
N -
(1.14) szd Y ! >0,

ds? (N=2?7 %
a.e. on I. Moreover, the condition (1.3) means Y(s) = o(s™ ¥~ 2) pear 0. Set
a=(N=-2)""DIN=2y(1/(N-2)). For any ¢ >0

Y;(S) _ ES_ 1/(N=-2) +aS(N_ 1)J(IN=-2)
is a solution of

d*Y, N-1

1.15 2 - Y=0
(1.15) ShsT (N-22 "

on (0, 1/(N—2)). As Y =0(Y) near 0 and Y(I(N-2)) < Y,(1/(N~-2)) we
deduce from the maximum principle that Y < Y, on (0, 1/(N —2)]. Letting ¢
go to 0 we get (1.8).

Proof of Lemma 1.1. We first need some a priori estimates concerning
the solution w of the following Dirichlet problem:

5202w+ 1
(1.16) a2 (N-=2)
(g, )=a(’), of,)=p() inS"71,

s4dn-,0=0 in (o, ) xSV 1,

where a and g belong to L*(S"~ ). Introducing the semigroup T of contrac-
tions on L*(S¥~') generated by

1 1/2
—(_WASN_I-’_%Id)
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a straightforward computation shows that the function w defined by

w(s, ) = \/éT(LogE)B*(-H\ET(Log%)a*(-)

Pw 1
asz +(N_.2)2 ASN‘I w =

satisfies

82

0 in (o, ) xSV 1,
(1.17) o
w(g,)=a("), w(,)=p in SV L

Hence w = o in (g, t) xS¥~!. Using regularizing effects from L?(S""?) into
L®(S¥™1) (see [21] or [23] and [27] for details) we have for any r > 0 and
ye L2(S"71)

(N-1)2
(L18)  NIT@ 7l wgn-1, S C(1+;) exp(—t/2 Iy (Nl 25n-1,-

From (1.17) and (1.18) we get the following internal estimate:

1 (N—1)/2
(119)  flo(s, Myxgn-1, S C{[l +m:l lloe (Ml 23— 1,

s 1 (N—1)/2
+;[1 +—Log(t/3—)] ||ﬂ(')“,_z(SN—1)}-

End of the proof. Let a, beR, 0 < ¢ <1 < 1/(N—2) and y be the solution
of the following two-point problem:

d*y y :
2 =(N—=2)4"NIN=2) N(N=-2) . T , T),
(1.20) S ( ) ’ g(S(N—2)) n (@)

yl@=a, y()=>b.

Set w=v—y, so w satisfies.
*Fw N 1
ds>2 (N-2

(1.21) 52 £ Agn-yw = (N —2)4= NN =2) gNIN=2) py

where
b= {(Q(v/[S(N —2)—g(/s(N=2)w~y) if vy,
0 if v=y.

From the monotonicity of g, h is nonnegative. Let @ be the solution of (1.16)
with a(-) =(v(g, -)—a)" and B(‘) =(v(z, ')—b)*. As w is nonnegative we
deduce from comparison principles that w < w. If we minorize w in the same
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way we get from (1.19)

1 (N- 1)z
(1.22) nku)—y@mmmnq,sCQ[L+Ea;35] lo(e, ) —all 2 gn-1,

) 1 (N—-1)/2
+;[1+I_,0g('[/5)] “v(I7 .)-b“LZ(sN—l)}'

As y is radially symmetric, (1.22) remains true after replacing v(s, ') by v(s).
If we take a = t(g) and b = v(r) we get

(1.23)  los, ) =T wisn-1,

1 (N—-1)/2 3
<2C {[1 +m] llv(e, ) =T (@ 25v-1,

s 1 N=1)2 _
+;[1 +m] lo(, ')_U(T)”LZ(SN—I)}-
If we take T = 25 =49 and use (1.8) we get (1.7).

Proof of Theorem 1.1. We shall distinguish the cases of {v(s)} bounded
and unbounded in (0, 1/(N —2)}.

Step 1: Assume that {7(s)} remains bounded when 0 <5 < 1N —2), so
there exists a real ¢ and a sequence {s,} such that

Im s,=0 and Lm v(s,) =c.

We then claim that
(1.24) him v(s, ') =c.
s—+0

We first assume that ¢ > 0 (or ¢ <0 in the same way)}. From (1.7)
there exists nye N such that v(s,, 6) >¢/2>0 for n>n, and aeS¥ " '. Let
g(r) =9(r)—g(0) and v be the solution of
262'7+ I

052 (N—=2)2 " sN!

A}

— (N _ 74~ NJ(N-2) N(N-2) 5 v - N-1
(1.25) (N-2) s g(s(N—2)) in (S, Sp0) xS" 7,

D(Sngs ) =¢/2, T(ss°)=¢/2 in S"71,

From comparison principles, v = 0 in (s,, Sng) xSN~! Let A be the solution
of the following differential equation:

d’A
§?——-+(N=2W " MN=DNN=D1g0) =0 in (sp, Sny),
ds o
(1.26)

A(s) = Als,g) =0.
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It is clear that A(s) = 0; moreover, there exists K independent of n = ny such
that

(1.27) A(s) < Ks  in [s,, 5,]-
If we set w=7—A41 we get
Pw 1

2
. A
(128) 5+ oy

(4 - NHN=2) N/(N=2) w
1w 2 (N-2) s g(s(N—Z))

in (S, Su) xS¥~1, From comparison principles we deduce
(1.29) (s, ) = wi(s, ) =0(s, ") —A(s) = —Ks.

Hence v (s, ') = v+ Ks is nonnegative in (0, s,] xS¥~1 Let ,(s) be the
average of v, (s, ) on S~ ! and

") = K K
W=INTND2) I N=2)
We then have

d* 7, v Kk
1.30 2% Pk (N D)@ -N/(N=2) (NIN-2) x B .
(130 % ¥ =(N-2) 5 (gk(sw_z))w( _N_z))

As v, 20 in (0, 5,,] xS¥ ! and ¢,(0) =0 we get

d* 7, K
131 27 Tk S (N—2)@-MIN-2 NIN-2) o [ _
(131) 25 2> (N-2) 5 g( N_z),
which implies that the function '
(1.32) S D (s)_L(N_z)m—N)/(N—z)SN/(N—z,g _ K
AN . N-2

1S convex. As

]imi (5" (S")__L(N_z)(N—‘t)l(N—Z) SnN/(N—z)g (__L)) —c,

n—wo 2N N-=-2

we deduce
lim (ﬁ(s)—L(N—Z)“‘N’/‘"“z) sVN-2) g (_L)) =c
s—=0 2N N-2

which implies
imv(s)=c¢c and lmo(s,0)=c
5s—0 s =0
uniformly with respect to ceSV™', that is, lim, .o |x|¥ 2u(x) =c.

If ¢ =0 then lim,_,0(s) = 0. Otherwise there would exist ¢’ # 0 and a
sequence {s,! converging to 0 such that lim, ., 0(s,) = ¢, which would
imply as before lim,_q v (s, 6} = ¢’ uniformly on S¥ ! which would contradict
lim,_ o (s, = 0. Using (1.7) this yields lim,_.,v(s, 6) = O uniformly on SV~ 1.
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Step 2: Assume {9(s)} is unbounded near 0. There exists a sequence s, !
converging to 0 such that lim,_. v(s,) = + 00 (or —o0 in the same way). As
in Step 1 the function defined by (1.32) is convex on some interval (0, s,]

which implies lim,_o0(5) = + o and lim, .o |x|" 2u(x) = + .
Remark 1.1. A stronger form for condition (1.3} is to assume

(1.33) lim |x|¥ "' u(x) = 0.

x—0
This condition is satisfied as soon as (sg(s))”'/? is integrable at + oo and
—aoo and

(1.34) ET rl/(N—l) (_‘jr \/‘?;(7)4_ +Ioo—sd;(—s))= 0

This is in particular the case if

lim [g()|Ar™* =D =0

r| =+ o
(see [25, Lemma 2.1]).

Remark 1.2. If lim, o u(x)/u(x) = 0 then u remains bounded near 0 and
it can be extended as a C! solution of (1.2) in Q. To see that we consider a
ball Eo <, 0 >0, and set v,(x) = eu(x)+ K where K is chosen such that v,
remains positive in B,— {0} and K > max,_, u(x). If y satisfies

4y = ~1g(0) in B,

(1.35)
y=0 on (B,

then v+ is clearly a supersolution for (1.2) and u < v, in B,— {0}. Letting
e— 0 yields u” e L*(B,). We do the same with ¥~ and we conclude using
Theorem 0.1 and regularity results for elliptic equations.

Remark 1.3. A slightly weaker form for condition (1.3) is to assume that
there exists a sequence {r,} converging to 0 such that
(1.36) lim P (g, ) = F ) 2gh—1, = O-

n—+ o

The same comparison arguments yield (1.8) and (1.7).

2. Weak and strong singularities in R®, N > 3

In this section we suppose 2 — R¥, N >3, and we say that a solution
ue C1(Q) of (1.2) admits a strong (resp. a weak) isotropic singularity at 0 if
Ix|¥~ 2 u(x) converges to + o0 or — oo (resp. to some nonzero real number) as
x tends to 0. The main problems are to find conditions on g ensuring the
existence of such singularities. Many of the results presented here are due to
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Vazquez and Véron [21], and without loss of generality we assume that all
the singularities are nonnegative.

THEOREM 2.1. Assume g is a continuous nondecreasing real function. Then
the equation (1.2) admits solutions with weak singularities if and only if g
satisfies for some o >0

+ x®

(2.1) [ g(s)s 2N VN=Dds <« 4 o0,

Moreover, if g satisfies for some o' > 0
+ICD ds
@ /59 (s)

then there exist solutions of (1.2) with strong singularities at 0.

(22)

< +o0,

Proof. Step 1. We suppose that (2.1) holds and for ¢ > 0 and ¢ > 0 we
let y, be the solution of

2

d Y
Ly = (N=2)4"MHN-2) NIN=-2)-2 e

(@ =c¢, y(1)=0.

For the sake of simplicity we assume that g(0) =0, so y, is a nonnegative
nonincreasing convex function and y, < ¢ on [0, 1]. Integrating (2.3) yields

d

_d ! NIN-2)- Ye
Eya(s)_ﬂy“(l)_c'g(a-i_s) AN=2) 29((0—_,_6)(1\]—_2))‘10’

with ¢, = (N—=2)@"MIN-2 Ag y and d?y,/ds* remain bounded on [3, 1], so
does (d/ds)y,(1). So we get for 0<o <1< 1

(2.3)

T 1 .
- " — NAN—2)—2 ¢
Y. (1) —y. (@)l < ¢'(t—a)+c, 5 !(a+s) g ((N—z)(a+c))d“d”"

If we take ¢ <1 we have

Tl
[ fla+e)ht¥=272g4 (————c )dads

(N-2)(oc+¢)
t+e 2 NN~ 2y~ 2 ¢
< pEaky) S .
<l ¢ (a(N—z))‘“”'s
We define @ on (0, 2] by
° N/(N-2)-2 ¢
(24) ®(x) = £ !a g ((N—Z)a)dadb'

From (2.1), lim, ., @ (x) exists so @ can be extended to (0, 2] as a continuous

21 — Banach Center t. 19
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function @, and & is uniformly continuous on [0, 2] and we get for
0<o<t<

(2.5) YD) =y (@) S ' (z=0)+¢; [Pt +8)—P(o+e).

Hence the family of functions {y,}o<,<, is equicontinuous on [0, 1]. From
Arzela-Ascoli theorem there exists a sequence {¢,} and ye C°([0, 1]) such
that {.Vs,,} converges to y uniformly on [0, 1] and y is then the (unique)
solution of
d*y
ds? s(N-2)
y(O=¢, y1)=0.

Clearly the function x —|x|2” ¥ y(|x|Y~2/(N—2)) is a solution of (1.2) with a
weak singularity at 0.

Step 2: We suppose that (2.1) does not hold and that there exists a
solution u of (1.2) such that lim,_q|x|" 2u(x) =c > 0. Let u(r) be the
average of u(r,-) on S¥ ! Then'lim,_or""2u(r) = ¢ and

d { y_,du N—1 c
= ==
27 o (r dr) zr g N2

holds for 0 < r < R. Integrating (2.7) yields

=(N_z)m—wm—z)smm—2)—zg( Y ) on (0, 1],
(2.6)

_ dﬁ  du R c
—rV IE(’.) > — RV 1E(R)+ ;[SN lg(zsl\,_z)ds,
which implies
du .
lim r”“—u(r)=——oo and limr¥ 2a(r) = + o0,
r—0 dr r—0
contradiction.

Step 3: We assume that (2.1) and (2.2) hold. From a result of Vazquez
[18], for any compact subset K c— € there exists cx > 0 such that for any
solution u of (1.2) in Q' we have u(x) < ¢x for any xe K. From Step 1 we let
u. (c > 0) be the solution of (1.2) in B, — {0} (we may suppose that Q > B))
vanishing on dB, and such that lim, o (x| %u (x) = c. As ¢ goes to + o0,
{u.} increases and converges to a solution of (1.2) with a strong singularity at
0, which ends the proof.

Remark 2.1. As we have seen, the strong singularities of Theorem 2.1 are
obtained as the upper envelope of solutions of (1.2) with weak singularities at
0. When g is a power there is no other way to obtain strong singularities. In
the case of a general g this is not always true as the following result shows:
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THEOREM 2.2. Assume g is a continuous real-valued function satisfying

(2.8) fg(s)s_z‘N_"""‘z’dsz i ds o
* a +/59(s)

for any a > 0. Then the equation (1.2) admits no solution with a weak
singularity at O but infinitely many with a strong one.

The proof is a consequence of the following continuation lemma concern-
ing solutions of some O.D.E.

LEmma 2.1. Let a be a real number and f a continuous positive function
defined on [a, + o). Every nonnegative solution 0 of

(29) =109

defined in an interval [a, a*) to the right of a can be continued as a solution of
(29) on [a, + ) if and only if g satisfies

+ @ d
(2.10) j S;“)=-+ax

Jor any a > 0.

Proof. Step 1: We first assume that 8 is defined on a maximal interval
[a, a*), a* < + 0. Without loss of generality we can assume that 6 is convex
and nondecreasing, that g(6) is nondecreasing and that lim,_,68(t) = + 0.
We set

i) = fg(ds  and  F =[fll,aq.m
0

d (d0\? d

' (¢) & (a) \/~
Vie@) \/ B(t

sO we get

which implies

o ds
<) +2 F (t—a).
9(j;) j(s) ! Vi (9 (s) \/_
Hence
+ ® < o0
oia) \/J(5)

and (2.10) is not satisfied since j(s) < sg(s) (we assume g(0) = O for the sake
of simplicity).
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Step 2: We assume
+ dS

! V59 ()

and we fix A > a. As f is continuous and positive we have 0 <a < f(1) < 8
for any t in [a, A], « and § being two constants. From Vazquez' a priori
estimate [18] there exists a function y defined on (g, 4) such that

< 4+ for some a >0

(2.11) 0(t) <y(t) Vite(a, A)

holds for any solution of (2.9) on (a, 4). Moreover, y can be supposed to be
convex and lim,_.,y(t) = lim,_ y(t) = + co. If § is a solution of (2.9) on (a, a
+¢) such that

f0(a) > min y(t) and & (a) >0,

a<t<A

it is clear that‘B(t*) = y(t*) for some t* < 4 and 0(¢t) > y(¢) for t > t*. So 0
does not satisfy (2.11) which means that # cannot be defined on the whole
(a, A) and there exists a* < A such that lim,,,.0(t) = + .

Proof of Theorem 2.2. From Theorem 2.1 there exists no solution of (1.2)
with a weak singularity at 0. Let { be the solution of

—4{+g()=0 in B,,
{=0 on JB,.
¢ is radial, and if we set t =r*>"" and £(t) = {(r) then
dZé I_ZI(N 2)
ar = (N—22 ¢

(2.12)

(2.13) t? ) for t>1,

and ¢ is the only solution of (2.13) which is bounded at infinity. For any
a > (d&/dt)(1), let w, be the solution of the Cauchy problem
d2 Wcl t- 2/(N—2)

a2 - (n=2 9!

2

w,) fort>1,

2.14
(2.14) i,

dr

(1)=a.

From Lemma 1, w, is defined on [1, + o). Moreover, w, > £. As ¢ is the
unique bounded function satisfying (2.13) we must have lim,ww (t) = +oo0.
So w, is asymptotically convex and hm, ., o w,(t)/t cxlsts in (0, + o). If we
set & (1) = u, (x>~ "), we have

—Adu,+g(u,) =0 in B,—{0},

2.15
21) u,=1 on 0B;.
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Moreover, lim, o |x|Y ™2 u,(x) exists in (0, + o). As the limit cannot be finite

we have lim, _q|x{¥ " 2u, (x) = + 0.

Remark 2.2. The set of nondecreasing functions g satisfying (2.8) is not
empty but no function of the type

r—r*(Log r)? (Log(Log r))" ...

a, B, v, ... real numbers, can satisfy (2.8).

The removability result of Brézis and Véron [5] is an immediate
consequence of Theorems 2.1 and 2.2. We give here an improvement of it.

THEOREM 2.3. Suppose g is a continuous real-valued function such that

lim g(r)Log r/rN"=2 > 0,
(2.16) _ e
lim g(r) Log(—r)/ir)M¥=2 <0.
If ue C*(Q) is a solution of (1.2) in the sense of distributions in Q' then it can
be extended as a C! function in Q satisfving (1.2) in 7' (9).

"Proof. Step 1: We claim that |x}¥~ 2 u(x) remains bounded near 0. From
[25, Lemma 2.1] 1t is clear that

(2.17) lim |x|2¥~ Dy (x) = 0,
x—0
for any ge(l, N/(N—2)). Moreover,
pNIUN=2)
glr) = o T —B  for rze™ 22,
where « >0 and 8> 0. For 1 <g < N/(N—2) we set
IN—-4 \Ya-1
2.18 =|— ~2a@-1)
(2.18) @,(x) (ae(q_l)z) 1
for x # 0; w, satisfies the equation
N q
(2.19) —Adw,+ae N5 1 ol =0

in RY—{0}. For r > ™~ 2/2 the maximum of the function g+ (N/(N-2)
—q)r? over (1, N(N—2)) is achieved at g* = NN —2)—1/Log r and

N pNIN=2)
————g* I == .
(N— 2 ) elLogr

If we suppose that B, = Q and take y > max (e~ /2 sup, -, u(x)) large
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enough, we have

(g + V2

2.20 -4 =2 p.
As
uNI(N‘-Z)
— <
Adu+ta Log u B

ae. on {x: u(x)>e" P2} from Kato’s inequality 4(u—w,—7)* =0 in
2'(2) and u < w,+7 in Bg—{0}. Letting g converge to N/(N—2) yields

 M3INN-2)/2
2.21) u(x)s(‘N 2 )( QIR

2ae

In the same way u(x) is minorized by —c'|x|>~".

Step 2: We claim that u remains bounded near 0. From Step 1,
lu(x)| < c|x|*~ ™. Moreover,

rN/(N-Z)
gr)=a —pB  for r = N2
gr
Let ¢, be the solution of
¢N/(N' 2) {
4, = a— —B  in {x:e<|x] <1},
Log ¢, }
(2.22) @, (x) = ce? ™V for |x] =e¢,
@, (x) =K for |x] =1,

where K is large enough so that ¢, > ¢V~ 272

in {x:¢e<|x <1}

in ¢ <|x| < 1. Clearly we have

(2.23) u(x) < @, (x) <clx]* " "+K.

From the compact imbedding theorem there exist ¢eC*(B,—1{0}) and a
sequence {¢,} such that ¢, — ¢ uniformly on each compact subset of B,
—{0} and ¢ satisfies

NI(N-2)
Log ¢

in 9'(2). From (2.23) and Theorem 1.1, |x|¥~ 2 ¢ (x) admits a limit in R as x
tends to 0 and from Theorem 2.1 this limit must be O since ¢ cannot have a
weak singularity. Using an easy comparison principle, ¢ must remain
bounded in 2 and so u* is bounded near 0. We do the same with u~, and so
ue C'(Q) (see Remark 1.2).

(2.24) 4p =« —B
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Remark 2.3. The result of Theorem 2.3 still holds if g satisfies
lim g(r)(Log r)(Log Log r)/r¥*=2 > 0,

r—-+ o

lim g(r)(Log(—r))(Log Log(—n)rM"~2 <0,

r=-—a

(2.25)

and this can be continued. However, 1t is an open question under what
necessary and sufficient conditions on g all the isolated singularities of
solutions of (1.2) are removable. Thanks to Theorem 2.1 this question
reduces to the nonexistence of strong singularities. Another interesting prob-
lem is to find conditions on g which imply the uniqueness of strong
singularities in the sense that if u and v are solutions of (1.2) with a strong
singularity at 0, then lim,_qu(x)/v(x) = 1.

3. Weak and strong singularities in the plane

In this section we suppose that Q@ = R? and g is a continuous nondecreasing
function. Following [19] we define the exponential orders of growth of g:
=inf{a > 0:

a g(s)e *ds < + o},

3
(3.1)

dg

+
J
o
)
=infla>0: [ g(s)e®ds> —oo}.

O

The following result characterizes the existence of weak singularities and the
range of the ¢’s = lim, ., u(x)/Log(1/|x]).

THeOREM 3.1. The equation (1.2) admits at least a solution u, such that
lim, o u (x)/Log(1/|x]) = ¢, ceR, if and only if
(3.2) —2/a; <c<2a,,
where —2/a;, = —o0 if a;, =0 and 2/a] = +© if a; = 0.

Proof. Il [—2/a,, 2/a;] = {0} the result is obvious so we assume
(0, 2/a;] # @ (or [—2/a;,0) # @ in the same way).

Step 1: Assume ce [0, 2/a;). We claim that there exists a solution u, of
(1.2) such that

(3.3) lim u,(x)/Log(1/|x]) = c.

x—0
For £ > 0 let y, be the solution of the following two-point problem:
d’y,
dt*

(t+e) e 7" g (y/t+2) in (0, 1],

(3.4)
V(@ =¢, y(1)=0.
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Assuming g(0) = 0 yields that y, is increasing and convex. Integrating (3.4)
implies
1+e

y,() yc(l)—- f o7 e ¥ g(y.(0—¢)jo)do

t+e

As (d/dt) y,(1) remains bounded we get

T 1+e

(3.5) @)=y (@ < | | 07" #g(c/o)dadt+c,(1—0),

o t+e

for 0<o <1< If we set

22
(3.6) W(x)= | [a" e g(c/o)ds dt,
x !
we then have
t 1+
[ | o %e ¥ g(c/o)dadt < | (t+&)—y (a+¢)|
a tt+e

for 0 <g < 1. Moreover,

2 2
lim ¥ (x) = } fo=2e % g(c/o)dodt = [a™*e” ¥ g(c/0)da
0t 0

x—0
+ @
=c™! [ e7¥g(s)ds < + o
cf2
since 2/c > a, . Using again Arzela-Ascoli theorem we conclude that there
exists a continuous function y on [0, 1] (unique) satisfying
dz
—F=t7e Mg in (0,1],
(3.7
y@=c¢, y@)=0

If we set u,(x) = —Log(|x]) y(—1/Log|x|), then u, satisfies

du,=g(u) in {xeR?* 0<|x] <e !},
(38) g(u) \ |x] }

u,(x)=0 for |x| =e7 !,

im u (x)/Log(1/|x]) = c.

x—0
Step 2: Assume ¢ = 2/a,, set ¢, =c—1/n and let y, be the solution of
the equation
dy,
dr?

=t e Yg(y/t) in (0, 1],

(3.9
Va0) =cp,  ya(l) =



LIMIT BEHAVIOUR OF SOLUTIONS 329

The sequence of functions {y,} is nondecreasing, bounded above by c.
Moreover, y, is convex. From Dini’s theorem, {y,} is uniformly convergent
on [0,1] to some y which satisfies (3.7). We return to u as before.

Step 3: Suppose u, is a solution of (1.2) satisfying (3.3) and suppose also
c¢[—2/a;, 2/a;], ¢ > 2/a for example. Set y(t, 0) = tu.(e”'", 0); then y
satisfies

0? oty Ca
&f+ 92 Ye” Mg (y/r),
(3.10) . : :
lim y(t, 0) = c uniformly with respect to GeS’.

t—0

For t small enough, y(t, 6) = ¢’ > 2/a; . Let y(t) be the average of y(z, ) on
S!: we have

25 ‘
(3.11) ‘fi—zy >t"3e Mg (c'f),

t
for 0 <t <t,. Integrating (3.11) twice yields lim, ., y(t} = + oo, contradic-
tion.

Remark 3.1. Theorem 3.1 implies the existence of solutions of (1.2) with
weak singularities. If we suppose moreover that a; =0 and (2.2) then there
exist solutions of (1.2) with a strong singularity which are obtained as the
upper limit (¢ — + o) of the solutions u, with a weak singularity at 0. This is
not always the case and there exist continuous nondecreasing g such that

+ a dS + o
(3.12) f = | g(s)e”®ds = + 0,

s /59 a
for any « = 0 and a = 0. For such g’s there exists no solution of (1.2) with a
weak singularity at O but infinitely many with a strong one; they are
obtained as in Theorem 2.2. In order to avoid that unpleasant phenomenon
we introduce the following hypothesis on g:

(313) For any a>0, lim e *g(r) and lm e*g(r)

r-+w r-—@x
exist in Ru {—o0, +o0}.
This implies that a; and a, can be defined as follows:
a; =inf{a>0: lim e *g(r) =0},
ro+w

=inf{a 2 0: lim e*g(r) =0}.

r——@®

(3.14)

ay

We then have the following:

THEOREM 3.2. Suppose g satisfies (3.13) and ue C' (') is a solution of (1.2)
in the sense of distributions in Q' such that u(x)/Log(l/|x|]) admits a limit
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ceRU{—, +w} as x tends to 0. Then we have
(3.15) ~2/a; <c<2al.

Without loss of generality we suppose Q > B, and we have the follow-
ing a priori estimate:

LemMma 3.1. Suppose ve C!(2) satisfies
(3.16) —Av+ae® <c

in the sense of distributions on {x: v(x) > 0}, for some constants a, a and
¢>0. Then

(3.17) o(x) < 2 Log(1/lx)+ B,

for 0 <|x| <1, where B depends on a, a and c.
Proof. We choose x, such that 0 <|xo <1 and we set
(3.19) ¥ (x) = 4 Log (1/(R*—|x—xo|*)+ 4,

for 0 < |x—xg < R <|xo|; 4 and u are to be chosen such that — Ay + ae™
> c. A straightforward computation gives

4iR? ta e
(R?—]x—xo[%)?  ~ (R*—|x—xo|*)**

Taking A = 2/a and u = a™ ! Log {(ac+8) R*/(ax)} gives
(3.21) — Ay +ae” = c

(3.20) — A +ae™ = —

in {x: [x—xol <R}. As lim,_, .g¥(x)= +c0 and v is bounded in {x:

|x —xol < R} we deduce from basic comparison results that v(x) < ¥ (x) if
Ix—xo| < R. In particular, :

(3.22) v(xp) < Y(xg) < ;Log(l/R) +£ Log ((atc + 8)/(an)).

If we let R— |xo| we get (3.17) with B =a™ ' Log((ac+ 8)/(ax)).

Proof of Theorem 3.2. If a; = 0 (resp. a; =0) then 2/a; = + oo (resp.
—2/a;, = —0) and there exists no finite upper bound for ¢ (resp. finite lower
bound). So we assume a, > 0; for any a, 0 <a < 4., there exist a > 0 and
¢ > 0 such that g(s) > ae®*—c for any s > 0. Hence

(3.23) —Adu+ae™ < c

in the sense of distributions in {x: u(x) > 0}. which implies

lim w()/Log(1/1x) < -.

x =0
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Letting o — a, we obtain the right-hand side of (3.15). The left-hand side is
obtained in the same way.

As an application of Theorem 3.2 to removability problems we can
prove the following result.

THEOREM 3.3. Suppose g is a continuous real-valued function such that

(3.24) lim e " “g(r) = + o0, lim e"g(r)= —o0,
for any a > 0. Then any solution ue C' (') of (1.2) in the sense of distributions
in Q' can be extended as a C'(Q) solution of (1.2) in 7' (Q).

In [20] this result is extended to singularities lying on a C' compact
manifold of codimension 2 in the N-dimensional space.

4. Isotropic singularities in the power case

In this section we study the classification of the singularities at 0 of solutions
of
4.1) —Au+ulu =0

in Q' = Q- {0}, where g > 1. The two main results are the following: first,
we have a complete classification of isotropic singularities and more general-
ly of singularities of solutions with constant sign near 0; we also prove that
all the singularities are isotropic (and thus classified) if (N+1)(N—1) <q
< N/(N —2). The two main ingredients for such a program are the following
two results due to Fowler [6], and Brézis and Lieb [4] in a particular case
and Véron [22] in the general case.

LeMMA 4.1. Suppose ¢ is a nonnegative solution of

d>e N-1do
4.2 — ——p1=0
“2) dr? * r dr 7
on some interval (0, a] and 1 <gq < NN —2). Then ¢ can have at most two

types of behaviour as r tends to O:

(i) either @(r)/u(r) converges to some nonnegative real number,
(i) or r¥a=D o (r) converges to

2 Zq 1/ig—-1)
(2= N .
fuy (q—l(q—l ))

LemMMA 4.2. Suppose u is any solution of (4.1) in B,—{0). Then
(4.3) () < Lnlx"79"PA+CIx), 0<x/ <1,

1 . 2 1
where T = - N—2ﬁl +8 —q—N +2q—+——N and C =C(q, N).
2 qg—1 q—1 q—1
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THeoreM 4.1. Suppose 1 <q < N{N-=2), N2=2, and uecC*() is a
nonnegative solution of (4.1) in Q'. Then we have the following as x tends to 0:

(i) either |x|¥9~Du(x) converges to Iy,

(i) or u(x)/u(x) converges to some real number which can take any
positive valt{e,

(ii1) or u(x) admits a finite limit and u can be extended as a C? solution of
(4.1) in Q.

Proof. Step 1: Setting d = u?~' we write (4.1) as

4.4) —Adu+du =0,
For any yeB,— {0} (we assume Q > B,) and ¢ = §|y| we have
4.5) sup u(x) <K inf u(x),

xeBgi4y) xeBya()

from Harnack’s inequality (B,(y) = {x: |x—y| <¢}). Moreover, K can be
estimated (see [9]):

(4.6) K =exp{Ko(l+¢ i‘:l(’) Vd(®)}, Ko =Ko(N).
X Qy

As u satisfies (4.3), K is bounded independently of y. With a chain argument
we deduce that there exists C = C(g, N) such that

4.7 u(y) < Cu(y),

for any y, y' such that |y =]yl > 0.

Step 2: Assume N > 3 (N = 2 is a bit different, see [22]) and |x|¥ " 2 u(x)
is not bounded in any neighbourhood of 0. We let (r, g) be the spherical
coordinates in RY and set

N-2

(4.8) s = u(r, o) =r> " No(s, 0);

so v satisfies
v 1

2
(4.9) s 7 YN =22

N1V = (N _2)(4-N)/(N—2)—qSN/(N—2)—qvq

on (0,1]xS¥ !, We let i(s) be the .average of v(s,-) on S¥~!. As v is
nonnegative, ¥ is convex. From hypothesis, v is unbounded near O so there
exists a sequence {s,} such that

(4.10) im ( sup wv(s, 0))= + .

n—>+ o gsN—1
From (4.7),

lim ( inf (s, 0)) = + o,
n—® s sN-1
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so lim, 4 v(s,) = +c0. As ¥ is convex, lim,_,#(s) = +oo. Using again (4.7)
implies lim,_qv(s, 6) = + o, uniformly on S¥~ 1.
For a > 0 we let y, be the solution of
dz
S o Ye = (N4 W20 N2 70ys i (0, 1],
4.11)

lim y,(s) =a, y,(1)= inf v(1, o).
s—0 seSN—1

The existence of y, comes from Theorem 2.1. As (y,—v)" has a compact
support in (0, 11xS¥" ! we deduce from comparison principles that it is
identically 0, so 0 < y, < v. By the same argument o — y, is increasing, 5o y,
converges to some function y, as a tends to +oo and y, satisfies the
equation (4.11) with a replaced by oo. Moreover, 0 < y, < v. If we set

u (r)=r""y (—,-N-Z

then u, satisfies (4.2) and lim, .or¥ 2u,(r) = + oo. Hence

lim r¥4= Dy (r) =1, .

r—0

Using (4.3) we deduce

4.12) im r?@Yy(r, o) = Iy,

r—0 \
uniformly on S¥~1.

Step 3: Assume u(x)/u(x) is bounded in B,. From Theorem 1.1 there
exists ¢ 2 0 such that lim, ,ou(x)/u(x) =c. If ¢ # 0 then u admits a weak
singularity at 0. If ¢ = 0 then u must be bounded (comparison with eu+ K)
and by Serrin’s result [13] it can be extended to © as a C? solution of (4.1)
in Q.

Remark 4.1. As g(r) = r |r|?" ! satisfies (2.1) it is not difficult to see that if
lim, .o |x|¥" 2u(x) = ¢ then u satisfies

(4.13) —Au+ut = (N—2)|S¥" Y ¢d,

in #'(€2) (and this i1s general under the hypothesis (2.1)). Moreover, a crucial
fact about strong singularities for solutions of (4.1) is that they are always
obtained as the upper limit of solutions with a weak singularity (and fixed
boundary value for example).

As we have seen in the introduction it is clear that all singularities are
not necessarily isotropic when 1 <g <(N+1)/(N—1); but when (N+1)/(N
—1) £ g < N/(N—2) they are isotropic and we prove it:
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THEOREM 4.2. Suppose

N+1 N
<g< s, N2,
N-1 N-2

and ue C*(Q) is a solution of (4.1) in ©'. Then we have the following as x
tends to 0:
(i) either |x|*3~Vu(x) converges to +1I,y,

(i) or u(x)/u(x) converges to some real number ¢ which can take any
nonzero value,

(ili) or u(x) admits a finite limit and u can be extended as a C? solution of
4.1) in Q.

Proof. Step 1: We claim that
(4.14) Hm r¥" Hfu(r, ) =@l 2 gv-1, = 0,

r—0

with the usual notation. For that we consider the following change of
variables and the unknown function:

2/(g— 1)
4.15) ﬁ—2gj——1—N s=ﬂ, v(s, a)=(~;;) ! u(r, o).

1 B
The function v is bounded from Lemma 4.2 and satisfies
Fv By
(4.16) sz-a—sz—+—%v2—+PASN_lv=v|v|“_l
in (0, B7'3 xS L. If we set w=0v—7, we have as in Theorem 1.1
62
@1 s> [ w da+ UV -N+1) | w?
sN-1 ﬁ sN-1
[ wpr =t Y)ds.
SN-]

As ¢ = (N+1)/(N-1), B3' < N—1. Moreover,

j W(U|U|q—l—v|ul"_')da= J‘ w(vlvlq—l_ah—)lq—-l)do_
sN-1 gN-1
227 [ W do,
sh-1

so we get
dzl

@18) - [ wis,')do>sTPCg, N)( | wi(s,)da)fet 2,
ds sN-1 sN—1

Hence the function s I—PISN_ . w2(s, -)do is convex. As it is bounded it admits -
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a limit as s tends to 0. Integrating (4.18) twice shows that the only admissible
limit 1s 0 and we get (4.14).

Step 2: End of the proof. From Theorem 1.1, u(x)/u(x) admits a limit in
Ru{—o0, +00}. If the limit is + o0 (or — oo in the same way), it shows that
u(x) has a constant sign near 0; we apply Theorem 4.1 and we get (i). If the
limit is finite we end the proof as in Step 3 of Theorem 4.1 and we get (i) or
(1)

Remark 4.2. We can estimate the speed of convergence of |x|?“@~ D y(x) to
I,y when 1 <gq < N/(N—2) and u is a solution of (4.1} with a strong positive
singularity at 0. In [22] it is proved that
(4.19) lim sup x| 77 |l x— XI¥9" P u(x)| < + o0

x—0
where © is defined in Lemma 4.2, This number t (which is positive) is the
generalized Sommerfeld exponent. It was discovered by Sommerfeld [15] in
studying radial solutions of the Thomas—Fermi equation (N =3, ¢ = 3/2, I
=144, 2/(q—1) = 4, t = 3(./73+7)). This exponent 1 is optimal (Hille [10]).

A nice extension of the classification results is done by Yarur [28] for
singular solutions of nonlinear stationary Schrodinger equations of the type

(4.20) Au = |x|°ulu?" !,
her paper also contains many other results concerning symmetry, asymptotic
behaviour and estimates in the linear case.
Remark 4.3. An interesting result would be the classification of the
isotropic singularities of the following weakly superlinear equation:
4.21) Au = u(Log u)*,
a > 0, which can be written as
4.22) Av+|Dy|? = v*

on setting v = Log u. A critical case should be a = 2.

5. Nonisotropic singularities in the power case

As is seen in the introduction, nonisotropic singularities of solutions of (4.1)
do exist when 1 <qg <(N+1)[(N—1), since they can be obtained from
formula (0.13). In this section we prove that if N =2 all the nonisotropic
singularities are of the form (0.13) up to a rotation. The methods used to get
this result are those of dynamical systems theory and are based on a
complete study of the set & of solutions of the following equation on S':

2

d*w 2\
- - a-1 _ (_©
(5.1) 102 +o|o) (q—l) w
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(see Appendix). We prove the following

THEOREM 5.1. Assume Q = R?, q > 1 and ue C1(') is a solution of (4.1)
in . Then there exists a solution w of (5.1) and an application «: (0, 1]
— SO(2) such that

(5.2 C lim (6 D u () — e a (X)) (x/1x])) = 0.

x =0
We assume again Q o B,.

LEMMA 5.1. There exists a constant C = C(q) > 0 such that for any x, 0
<|x| < 1/2, we have

(5.3)

+p
’ F <C|x|—2l(q—l)-a—ﬂ,

@f,;(x)

for a20, 20, 0<a+f<3, 1<€i,j<g2
Proof. When a+ B =0, (5.3) reduces to

(54) lu(x)| < Clx| =27 D,

which is known (see Lemma 4.2). Set I'={x: 1 <{xj <4} and Iet
®eCE (N N C°(IN be a function satisfying

(5.9 —AP+ PP =0
in I'; @ belongs to C*(I') and from (5.4) there exists C = C(q) such that
Fd ’
. <C,
(5-6) Ox¢ 0xf )

for 1<i,j<2 1<a+p<3and 2<|x| <3. Fix x4, 0 <|x,) < 1/2. There
exists B < 1/6 such that 28 < |xo| < 3B. For yeI set ®,4(y) = p9~Vy(By);
@, satisfies (5.5) in I' so [D®s(y)l < C for 2 €|yl < 3. But

D@, (y) = p™ 14~ Du(By),

Xo 3\t ig-1) (xo)
Do (— < (—) Do, | —
s ﬁ) |Xol ’\ B

which implies (5.3) for a+p8 =1. We do the same for a+ 8 =2 or 3.
Using polar coordinates (r, 6)e(0, 1] xS' we set

so we get

(5.7) |Du(xo) = p~a+Wa-1

k4

4réla-1

(5.8) t= Log(

), v(t, 6) = ra=Dy(r, 6).

The function v is bounded and satisfies the autonomous equation

4 V2 (Pv 2 Vv _
(5.9) (q—_—l) (5?4'"-3?)4" (q—l) v+602 =plyf?
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in [a, +00) xS', a = Log(4/(g— 1)). Moreover, thanks to Lemma 5.1 the sets
of functions {v(t, *)};z4, {(B/O)(, )}i2a (P v/0P)(t, )}, are bounded in
C3(S'), C*(S") and C*(S") respectively.

LEMMA 5.2. The function dv/dt belongs to H?(a, + o0; L*(S")).
Proof. We get from (5.9)

) (1G5 )aep ) oqe 5 G

= _‘.U’Ulq_l%dg.
If we set st

(5.10)

w12 8 ()
Live =In{( )+q__'| Tg-12" (4—1)2(9')}d9’

then we have

d 4 ov
(5.11) L@, ) = (_1) I(az) de.
As v, dv/ot and Ov/8 belong to L¥((a, + o) xS') we first get
(5.12) j j( ) dodt < + 0.
a gl

We also get from (5.9), on setting w = ov/cr,

4 \2/*w ow 2 \? Pw -1
(513) q——_l ?“'3{ + E:T W+W=qWIU| ’

which implies

4 aw aw d

Loe, )= (AH(Y_ 2 8 (@)2},,9
Lt ’)‘Sjl{z(ao) @-0" - \a ) T

Moreover, for any n > 0

where

1 ow\? n
<= ({22} a0+ Tu2e-2, [ w2de
I 2'13{(3') M |
As L(v(t, -)) remains bounded we deduce for n large enough

2
(5.14) | ; ) (aa 2) d0dt < + 0.

a gl

22 - Banach Center t. 19
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From (5.13) we also get
4 2  [(Pw)? 8 d . [ow\? 2\ iw
T - Vdo+—— = ¢ (ZZ = hid
(q—l) Sfl(ﬁtz) +(qv—l)2 dt Il(ﬁf) d9+(q—1) sjlw a7 %

w Pw P w
d6 = =149,
55969& ”“’azl of?* = db

By the Cauchy-Schwarz inequality we have for any T > a

() £ (5 ) o 1 (G woore i 1 (3) ]
() LG e (G o] L5 ame],

(q—l)ZI j( )zded:w} [ w2dodt.

a gl a gl

Hence we deduce

(5.15) j f (

a gl

2
) dfdt < + o0,

from (5.12) and (5.14).

Proof of Theorem 5.1. The set of functions {v(, *)},», is bounded in
C3(S') hence relatively compact in C2(S!). So there exist we C2(S') and a
sequence {t,} going to + oo such that

lim v(t,.") = w(")

=™

in the topology of C?(S!). From Lemma 5.2

) v
(5.16) 'll_.lgﬁ(f, ')—lETwF(I,‘)=O

in L*(S!). Going to the limit in (5.9) we deduce that @ belongs to the set & of
solutions of (5.1). Moreover, from (5.11) the function L is nondecreasing and
bounded so there exists !/ such that
(5.17) I = L{w) = lim L(v{t, *)),

[ B o}
and for any other convergent subsequence {v(t,, -)} with limit @’ we have
L(w) = L(w’). Moreover, a direct computation gives

1-
5.18 L(w) = *+140.
(5.18) @ =34t l)sjl |l
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Applying our guantification-exclusion principle (see Appendix, Proposition
7.2) we deduce that © and ' must belong to the same connected component
of & and as any nonconstant connected component &, of & is generated by
one clement w, as follows (see Appendix):

(5.19) & = w01, 0,01,(0) =w,(0+a), 0, xeS},
we deduce the theorem.

Remark 5.1. When g > 3, & reduces to {0, (2/(g—1))?, —(2/(¢—1))*} and
the action of SO(2) on each component of & is trivial.

If Q < RN, N > 3, a great part of the previous computations can be done
and we know that |x|?“~ 1y (x) approaches the set &y of solutions of

(5.20) —Apy_ o+l =i o

What is missing is an exclusion principle as in Proposition 7.2. Moreover,
the description of &y should be of great interest in itself. Let us mention now
two very natural and interesting open problems concerning Theorem 5.1:

(i) What happens when |x|?“~Du(x) goes to 0? weak singularity?

(1) Does any solution of (4.1) converge really to an element of &
(or &y)?

6. Symmetry and broken symmetry of singular solutions

Some important and deep results concerning symmetries of positive solutions
of semilinear elliptic equations in a ball have been given by Gidas, Ni and
Nirenberg in their celebrated paper [7] and extended to singular solutions in
RY in [8]. Our goal here is to give another approach to the symmetry
problem concerning the singular solutions of

(6.1) du=g() in B,—{0},

when ¢ is a nondecreasing function. Letting (r, ) be the spherical coordi-
nates in B,, re[0, 1), e S" !, u(x) = u(r, 0) and i(r) the average of u(r, *)
on S¥~!, our main result is the following (Véron [25]):

THEOREM 6.1. Assume g is a continuous nondecreasing function and
ue C*(B;— (0))nC°(B,—10}) is a solution of (6.1) in B, —{0). Then u is
radially symmetric if and only if u is constant on 0B, and there exists a sequence
'r.) converging to 0 such that

(6.2 fim P~ (e )~ F M 2gn-1, = 0.

rp,—0

Proof. In one direction this is obvious. Now we set w(r) = |lu(r, -)



—u(nll 2sn-1, and

2 —_— [
63) | waar;vda+N Lt w6 -N2 1 wraeso.

sN-1 FoogN-1 or o ogN-1

If X(r)=\w(r, N 25v-1, and I = tre(0, 1]: X (r) > 0} then

d*X N-1dXx N-1
A
holds on I. Moreover, X(1) =0 and if r’~! X(r,) = ¢,, then lim,_ ¢, = 0.
Comparing X with ¢,(r,/r)" " which satisfies the differential equation asso-
ciated to (6.4) on [r,, 1], we get X (r) < ¢,(r,/r}" "', which implies X (r) =0
for r >0 as n tends to +20 and u(r, *) = u(r).

(6.4) X>0

Remark 6.1. The conclusion of Theorem 6.1 is valid for any solution of
(6.1) in R¥— {0} provided we have for some sequence {r,} converging to + o

(6.5) im r, ' lu(r,, ')‘17("")||L2(3N—1, =0.

n—+ o
As a consequence, for regular solutions of (6.1) in RY we have the following
Liouville-Hadamard type result: if ue C*>(R™) satisfies (6.1) and

lim u(x)/|x]=0

|x| =+ a
then u is constant.
We can now give applications of Theorem 6.1 when g has a power-like
growth.

COROLLARY 6.1. Assume g is a nondecreasing continuous function such that

(6.6) lim |g(r)|/irf™ V=D = ce(0, 4+ 0]

el =+ 2
and ue C*(B, — {0}) nC°(B, — {0}) is a solution of (6.1) which is constant on
¢B,. Then u is radially symmetric.

Proof. We first recall the following a priori estimate for any function ¢
belonging to C%(R" —{0}) satisfying

(6.7) —Ap+Ap*>2B ae. on {x: ¢(x) >0}
in R¥—10} where ¢ >1, 4> 0 and B > 0: for |x] >0 we have
(6.8) @(x) < (@/A)19™ Vx|~ 24" 4 (B/A)'Ne,

where a = a(N, g) (see [25, Lemma 2.1]); and if (6.7) is satisfied in B, — |0!
then (6.8) still holds provided 0 <|x] < 4. As a consequence, if g satisfies

(69) lim |g(A/IA™* ¥ = oo,

el #+ o
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we deduce lim, _|x|¥ ™! u(x)} = O which implies (6.2) and u = ii. So we are left
with the case

610)  Lim g@)rNTUMTD = — fim g™ Y,
r++ o r—=— o
and 0 <c¢ < + . Moreover, there is no loss of generality in supposing g(0)
= 0.
Step 1: Assume ve C?(R"—{0}) is a solution of

(6.11) Av = p|p)2N-D

in RY —{0}. We theq claim that v is radial. From Theorem 4.2 we know that
either |x|¥ ™! v(x) converges to +(N—1)*~ 2 or p(x)/u(x) converges to some
real number ¢, but in any case

(6.12) im ! lo(r, ) =B (|

r—0

0.

L2sN-1, =

From estimate (68) with A=1 B=0, g=(N+1)/(N-1) we get
lv(x)] < (@?/]x)¥@"V for x > 0, which implies (6.5) and v = b.

Step 2: A scaling method. Set ¢, = 1/n and v,(x) =¥~ 'u(e,x). From
estimate (6.8) we have

(6.13) o, () < K|xj* 77,

for 0 <|x| <1/(2¢,). Moreover, v, satisfies

(6.14) Av, =gy 1 gles ™V v,)

in #,—{0} = {xeR": 0 <|x| < 1/¢,}. From (6.10) we have

lg(M) < 2™+ WN-D 44 (d constant),
SO

(6.15) 1 1g(ed ol < 20K VNV 1Ny g,

From the Rellich and Ascoli-Arzela theorems there exist a subsequence {s,,k}

and a function ve C' (RY — {0}) with 4v locally bounded in R¥— {0} such that
{vn,} converges to v in the C' topology on any compact subset of RY— 0},

and also a fun®tion y measurable and locally bounded in R"— {0} such that
for any ¢pe 2(R"—{0})
(6.16) im e 'gles "v)odx= | yodx.
nk—'+ [+ o] RN "N
Now we define

6.17) E* = {xeR*: v(x) >0}, E~ ={xeR": »(x) <0},



342 L. VERON

and E°=R"—-{E* UE"}. If xeE" (resp. E™) then

im en v, (x) = 400 (resp. —o0),
nk—-uo
lim Xt tg(el Vo, (x) = c(u()FHIN-D (resp. —clp(x)VHAN-D),
L g &
So v satisfies
(6.18) v = ”IUIZ/(N_”XE+UE- +¥ X0

in .@;(RN —{0}), where x, is the characteristic function of a measurable set Q.
But by g(0) =0 and (6.10), for any ¢ > 0 there exists C(¢) such that

(6.19) g (A} < C () [N+ V- 4 g

for any r, which implies Y *!|g(el Vv, < C(e) o JN¥T VNV ie As
im [0, (NTNTDy 0(x) =0 ae,
n ~+ o

we deduce that for any ¢pe %' (RY—{0}) the following inequality holds:
(6.20) lim {eptigles M) edx <e § pdx.

np —~+ ® E© £O
So [lYxgol@dx <e jqodx which implies V¥ oll, w,qn, < & As ¢ is arbitrary,
Y1 =0 ae. and v satlsﬁes
(6.21) Av = p|p|HN-D

in 9'(RY—{0}); moreover, ve C*(R"— {0}) from elliptic equations theory.

Step 3: End of the proof. From Step 2, for any compact subset K of RY
— {0} we have

lim v =0.

llk"‘+w
Taking K =S¥~ ! we have

im {en ' ule, x)—v(x)) =0
m—+ @

L/ - U”LCD(K)

uniformly on S¥~!. From Step 1, v is radial, v(x) =#(1). So in polar
coordinates we have

(6.22) ,.kli[fm“'s'};‘_ fulen, ) =TIl wgh-1, =0,
which implies
nklirilm si_ 1 “u (snk, ')_ﬁ(snk)“l_m(sh’— 1) = 0

and v = i from Theorem 6.1.
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COROLLARY 6.2. Assume 1 <gq <(Nj~ 1)(N —1) and u is a nonnegative
solution belonging to C*(B,—{0}) " C°(B,—{0}) of

(6.23) Au = 4.
If u is constant on 0B, then u is radially symmetric.

Proof. According to Theorem 4.1, either u has a strong singularity at 0
or lim, .o u(x)/u(x) exists in R. In the second case (6.2) is satisfied and u is
radial. So we are left with the strongly singular case. Thanks to Remark 4.2
we can estimate the speed of convergence of |x]*@~Yu(x) to [ y (see (4.19))
and we have

(6.24) rN—l ”u(r’ ')—a(r)llLGO(sN—l) < Clxlt_zl(q_IHN_l.

Computing 1—2/(g—1)+N—1 = o yields

N 1 g+1\* 29
=4~ [IN=2") +8(—L—=N.
’ 2+2\/( q—l) (q—l )

So 6 >0 and (6.2) is satisfied.

Remark 6.2. Corollary 6.2 can be extended to a more general nonlineart-
ty by supposing that u is a nonnegative solution of (6.1) and g satisfies

(6.25) g(r) = cri+o(ra~ DN+ b2

with ¢ >0 and 1 <g <(N+1)[{N—1) (see [25]). However, in the linear
case (g =0 or 1) all nonnegative solutions of (6.1) in B, —{0} which
are constant on 0B, are radial. It is an open question whether that result still
holds when g is a nonzero nondecreasing continuous function. In [25] we
also give uniqueness results concerning singular solutions of (6.1) and (6.24)
in B,—10} or RV {0},

In the next result we prove the existence of solutions of (4.1) with a
breaking of symmetry. For simplicity we consider the 2-dimensional case.

THEOREM 6.2. Assume N =2 and | < q < 3. Then their exists a solution
ue C*(B,—1{0}) of (4.1) in B,~{0} vanishing on 0B, which is not radially
symmetric.

Proof. Let @ be a nonconstant solution of (5.1) with period 2n/k and
anti-period n/k (w(0) = —w(2n/k—86), Oe[0, 2n]), so w vanishes for 0 = 0, n/k,
2n/k, ..., (2k—1)n/k. For ¢ > 0 we let u, be the solution of

Au, = u, ju, 97! in g <|x] <1,
(6.26) u,(x) = 0 for x| =1,
u(x) =& 29" V(x/x]) for |x| =e.

The function u,(r, 8) vanishes for 6 =0, n/k, ..., (2k—1)w/k. For 0 <n <g¢
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we can compare u, and u, in {(r, 8): e <r <1, 0 <@ < n/k} supposing for
example (@) >0 for 0<@ <mk. We first notice that u,(x)
= |x]” ¥4~ YV (x/|x|) satisfies (4.1) in {(r, 6): n <r <1, 0 <0 < n/k}; moreo-
ver, it vanishes for 8 =0 and 6 = n/k and is positive on the two other
boundaries {(r, 0): 0 <6 < m/k, r=1} and {(r, 6): 0 <6 <nfk, r=¢}. As a
consequence, u,(r, 0) < u,(r, 6) in that sector and in particular

U, (€, 6) < u,(e, ) = 29~V ().

Comparing u, and u, in the sector {(r,8): e <r <1, 0 <0 <nfk} we get
u, < u,. As ¢ goes to zero |u,(r, 0)] decreases so u, converges to some
ue C*(B,—10}) and u is a solution of (4.1) in B, — {0} which vanishes for |x
=1 and for 6 =0, n/k, ..., (2k— 1) t/k. The only problem is to show that u
is not identically zero. If we set

(6.27) § = m,

(s, 8) = r2@= Yy (r, 0),

then v, satisfies

4 \* , %% 2 V2 v
i -t _ q-1
(6.28) (4—1) i +(q_1) Vet gz = Lelvd

in (s, (g—1)/4] xS, with s, = ¥4~ V/[4/(qg—1)]. Moreover, v,(s, 6) vanishes
for s =(g—1)/4 and coincides with w(f) for s =s,. Moreover, 0 <uv,(r, 6)
<w(f) for s, <s <(g—1)/4, 0 <8 < n/k. We set
n/k
X.(5)= [ v(s, Ow(0)db

0

and we have
4 \? d*X 2 \? vk 4w n/k
2 ‘4 X —dé = 140,
(q—l) S s (q—l) o+ vl

Using the fact that o satisfies (5.1) we finally get

nfk

4 2 d2x£ _ _
(6.29) (q_l) Soa = £ v, (|0|*" " —|wf*” ) 6.

®fk
Hence X, is concave on [s,, (¢—1)/4] and X,(s,) = | w*db, X,((q—1)/4) =0.
1]

As a consequence,

£—0 0 q— 0

rfk 4s \ Nk
lim X,(s) = X(5) = [v(s, O)wdb > (1——1) | w?db.

and u is not the zero function.
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7. Appendix. A nonlinear eigenvalue problem on S'

A keystone tool for proving Theorem 5.1 is the description of the set & of
solutions of (5.1) and the exclusion principle corresponding to the energy
function associated to &. We extend our study to the following more general
eigenvalue problem on S' (see Chen, Matano and Véron [30]):

2

(.1 T de?

+g(@) =
where g satisfies:
(i) g is a C! odd function,
(1) dg/dr is increasing on [0, + o) and vanishes only at O,

(i) lim (9(r)/r) =

We write G(r) = [g(s)ds, and h is the inverse function of the restriction
0
of s—g(s)/s to [0, +0). Let & be the set of solutions of (7.1).

ProrositioN 7.1. If A <0, &, reduces to the zero function. If 0 <1< 1,
&, only contains the three constant functions 0 and +h(A). If A > 1, &, has

F (\//_1)+3 connected components S, (where F(r) is the greatest integer strictly
less than r). .
(i) So reduces to the zero function,
(i) S, (resp. S;) reduces to the constant function h(4) (resp. —h(4)),
(1) for 3I<k<F (\/I)+ 2, S, is the closed curve generated by a particu-

lar solution w, of (7.1), with minimal period 2n/(k — 2), in the following way: S,
=l (" +a), ae[0, 2r/(k —2))}.

Sketch of the proof. Step 1: A< 1. Set @ =(2n)™ ' | @ (8)df. We have
from (7.1)

[-&)+ {(g(w)—g(@))(w-d)dd <A | (0—d)*do.
st s1 st

As [ (0—@)(g(w)—g(®))d >0, © must be constant. If A< 0 the only

admissible constant is 0 and for 0 < A <1 we obtain S,, S, and S,.

So we now suppose A > 1. It is moreover clear from periodicity condi-
tion that any nonconstant solution of (7.1) must vanish somewhere, say at 0,
where the derivative is not zero. Let w be a nonconstant solution of (7.1)
such that

do
(7.2) w(0)=0, E(O) =a>0.
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Step 2. For some interval (0, €), ¢ > 0, @ is increasing and

1d (do\ d i,
so dw/dd = /a?+2G (w)— Aw? and
w(6)
(7.4) 9= ds

cj, JO+2G (w)— Aw?

Moreover, formula (7.4) remains valid as long as w(f) remains smaller than
the first zero of the function r =y (a, r) = a® + 2G(r) — Ar?. As ¥ (a, -) strictly
decreases on [0, h(4)] we have three possibilities:
(i) a® > Ah*()—2G (h(A)),
(ii) a® = Ah*(A)—2G (h(%)),
(iii) a® < Ah?*(A)—2G (h(A)).
In cases (1) and (ii), w could not be 2n-periodic so we are left with (iii) where

the function r—y(x, r) admits a simple zero in (0, h(4)), say s(x). As
(Oy/0s)(a, s(a)) # O we define a finite number 6(x) by

s{a) d
(7.5) 8(c) = g \/—M_i—?)

Morevoer, (6 (x)) = s(x) and (dw/df) (6 (x)) = 0. We continue our integration
procedure on (6 (a), 6(x)+¢) where w decreases and

dw

(7.6) -5 = ~ V& +26 (@) -,
since a® = As? (@)~ 2G (s(a)), which yields
s(a) ds
(7.7) 0—0(@)=— [ —.
wi‘.e) VYU (a, s)
If
©OD  gg s(@ ds
0= [ ———., 60,=20w-0,, 6,-0@= [ ———
o ll’(av S) w(fd5) \/m
then
w(fq) - sla@) d s(a) d
B(a) _ ds S s

—_—_ = [ —
g v d’(a, S) "’(£2)V III(C!, S) t[ vV '#(a, S)

and w(d,) = w(0;). Hence w admits 26(x) as its smallest anti-period and
40 (x) as its smallest period. The necessary and sufficient condition for 2n-
periodicity is that =/(20(a)) must be a positive integer. We are now left with
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the study of the function «+—60(x) under the condition
(7.8) 0 <a? <Ah*(A)—2G(h(A) = T*(4).

Step 3: We claim that a+>s(«) is increasing and convex on [0, T(4)).
From the implicit function theorem s(a) is C2. Moreover,

d d
2 (e 5(@) = o, s(0)+ @) (o, s(00) = O
SO

ds o
79 — = )
(79) @ = -9

As s(a) < h(4), a—s(a) is increasing. Moreover, a straightforward computa-
tion with the use of (7.9) yields

Js (As(oz)—g(s(az)))z—oz2 (l—i—‘(’l_(s(a)))
(7.10) “5 @)=
do (As(@)~g (s (@)

and the sign of d?s/dx® is the same as that of

b

t(s) = (As—g (5)* —(As% — 2G (s)) (A—%(s)), where s = s(a).

A miraculous computation gives

d d?
! 2 sf (s(w).

I(s(a))=a el

As 1(0) =0, 7 is positive on [0, T(1)).

Step 4: a—0(a) is continuous and strictly increasing on [0, T(4)). We
recall that

s ds
0(x) = .
g\/az +2G (s) — As?
For ue[0, a], the function u — (u, s) admits a first positive zero at s(u) and

¥ (o, s(u)) = a?—u?. As a consequence,
q

2 ds du Lds do
(7.11) 9(a)=£3;(u)—;‘—2 ‘];E

As ds/du is an increasing C' function the same is true for 6.
Step 5: End of the proof. As lim, os(a) =0, we have

G(s(@) _
a?(;l s* (@) =0 and al0 & ﬁ

im0 ]
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(by (7.9)) and
(7.12) lim 6 (x) = r/\/A.
20

Moreover, lim, 1, s(@) = s(T(2)) = h(1). As h(4) is a zero of Y (T(4), s) of
order at least two there exists a continuous bounded function Q such that

(7.13) T2(2)—As2+2G (s) = (s(T(4))—s)" Q(s),
0 S(T(A)) ds

7.14 li

(714) o, )2 (s(T(A))-s)\ 06

Hence the function 0 is a continuous bijection of (0, T(4)) onto (m/(2 ﬂ),
+o0) and a —n/(20(2)) is a bijection of (0, T(4)) onto (0, /4). Moreover, in
the interval (O, \/2) there exist F (\/I) nonzero integers k, 0 <k < F (\/Z),
which all generate a solution @, of (7.1) with minimal period 2r/k and such
that @, (0) =0, (dw,/d6)(0) = a, .

We can now prove the following exclusion principle:

ProposiTION 7.2. Let [ be a continuous even function increasing on [0,
+o0) and w, and w, two solutions of (7.1) which do not belong to the same
connected component of &,, one of them being different from +h(A). Then

(7.15) | f(w,(0)d6 # jf (w, (6))d6.
51

Proof. If w is any nonconstant solutlon of (7.1), then |@ ()| < h(4) on §!
and

(7.16) 251 (0) < [ f(0(6))d6 < 2nf (h(A)).
Sl

Moreover, @+ [, f(w(6))d6 is constant on each connected component of

&;- As w,; and w,; do not belong to the same connected component and are
not constant we can assume w, (0) = @,;(0) =0, (dw,/d0)(0) = a, (dw,/dO)(0)
=f and 0 <a < f; ®, is 46 (a)-periodic, @, is 46(f)-periodic and we have O
<f(x) < 6(B) and

n n

=k — =k .
29(“) 1> 20(ﬁ) 2> kl’kZGNv kl >k2>0

(71.17)

Step 1: We claim that 0 < w, (6) < w,(6) holds on (0, 0{x)]. The relation
is true for 6 small enough. Suppose now that there exists 8, € (0, (a)) such
that w, (00) w5 (90) H. Then (dwl/dG) (Bo) Z (dwz/dG)(go) or
(7.18) VR +2G ()=t = /B 426G (-,

which is a contradiction.
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Step 2: End of the proof. We have 0 <w,(0) <w,(¢) for 8 <¥,
0 <0 <0(x), 0 <8 <0(B). Let p be the lowest common multiple of k, and
k,. There exist integers n,, n, such that n, k, = n,k, = p and n,/0(a) = n,/6(p)
so 0 <n, <n,. We also have

2 Ha)
(1) f f(wl(e))de = 0( ) 4 f f(wx (9))d9
(7.19) st
i 9))do = 2 mf) flw,(0)d
(1) S‘; f(wz( 9(p) . 2

Set T = n,0(x) =n, 8(B); then

T T @)as 2—;‘, ]/ (01 (e/ng)do
2 4B
b | @00 = jf(wz(a/n,))
As o/n, > o/n,, we have w, (o/n;) < w,(a/n;) which yields
(7.20) ij [ (w,(0)do < sjl f(,(8)d6.

Remark 7.1. As a consequence, the function defined on H'(S') by
(7.21) J(p =1 j (dv/d0)* dO + j G(ydo-42 f y2do,
s1 s! sl

whose critical points are the solutions of (7.1), admits F (ﬂ)+2 different
critical values: if we & we have

(7.22) J(@) = | (G(w)—3;wg(w)dd

s!
and the function r—3rg(r)— G(r) satisfies the hypotheses of Proposition 7.2.
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