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This note gives an overview on the main results in the subject of tame orders,
ranging from oldest, by now classical results, up to most recent, yet unpub-
lished developments. It stresses historical aspects and puts particular emphasis
on reductions, induced problems, the classifications and their different nature.

The following topics are being presented: Nazarova’s classification of the
indecomposable 2-adic representations of Klein's four group; a general
reduction principle and its application to Bidckstrom orders, leading to
a characterization of tame Bickstrom orders; Yakovlev’s classification of the
indecomposable 2-adic representations of the cyclic group of order cight;
classification of tame local group rings over complete discrete valuation rings;
complete local rings of curve singularities viewed as orders, and recent progress
in the problem of classifying all tame curve singularities.

1. Introduction

The following framework will be valid throughout this note. We always have
a ground ring R which, by assumption, is a complete discrete valuation ring. By
an R-order we mean an R-algebra which is finitely generated free as an
R-module. With any R-order A there is associated the category lattA of
A-lattices which is, by definition, the full subcategory of the category of all left
A-modules, given by those modules which are finitely generated free over R.

Any A-lattice decomposes into a finite direct sum of indecomposable
A-lattices. Since our ground ring is complete, this decomposition is unique, in
the sense that each lattice uniquely determines the isomorphism types and
multiplicities of its indecomposable direct summands. Therefore many ques-
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tions on the lattice category lattA are reduced to questions on its full
subcategory ind A, given by all indecomposable objects.

A problem of interest which arises here is the problem of classifying all
indecomposable A-lattices, up to isomorphism, the so-called classification
problem of A. In this note, we are concerned exclusively with orders whose
classification problem is of infinite type, but nevertheless is solved. In other
words, there exist infinitely many isomorphism classes of indecomposable
lattices, and these are completely classified. It turns out that these clas-
sifications share the common phenomenon that for each deN, almost all
indecomposable lattices of rank 4 occur in a finite collection of one-parameter
families of indecomposable lattices of rank d, up to isomorphism. Orders whose
lattice categories show this phenomenon are called tame orders.

This description needs some supplementary explanation. Denote by
[ind A] the set of all isomorphism classes of indA. By a classification of ind A
I mean a set of invariants /, usually consisting of a discrete and a continuous
part, together with a bijective mapping (: I—-[indA] which has to be
constructive in both directions. Moreover, let k be the residue class field of R,
let .# be the set of all normed irreducible polynomials in k[X], and set
F ., = Fu{w]. Then, by a one-parameter family of indecomposable lattices of
rank d I mean an .#_-family (M), of pairwise nonisomorphic indecom-
posable lattices, such that rank(M,) = d-deg(p).

Our knowledge of tame orders is still very restricted. For example,
classifications of tame orders exist only with reference to very special classes of
orders, such as group rings, Backstrom orders, or curve singularities. Actually,
the class of known tame orders is rather small, and 1 conjecture that the
multitude of those tame orders which are not yet understood exceeds by far the
collection of those for which we have some insight. Accordingly, there is not
much of a theory on the subject of tame orders. Instead, there are some
scattered results, some stray approaches towards the classification problems,
and certain typical phenomena showing up repeatedly and in various disguise.

In this vein I will present some of the main results. Hopefully they will
become transparent for typical ideas and characteristic phenomena, among
which I count the reductions, induced problems, the classifications and their
different nature.

The following notation will be valid throughout: n is a chosen parameter
of R, and k= R/n. More generally, R, = R/a', where [eN. Moreover,
K = fract(R), and 4 = K®yA is the finite-dimensional K-algebra generated
by A. In most of the cases to be considered, 4 will be separable. We denote by
# the set of all normed irreducible polynomials in k[X], and we set
F o = Fu{wo}. As to k-matrices, @, denotes the Frobenius matrix of a polyno-
mial fek[X], and E is the identity matrix. If C is an object in a category €,
then [C] denotes the isomorphism class of C, and [%4] denotes the collection of
all isomorphism classes in 4. -
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The present note is an elaborate version of the series of talks which I gave

at the Banach international mathematical centre in Warsaw during the last
week of the semester on representations of algebras, in May 1988.

2. The group ring A = Z,(C, xC,)

Historically, this group ring is the first example of a tame order. Its
classification problem was solved by Nazarova in 1961. Here I will present two
solutions. First, I sketch Nazarova’s approach [Na61], [Na67].

First solution of the classification problem of A

Consider for the moment an arbitrary complete discrete valuation ring.
We define a particular R-order I' upon setting

4
I = {("p o Tg)E H Rl.irl =...=r, (modn)}.
=1

In the language of the sixties, this order is called the tetrad. Analogously one
defines the dyad, triad, quintad,... by taking a different number of copies of R.

Moreover, I quote a result due to Faddeev [Fa65] and Roiter [Ro66]
which is as useful here, as it is of independent interest.

THEOREM. If A is a local Gorenstein order which is not maximal, then there
exists a wuniquely determined minimal overorder A, of A, and [indA]
= [ind A,]O[A4].

The existence of a minimal overorder is a triviality. The point is its
uniqueness, together with the fact that the corresponding lattice categories are
as close to each other as they possibly can be.

Now we turn to the group ring A = Z,(C, x C,). Being a group ring, A is
Gorenstein, and the group being of prime power order, A is local. Hence we
may apply the above theorem, and it turns out that the unique minimal
overorder A, of A is the tetrad (with ground ring Z,): A, =I'c [, Z,e,,
where ¢, ...,e, are the primitive orthogonal idempotents of A = Q,(C, x C,).
Thus, for classifying ind A it is sufficient to classify ind [

We proceed towards the classification problem of the tetrad (for arbitrary
ground ring R), now forgetting about the group ring A. From the definition of
I' it is clear that e;¢ I, but ne,el’, for all i. Further, it is easy to see that

Inle;+ey) = A= TI/nley+e,),

where A4 denotes the dyad. With any MelattI’ we associate
L= {meMin(e,+e,)m =0} and N = M/L. Both L and N are in latt4. Thus
we obtain a functor lattI’ - {(L, N, ¢)| L,N elatt4, ¢ Ext;(N, L)}, given on
objects by M+[¢: 0—- L — M - N — 0], which induces a bijection between the
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isomorphism classes of indecomposable objects of the related categories. The
dyad is well known to have only three indecomposable lattices, say S,, S,. S;.
Hence
3 3
Ext;(N, L) = Ext} (D S, @ SY) = k'™,

i=1 j=1
where [ =37 ([, and m =37 m,. Under this isomorphism, the action of
Aut,L x Aut,N on Ext}(N, L) corresponds to a system of admissible transfor-
mations on matrices in k'*™;

(a) arbitrary nonsingular transformations on each row strip and on each
column strip, and

(b) addition of arbitrary linear combinations of rows from the first and
second row strips to the third, and addition of arbitrary linear combinations of
columns from the first and second column strips to the third.

We indicate this in Fig. 1. In the combinatorial language introduced by

N

&
e e e e e
m, m, msy
Fig. 1

Nazarova and Roiter [NaRo73a], [Na78], this is the matrix problem which is
given by the pair of posets of Fig. 2. On setting {, = my = 0, one obtains as
a subproblem the matrix problem (o o, o o). This is the base-dependent
formulation for the classification problem of the quiver of Fig. 3 of extended

NN

Fig. 2 Fig. 3

Dynkin type A,,. Nazarova solves this subproblem in a first step, then inserts
the obtained normal forms in place of the submatrix, and accomplishes the
solution of the full-sized matrix problem in a second step. The resulting
classification is the [ollowing.



TAME ORDIRS 237

With any matrix M e k'*™ we associate its “rank”™ r(M) = [+ m. L is in fact
the rank of the A-lattice corresponding to M. Then:

(i) For each neN there is 2 one-parameter family of indecomposable

é,.E El®
tri f rank 4n, gi by 11—, Py peds.
matrices of rank 4n, given by HE ﬂ [E 51 Pe

(i) Let v: N> NuU{0, =} be the function which counts the isomorphism
classes of indecomposable matrices of a given rank which do not occur in (1).
Then 4 < v(r) <8, for all reN. Normal forms are also given [or these
indecomposable matrices (see [Na67]).

Let me summarize. In a first step, the classification problem of A was
reduced to the classification problem of I, by application of the Faddeev-
Roiter theorem. In a second step, the classification problem of I was reduced
to a matrix problem over k. This second reduction was based on the
observation that each I'-lattice is the middle term of a short exact sequence in
lattI”, whose end terms are lattices over a factororder 4. Moreover, the
classification of ind4 is known. The automorphism groups of the end terms
L and N operate on Ext;(N, L). and the isomorphism classes of I'-lattices are
in bijective correspondence with the orbits of Ext}(N, L) under this opera-
tion, where (N, L) ranges through a complete set ol representatives of
[latt A] x [latt A].

This basic idea for the second reduction is as old as integral representation
theory of finite groups. It has been used already in Diederichsen’s classification
of ind ZPC,, [Di40], as well as by various authors during the fifties. It has been
made explicit by Heller and Reiner [HeRe62]. Nazarova’s achievement is,
having used this tool successfully for the first time for the solution of a tame
classification problem.

The fact that, in our case, Ext}(N, L) is a k-vector space, is very special
and is due to the inclusions 7Q = I' = @, where Q = [[{-| R; is hereditary.
Note the general statement which does not depend on this special hypothesis:
If A is an R-order such that K®&gA is semisimple, then ExtL(N, L) is an
R-module of finite length, for all N, LelattA [Au84].

In the classification we encounter the basic behaviour of tame type:
a complete classification of all indecomposable lattices is given by a sequence of
one-parameter families, one for each rank re4N, together with an additional
sequence of finite collections of indecomposable lattices, one for each rank
re N, with cardinality varying between 4 and 8. All of these indecomposable
lattices are given explicitly, in terms of normal forms of k-matrices.

Second solution of the classification problem of A

Having sketched Nazarova’s original solution of the classification problem
of A, I will now outline a second way of solving this problem. It carries a more
modern f{lavour.
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Again, let I' be the tetrad over an arbitrary ground ring R. Let
Q=]]F:R, and # ==Q. Then Q is the unique maximal order in
A=K®gA, and ¥ =radQ = radl. Moreover, let Q be the quiver of Fig. 4 of

N

Fig. 4

extended Dynkin type D,, and denote by rep,Q the category of all those
k-representations of Q which contain no simple direct summand. Any I"-lattice
M generates the Q-lattice QM, where the extended scalar multiplication by Q is
defined inside the A-module K® ; M. The filtration #M < M < QM gives rise
to a functor lattl’ — rep, Q, defined on objects by M—[M/#Mc QM/ FM],
which induces a bijection between the isomorphism classes of indecomposable
objects of the related categories. The representation theory of Q is well
understood. In particular, the classification of its indecomposable represen-
tations [ GePo70] entails the classification of the indecomposable lattices over
the tetrad, respectively over A = Z,(C, x C,).

Let us review this section. The two solutions of the classification problem
of I presented above are based on two different reductions which lead to two
different matrix problems over k (see Fig. 5). This illustrates a general fact.

latt r

T

Fig. 5

Given an R-order A, there is usually more than one possibility to translate its
classification problem to a problem over k. Among these various reductions
there is no canonical choice. This fact can be uncomfortable as long as the
classification problem of A is unsolved. Namely, a chosen reduction may be
badly adapted to the nature of the particular lattice category and may contain
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unnecessary complications. On the other hand, this fact has an interesting
consequence as soon as the classification problem of 4 is solved. Because then
all the other classification problems which result {from other reductions are
solved as well!

Note that at the time when Nazarova solved the classification problem of
Z,(C, x C,), the representation theory of the quiver of type D, was not yet
known. This leads to a curious historical remark: The 4-subspace problem was
solved originally in disguise of lattZ,(C, x C,), respectively in disguise of the
matrix problem of Fig. 2 over F,!

3. Biackstrom orders

Having discussed the classification problem of a particular order, the tetrad, in
detail, let us now turn to a basic principle which allows one to reduce problems
on lattices to problems in finite length categories, and which works in great
generality. We begin with a definition.

An admissible triple (I, A, I') consists, by definition, of the following data:

(a) two R-orders A and I', generating the same K-algebra A, such that
AZ I, and
(b) a two-sided I'-ideal I such that I c radA.

Thus, with any admissible tripe (I, A, I') we are given the following
context of rings and ideals:

Associated with an admissible triple (I, A, I') there is a category
% = €440y and a reduction functor F =%, latt4—-% as follows.
Consider the functor % :=T'/I®,?: lattI’ > mod A/I, let lattI": = latt [ /ker.?,
and let &: lattI’ - mod A/I be the faithful functor induced by &. Note that &,
and therefore .#, factors through mod[l/I. Hence we have the following
commutative diagram of categories and functors:

latt I’ >4 —mod A/J

mod I/I

latt I
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To the faithful functor & we attach its subspace category sub¥’. This has
to be understood in the sense of the obvious generalization of the classical
notion of subspace category (as introduced in [NaRo73b]) which one gets
upon replacing modk by mod A/I. (In the important special case where A is
local and I = rad A, sub# really is a subspace category in the classical sense.)
We are in fact not interested in the subspace category sub % itself, but in the
full subcategory sub’ ¥ < sub’ which is given by the following condition. An
object (U, N, «) in sub% is, by definition, in sub’.% if and only if it satisfies
I'(ima) = ¥ (N), At last we define € to be sub’.#, and we define #: lattA - &
canonically by F (M) = (M/IM, I'M, «,,;: M/IM c I'M/IM). The significance
of all this is contained in the following proposition.

PROPOSITION. (1) For each admissible triple (I, A, I'), the functor % :
lattA —> % is an epivalence.

(1) For each nonhereditary order A in a separable K-algebra A, the triple
(rad A, A, C(rad A)) is admissible.

Here, by an epivalence we mean an additive functor which is dense, full
and isomorphism-reflecting. (The term “epivalence” has been suggested by
P. Gabriel. In literature, such functors are commonly called “representation
equivalence”. Yet the latter term is misleading as it suggests a symmetry, while
in general “representation equivalences” exist only in one direction.)

The proof of (1) is straighforward. Special cases of (1) are studied in
[GrRe78] and [RiR079]. Moreover, by ¢!(rad A) we mean the ring of two-sided
multipliers of rad A, i.e. ¢(radA) = {ac Ala-rad A+radA-a = rad A}, which is
by construction an overorder of A containing rad A as a two-sided ideal. Thus
(1)) amounts to saying that (’(rad A) contains A properly, which is known to be
true [Ja71]. _

Ol course, being an epivalence, # induces a bijection between the
isomorphism classes of indecomposable objects of the related categories latt A
and €. Moreover, if I is full in A, then A/l and I'/I are Artin algebras. In this
sense, (1) asserts that # 1s a good reduction functor, while (ii) indicates the
degree of generality to which it exists.

If we want to use this reduction, then we must continue working with %.
In general, this category is not at all easy to handle. (Even, maybe, in
representation-finite cases.) However, under suitable additional assumptions on
the admissible triple, there may be surprisingly neat interpretations of %. In this
respect, the simplest situation one may consider is when the admissible triple
(I, A, I') satisfies the following condition:

(B) I =radA =radrl’, and I is hereditary.

Admissible triples which satisfy condition (B) I call Bdckstrom triples, and
R-orders A which occur in a Béickstrdm triple are called Bdckstrém orders
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[RiR079]. It follows from (B) that a Bickstrom order uniquely determines its
Backstrom triple.

Suppose now that (I, A, I') is a Baickstrém triple, with associated
reduction functor % : lattA—>%. Then % has the following convenient
interpretation in representation-theoretical terms. First of all, the functor
& lattI’ > modI'/I is now an equivalence. (It is faithful by construction, full
because every I'-lattice is projective, and dense because I'/I is semisimple and
idempotents can be lifted from I'/I to I".) Consequently, the forgetful functor on
% which associates with each object (U, N, o) its linear map a: U g #(N) also
is an equivalence. Finally, this linear map can be viewed as a representation of
a species. This is most easily perceived in case A/l =]]i-,k and
/1 =151 k;. Here, evidently

U = Z(N)
I I
r s

@Uicﬂ,@ [/;
j=1

i=1

is a representation of the quiver

a b,
a, b,

— .
a b

where the arrows are defined by the rule a; 3 b;:<k,® ,k; # 0. The general
case is covered by replacing the quiver by a suitable species, upon attaching
skew fields to the points and bimodules to the arrows (see [RiRo79]).
Alhtogether we have, [or Bickstrom orders A, a sequence of two functors
lattA 5 € L rep;S, where S is the k-species associated with A, rep;S is the
category of all those representations of § which contain no simple direct
summand, and ¢ is the equivalence just indicated, while % is the epivalence
defined above. In connection with the well-known classification of tame species
[DIRi176] we obtain the following main result for Backstrom orders [RiRo79].

THEOREM. Let A be a Bdckstrom order, with associated species S and
underlying valued graph G. Then:

(i) There is an epivalence lattA — rep;S.
(i) A is tame and connected if and only if G is an extended Dynkin diagram.

Here, some overviewing remarks are due.

(1) The second approach to the classification problem of the tetrad,
presented in Section 2, appears now as a special instance of the above theorem.
It can be rephrased tersely as follows: The tetrad I' is a Backstrom order, with
Bickstrom triple (#, I', Q) and associated valued graph as in Fig. 4.

16 — Banach Center t. 26, cz. |
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(2) Hence so far we have considered Bickstrom orders only, essentially.
We have encountered a phenomenon which is typical to them, namely that
reductions lead directly to matrix problems over k. In general, a given order
A will lie deeper below some hereditary overorder, and reductions will lead to
matrix problems over R, = R/r/, for some {e N. Therefore the general strategy
for solving the classification problem of A consists of three steps:

Step 1. Reduce the classification problem of A to a classification problem
over R,, for some /e N.

Step 2. Reduce the classification problem over R, to a classification
problem over k. \

Step 3. Solve the classification problem over k.

While for Bidckstrom orders the second step in this program is empty, it
appears to be the most involved one for other types of orders. In this respect
I cite the rather complicated reductions which lead to the solution of the
classification problem of A = Z,C, [Ya72] and of A = 23[\4/5]C3 [Di85b].
We will come to Yakovlev’s reduction in the next section.

(3) The reduction functor & : lattA —»% appears implicitly in several
articles around the late sixties, e.g. [Ja67], [DrRo67], [B472]. It has been made
explicit in [GrRe78] and in [RiR079]. It is used in [GrRe78] for reproving
Jacobinski’s and Drozd-Roiter’s characterization of representation-finite
commutative orders. Here, the handling of € i1s cumbersome. It is used in
[RiR079] for the investigation of Backstrom orders, as we have seen. Apart
from these instances there seem to be only two cases where a conceptual
investigation of 4 has been attempted. namely

a) generalized Bickstrom orders, and
b} complete local rings of curve singularities with large conductor.

While generalized Bickstrom orders are closely related to Backstrom
orders (here, € corresponds to the category of socle-projective representations
of the species associated with the order [Ro83], [K&688]), quite different
phenomena occur in lattice categories of orders which arise from curve
singularities [Di8&]. We will come to this in the last section.

4. The group ring A =Z,C,

Historically, this was the second instance where an order of tame type
appeared. Its classification problem was solved by Yakovlev in 1972 [Ya72],
[Ya80]. We will see that the nature of this tame problem, as well as the
reduction developed by Yakovlev, is far away from what we met before.
I proceed by giving an outline of Yakovlev’s reduction and solution of the
problem.
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Step 1. Choose a generator 4 for the cyclic group Cg. Then
A=R[A]= R[X)/XE -1 =R[XYX*+ D)X+ DX -1)(X*+1),
and therefore in A the identity
(%) (A2+ DA+ DA-DA*+1)=0

holds. Keeping the indicated order of the cyclotomic factors, there are three
possible ways of putting brackets such that the left-hand side of () appears as
a product of two elements. Accordingly, for each A-lattice M, (%) can be
interpreted in three different ways as a pair of endomorphisms of M with
composition Zzero.

Moreover, let .# be the category of all those A-module representations of

. 1 @ 2 a2 3} , . L.
the quiver o2o=0 which satisfy the conditions (A2+1)M, =0,
pr P2

Biay =(A+ l)lM:’ a By =(A+ I)'Mz’ Baa, = (}'_1)|M2’ 2, B, = (A— 1)IM;n
(A*+1)M, =0.

There is a functor lattA —.#, assigning to each A-lattice M the homo-
logies of the three pairs of endomorphisms with composition zero arising from
(%), together with the A-linear maps a;, f§; induced by multiplication with one of
the cyclotomic factors, respectively by inclusion. This functor induces a bijec-
tion

[ind A]\[3 indecomposables] = [ind.#],

according to [Ya70, Theorem 3].

Step 2. Now the A-ideal I:= (A4 1){(2+1), n(A—1)) plays an important
role. By definition it is generated by two elements, each a product of two
factors. Accordingly for each NemodA/I, multiplication by A?+1 and by
A+ 1, respectively by = and by A—1, in the indicated and reverse ordering,
gives four pairs of endomorphisms on N, each with composition zero. The
homologies of these four pairs are all in modA/(n, A—1) = modk. Thus we
obtain four homology functors #;: mod A/l - modk.

Consider the subspace category associated with this quadruple of ho-
mology  functors. .# :=sub(#, ... #) = {(N:a,.....a,)| Nemod A/l
o€ Hom, (U,, 5 (N)), kera; = 0}. There is a functor .4 — ", assigning to each
representation (M;; «;, ff;)e .# the A-module M, (which is in fact annihilated
by I), together with the subspaces of #;(M,) which are induced by kerf,,
ima,, kerx,, imf3,. This functor induces a bijection

[ind .#]\[2 indecomposables] = [ind ],

according to [Ya72, Theorem 1].
So far, the classification problem of A is reduced to the classification
problem for . But still, ¢ is given only in abstract terms. In order to solve its
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classification problem, the next aim is to get at a more concrete description of
X . In this vein, the following steps are concerned with

3) the classification of ind A/I,
4) the evaluation of #, on objects, for all i=1,...,4, and
5) the evaluation of 5#; on morphisms, for all i=1,...,4.

As a result, we will be in a position to reformulate the classification problem for
A" as a matrix problem over k.

Step 3. Because I contains I,:=(n n(A—1)), modA/I is canonically
embedded into mod A/I, as a full subcategory. In order to classify ind A/I, we
first classify indA/I, and then distinguish indA/I among ind A/I,.

Clearly, indA/I, is equivalent to the category of all those R,-module
representations (N, A—1) of the quiver oo which satisfy the condition
n(4A—1) = 0. Due to this condition, the R,-linear endomorphism A—1 of

N induces a k-linear map A—1: topN —socN. such that the diagram

N A—1

Lo

topN 271, 50cN
commutes. The choice of an R,-basis for N (i.e. a system of generators for the

cyclic direct summands of N) implies the simultaneous choice of k-bases for

topN and soc N, and yields a square k-matrix corresponding to 4—1. Changes
of the R;-basis correspond to admissible transformations on the k-matrix.
Their type is indicated in Fig. 6. In the combinatorial language of Nazarova

ololo

> S xS
Fig. 6

and Roiter, this matrix problem is given by a pair of posets together with
a binary relation on the set of points (see Fig. 7). The solution of this matrix
problem is known [NaRo69]. It corresponds to a classification of ind A/I,.
Picking among indA/I, those objects which are in indA/I, we obtain the
following classification of ind A/I.
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~

Fig. 7

(1) The indecomposable projective module A/I.

(i) Band modules. The invariants are pairs (f, ®), where f =p",
pe#\{X}, neN, and o = («,, ..., ) is a finite sequence in {1, 2} modulo
cyclic permutation which is not constant (except for / = 1) and which has no
repetition of 1 (under cyclic reading). The corresponding band module N /(«) is
given by

Rd

ay ay tee m ey @

where R, =R/n*, d = deg(f), and where M denotes the R,-linear map
determined by the k-matrix M via the commutative diagram

Rgi SN Rﬁj

]

kd M kd

(1) String modules: The invariants are finite sequences a =(z,, ...,a;) in

{1, 2} which have no repetition of 1 inside («,, ...,a;,—,). The corresponding
string module N(x) is given by

Ré ERd E KR

ap-1

£ Rd.

(Note that all indecomposable nonprojective A/I-modules are already an-
nihilated by =n*, while this is not the case with A/l.)

Step 4. Since now we know the objects of ind A/I explicitly, the values of
H#; on them are easily calculated. It turns out thatfor alli =1, ...,4 and for all
NeindA/I, # (N) = 0 or k. The vanishing or nonvanishing of #; on N gives
rise to a partition

ind A/l = N (ON Q0N 30N,
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of indA/I into four pairwise disjoint module classes, as follows:

H K, Ky, A,

A, 0 0 0 0
4, k k0 0
4y 0 0  k  k
4. kK k k

Ny ={N;@|l =3 or f#(X-1)}0{A/I},
Ny = (N (@)|I<2 and f=(X-1)},

Ny ={N@la#(1,2,...,2, 1)},

A= {N@)|e=(1,2,...,2, )}.

Step 5. Recall that we are concerned with the classification problem of
A = sub(H,, ..., H#,). where all 5, are functors in Fun(mod A/I, modk). Let
z = (N; a;) be an arbitrary indecomposable object in . If N contains a direct
summand N, e 4", then z = (N,; 0, 0, 0, 0), because all »#, vanish on A4",. If
N contains a direct summand N, e A,, then z = (N,; ¢,, ¢&,, 0, 0), with ¢, ¢,
either 0 or id,. This follows from the analysis of the admissible transformations
linked with A47,, together with the vanishing of #; and #, and 4",. Similarly,
if N contains a direct summand Nye A", then z = (N5; 0,0, g, ¢,), with g5, &,
either 0 or 1id,.

Thus we have listed all those zeind #" whose support is not contained in
add.#",. This reduces the classification problem of ¥ to the classification
problem of its full subcategory " ,.,:= {(N; a,)e 4 | N eadd.#",}. The latter is
the true core of the classification problem of A, which was posed at the outset.
In order to derive its base-dependent formulation, as a matrix problem over k,
it remains to calculate the admissible transformations by evaluating 5; on
Hom,,(X, Y), for all i=1,...,4 and for all X, Ye.#,.

This matrix problem turns out to belong to a general class of matrix
problems which is defined as follows. Suppose the given data are an arbitrary
field k, an index set I, and two total orderings <, < on I. Then the matrix
problem over k associated with (I; <, <) has as objects k-matrices M,
endowed with a block partition into four row strips and into a finite number of
column strips indexed by elements of I:

i i2 i3 in-2 in-1 in
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The admissible transformations on M are:

(a) arbitrary nonsingular transformations on each row strip and on each
column strip,

A.. A, .
(b) addition of linear combinations of columns from B“ to BU ,
L Dy | | Oy
whenever i < j,
. : o (A, ] [ A,
(c) addition of linear combinations of columns from to 1,
| B, | By; |

whenever i < j.

In these terms, the classification problem of .# . is the matrix problem
which is given by the following specialization of k and (I; <, <)
k=2,22,~F,, and I = {invariants for .#",} = {finite sequences (a,, ..., &)
in {1, 2} |a, = &, = 1, and no repetition of 1}. Moreover, if & = (a,, ...,2,) and

B={(B,,...,B,) are arbitrary elements in I, then

a>p o in the sequence o, —f,,, %,y — Bm-1. - .. €ither the first nonzero
term is negative, or all terms are zero and [ > m;

23S f in the sequence &, —f,, %,—f,, ... either the first nonzero
term is positive, or all terms are zero and / < m.

This finishes the entire reduction of the classification problem of A to
a matrix problem over k. It remains to solve this matrix problem!

Step 6. Yakovlev solves at once all the matrix problems given by triples
(I; <, <), over arbitrary fields k. I give a brief qualitative description of his
method.

Usually we have to deal with block matrices. A cell is a nonzero block, and
the cell structure of a matrix is understood to be the location of its cells. At any

Al
. : : B, | .
stage of the process of transforming a given matrix M = into some
I A
Aj 2
L B,

. ’ Bll . A’I “ [ 1] AIZ
matrix M’ = , we simply call ——— the “upper matrix” and |——] the
A B B)

’
- 2

“lower matrix” of M’. Now if M is an arbitrary k-matrix in the matrix problem
given by a triple (I; <, <), then we proceed as follows.

1)} Solve the problem on the upper matrix. The resulting normal form
defines a cell structure on the upper matrix and a refinement of column strips
on the lower matrix.
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2) The induced problem on the lower matrix has as object the lower
matrix, endowed with the refined column partition, and as admissible transfor-
mations those which stabilize the cell structure of the upper matrix (although
they may spoil the normal forms of the cells of the upper matrix).

3) Solve the induced problem on the lower matrix. The resulting normal
form defines a cell structure on the lower matrix and a refinement of column
strips on the upper matrix.

4) The induced problem on the upper matrix has as object the upper
matrix, endowed with the refined column partition, and as admissible transfor-
mations those which stabilize the cell structure of the lower matrix.

1') Solve the induced problem on the upper matrix... and continue as
in 1),

This procedure is algorithmic because all the problems induced on the
upper or lower matrices are of the same type, namely they are given by the pair
of posets (2, o—o—...—0—o0). For any given M, the refinement of column
strips will become improper after a finite number of steps, and so the algorithm
terminates.

Carrying out this program, Yakovlev obtains a complete list of normal
forms for the indecomposable matrices M. I sketch his classification in three
steps.

(i) There are combinatorial invariants (A 50, 0,), consisting of the
following data: 4 is one of the graphs A, D, A, D,; 6,: 4,—1 is a map,
subject to certain restrictive conditions; 61: A —->{u, I} is an alternating
mapping. (As usual, 4, denotes the set of points and 4, denotes the set of edges
of 4)

(i) These combinatorial invariants define the cell structure of M as
follows. By special points of A we mean the encircled points in Fig. § in case

Fig. 8

A =D, or D,. To each point in 4, assign a refined column strip of M such that
outside the special points the assignment is injective, while on the special points
the circles indicate the fibres. Any refined column strip x is contained in the
unrefined column strip d,(x). If x, ye 4, are connected in 4 by an edge x°y,
then the refined column strips x, y are connected in M by a submatrix of type

[+10],[o1+]

l_ 1 " J or L* | " J where the blocks “*” are cells. This connecting submatrix
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is contained in the upper matrix of M if é,(e) = u, respectively in the lower
matrix of M if ,(e) = /. In the refined column strip given by two special points

S|.
there occurs a pair of special blocks S, T having the property that E% 1s

a nonsingular square matrix. One out of the pair of special blocks may have
zero rows. If this is not the case. then clearly it is a cell. The pair of special
blocks is in the upper matrix, respectively in the lower matrix of M, if é, takes
value [, respectively u, on the edges adjacent to the special points. All blocks in
M which are neither special nor contained in a connecting submatrix are zero
blocks.

(i11) In the classification of the indecomposable matrices M with given cell
structure (4, d,, 9,) we encounter four different types of behaviour, corres-
ponding to the type of 4.

Strings (A = A,): For each invariant (A,, J,, 4,) there is one equivalence
class of indecomposable matrices of cell structure (A,, é,, 4,). The normal
form is given by setting each cell to equal (1).

Modified strings (4 = D,): For each invariant (D,, d,, 8,) there are two
equivalence classes of indecomposable matrices of cell structure (D,,, é,, 0,),
depending on which of the pair of special blocks is a cell. The normal form is
given by setting each cell to equal (1).

Bands (4 = A)): For each invariant (A, §,, &), the equivalence classes of
indecomposable matrices of cell structure (A,, 04, 0,) are parametrized by p”,
where pe #\{X} and veN. The normal form of an indecomposable matrix
with parameter p* is given by setting one chosen cell to equal @ _., and all other
cells to equal E.

Modified bands (4 = D,): For each invariant (D,, &,, 6,), the equivalence
classes of indecomposable matrices of cell structure (D,, d,, 8,) correspond
bijectively to the equivalence classes of those indecomposable quadruples of

p¥?

o, 7
matrices 2 which have the property that both r¢l~| and rd):'—' are
?y Lo, | | . |
L ds'4 .

nonsingular square matrices. The normal form of an indecomposable matrix
with corresponding quadruple (9,) is given by setting the two pairs of special

i 1]
blocks to equal %}] and %, while setting all other cells to equal E.
2 4

Here we are content with this sketch of a classification. The reader who
wants it perfectly accomplished yet has to settle the following points:"

a) Precise description of the condition imposed on é4: A,—1.
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b) Location of the zero block in the connecting matrices.

c) Classification of the indecomposable quadruples which parametrize the
modified bands.

For a) and b) one has to immerse in [Ya72, §4], while c) is easily derived
from the well-known representation theory of the quiver of Fig. 4.

In conclusion to this report on Yakovlev’s work on lattZ,C,, | want to
remark that, historically, this is the first instance where a matrix problem of
infinite growth, with “modified strings” and “modified bands”, has been solved.
Later, such matrix problems also appear in Nazarova and Roiter’s solution of
a problem of Gelfand [NaRo73a]. However, this is marred by mistakes on the
combinatorial level. Recently. the investigation of problems of this tvpe has
been resumed by Crawley-Boevey, using o functorial approach [Cr88a],
[Cr88b].

5. Local group rings

Our present state of knowledge is still very far away from a complete answer to
the problem of characterizing, or even classifying, tame orders in general. The
partial answers which are known by now all refer to restricted classes of orders.
In this respect, the first example presented here was the characterization of tame
Bickstrom orders, given in Section 3. I am now going to present the second
example, restricting our attention to local group rings. It turns out that among
them, apart from the group rings Z,(C, x C,) and chs which we studied in
Sections 2 and 4, there exist only two additional tame cases. The precise result
is the following.

THEOREM. Let A = RG be the group ring of a finite p-group G over
a complete discrete valuation ring R, and assume that A is not hereditary and
K®pgA is semisimple. Let v: R—>Nu{0, w} be the valuation of R. Then A is
tame in each of the following cases:

(i) G=C,xC, and v(2) =1,
(i) G =Cg and v(2) =1,
(i) G =C, and v(2) =2,

(ilv) G = C, and v(3) = 4.

In all other cases, A is either representation-finite or wild.

The assumption imposed on A is no restriction of generality. I briefly
recall what happens in case the assumption is not satisfied. For any group ring
A = RG of a finite p-group G over a complete discrete valuation ring R, the
following assertions are equivalent: a) A is hereditary, b) A is maximal,
c) v(p) = 0, d) each A-lattice is projective. In particular, if A is hereditary, then
A is representation-finite. On the other hand, Maschke’s theorem asserts that
K®,A is not semisimple if and only if charK =p (or, in other terms,
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v(p) = o). If K®zA is not semisimple and |G| > 2, then A is wild [Gu78],
[Di81]. If K®A is not semisimple and |G| = 2, then a complete list of

indecomposable matrix representations of G in R 1s given by (1), [0 n1‘|
neNu{0} {Gu71], [Di80], [Di81]. Observe that the latter group ring is
neither representation-finite nor wild, nor is it tame in the sense declared in the
introduction (because there is no one-parameter family of indecomposable
lattices in rank 2)! Also, it is a counterexample to Brauer-Thrall I (because it is
representation-infinite, although the ranks of the indecomposable lattices are
bounded by 2)! This indicates that general phenomena to which we are
commonly well acquainted in representation theory, such as the distinction of
representation types into finite, tame and wild, or the validity of the
Brauer-Thrall conjectures, no longer need to be true as soon as we deal with
algebras which are nonisolated singularities, in the sense of Auslander [Au84].
For further examples of algebras showing such a degenerate behaviour and for
a more geometric than representation-theoretic discussion of them I refer to the
A .- and D_-singularities studied in [BGS87], [Schr85].

I now return to the above theorem. The classification problem of the
group ring (iii) has been solved by Kopelevich in case K is a spiitting field for
C, [Ko75], respectively by Bondarenko in case K is not a splitting fiield for C,
(not yet published). The classification problem of the group ring (iv) has been
solved by myself [Di84], [Di85b]. Here, the first reduction step is of the type
which already occurred in Section 2. Namely, the classification problem of A is
translated to the problem of classifying the orbits of Ext-groups under the
action of the automorphism groups of the variables entering into the bifunctor
Ext4(?, 7). Moreover, these variables are lattices over representation-finite
factororders of A, with known classification of their indecomposable lattices.
(For a precise functorial formulation of this first reduction, see [Di85a].)
However, due to the hypothesis v(3) = 4, and in contrast to the situation which
arose in Section 2, here the reduced problem is defined over R,. The main
difficulty lies in the second reduction which eventually leads to a matrix
problem over k. Essentially, this is given by one of the two patterns in Fig. 9.
Here, the pattern on the left-hand side is incident to the case where K is
a splitting field for C,. whilc the one on the right is incident to the case where

A T

Fig. 9
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K is not a splitting field [or C,. In turn, this matrix problem over k is closely
related to the classification problem of a tubular k-algebra of tubular type D,
respectively CD,. The latter problems have been solved by Ringel [Ri84].
Translating his solution back, along the performed reduction, one obtains the
following classification for indA.

(i) First we have to define the set of exceptional parameters & c ¥ .
Choose a parameter element ze R. Then the element d:= —3/n*+aRek\ {0}
is uniquely determined. Consider the quadratic polynomial é:= X2—d in
k[X]. If K is a splitting field for C,, then § = (X —-{}(X +{) in k[X], and we
set £:={00, X, X—{, X+{}. If K is not a splitting field for C,, then § is
irreducible in k[X], and we set &:= {c0, X, 8}.

(ii) Define . :=.# O&. Then the set of invariants is P1Qx .4, x N.

(iii) There is a bijection : P'Qx Z_ x N = [ind A]\[4] which is cons-
tructive in both directions. That is to say, there is an effective algorithm for the
construction of f(ij)eindA, for any given invariant i, and also there is an
effective algorithm for the determination of the invariant 7 !(M) correspond-
ing to M, for any given nonprojective MeindA.

Historically, the group ring (iv) is ahe first example of an order which is
nondomestic tame of finite growth. Up to now, only one additional order of this
type has occurred, namely the complete local ring of the simple elliptic plane
curve singularity of type E., which will be mentioned, among others, in the
next section.

The last statement of the above theorem, concerning the represen-
tation-finite or wild cases, emerged gradually as the result of a rather long
process to which numerous mathematicians contributed. The respective
historical references can be found in [ Di80] and [Di84]. A unified proof can be
found in [Di83a] for the representation-finite cases, and in [Di83b] for the wild
cases.

6. Curve singularities

Throughout this last section, k is an algebraically closed field of characteristic
0, R = k[[=]], and 4 is an R-order which is commutative, local, and isolated
singular. (Here, the term “isolated singular” is used in the sense of commutative
algebra, meaning that the singular locus of A contains rad A as its only element.
However, this is equivalent to the requirement that A is not hereditary and
K® gz is semisimple. Hence we may interpret the term “isolated singular” as
well in the sense of Auslander [Au84].) I call such R-orders curve singularities,
and I denote the class of all such R-orders by €. The term “curve singularity” is
justified by the following fact.
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PROPOSITION. If C = A"k is an affine-algebraic curve with singular point
0QeC, then the complete local ring €c o of C at O is an R-order in €. Conversely,
if A is an R-order in €, then there exists an affine-algebraic curve C = A"k with
singular point OeC such that @, = A.

This follows from standard connections between algebraic geometry and
commutative algebra. If (C, O) is an affine-algebraic curve singularity, then
(c o is reduced, and so there exists a non-zero-divisor ¢ in rad@c . The
assignment m— g defines a ring monomorphism R — @ , with respect to which
(ﬁao is an R-order in %. Conversely, if A is an R-order in €, then
A=k[[X,..... X,])/I, and the ideal I is generated by polynomials. These
define an affine-algebraic curve singularity (C, 0) such that @,

Being concerned with tame orders, my interest in curve singularities is
guided by the following general problems.

(A) Find an effective criterion for deciding tame type, for any given curve
singularity.

(B) Classify all tame curve singularities, up to analytical isomorphism.

(C) Find a general strategy for classifying ind A, in case A is a tame curve
singularity.

[t is remarkable that, when rephrasing these problems for represen-
tation-finite instead of tame curve singularities, satisfactory solutions are
actually known for all of them. T recall the respective results.

THEOREM. For any curve singularity A, the following assertions are
equivalent:

(i) A is representation-finite.
(i) p,(Q/A1) <2 and p,{rad(Q/A)) < 1, where Q is the maximal order in
K®zA.
(iii) A dominates the complete local ring of a simple plane curve singularity
(C,, 0).

Here, p (M) denotes the minimal number of generators of a A-module M.
One says that A dominates an order 2 if 2 <« A =« K®gZ. The equivalence
(i)<=>(1) 1s the classical result of Jacobinski, Drozd and Roiter [Ja67],
[DrRo67], specialized to curve singularities. It solves problem (A). The
equivalence (1)<>(iii) has been observed by Greuel and Knoérrer [GrKn8S5].
Since the simple plane curve singularities are all classified and because each of
them admits only a finite number of overorders, it solves problem (B). Finally,
as a solution of problem (C), there are techniques for calculating the
Auslander-Reiten quiver of A, or for solving the matrix problem to which the
classification problem of A can be reduced.

The equivalence (i)<=(i11) has an obvious analogue for tame curve
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singularities which as yet is mostly conjectural. I add it as a fourth guiding
problem which may serve as yardstick for measuring future progress.

(D) CONJECTURE. A curve singularity A is tame if and only if it dominates
the complete local ring of a unimodular plane curve singularity (C_, O).

The unimodular hypersurface singularities have been classified by Arnol’d
[Ar74]. For unimodular plane curve singularities, see also [Scha85a].

Having formulated main problems, I proceed to give a brief account on
the present state of knowledge concerning tame curve singularities. Essentially
only five curve singularities are known to be tame (apart from those which
occur in the most recent theorem which will be stated below). These are the
following complete local rings 2, ..., 2:

T, = k[[X, Y, Z]X(Y - 2Z), (X - Y)Z).

Ty =kIIX, YIAXY (Y —XH(X +Y),

Ty = k[[X, YIUX Y(Y = X)(Y - X?),

T, = k[[X, YIUY(Y =X3)(Y —aX?), aek\{0, 1},

Lo=k[[X, YIAXY(Y—=XNY—aX)), aek\{0,1}.
Some overviewing remarks on this list are due.

(1) If X is a tame curve singularity and X’ is a representation-infinite curve
singularity dominating X, then clearly X’ is also tame. The term “essentially”
used above refers both to this fact and to the fact that ¥, and 2, contain
a parameter ranging through k\ {0, 1}.

(2) Originally, no one of the curve singularities 2,,...,2; has been
proved to be tame within our present set-up. Instead, they are “curve
analogues™ of orders which were investigated in other mathematical contexts.

(3) In the case of 2, ..., 2, these are the tame group rings A, ..., 4,
listed in Section 5. If A is one of these group rings, let s be the number of simple
components of K&, /, and consider the system of congruences which defines
the embedding ol A into its maximal order. Then by the curve analogue
Y corresponding to A we mean the suborder £ — []{=, R, which is defined by
a system of congruences analogous to the above one. With this construction it
turns out that all the proofs solving the classification problems of tame group
rings A go through tn a parallel way for their curve analogues Z. (This is
well-known folklore among a few specialists. But one must admit that it is
nowhere written up, and that it has not been checked through in every detail.)
Summarizing we maintain that the passage from the tame group rings
Ay, ..., A4 to their curve analogues 2, ..., 2, only means a change of view. It
does not provide us with substantially new examples of tame orders.

(4) Recently, C. Kahn has shown how Atiyah’s classification of vector
bundles over elliptic curves [At57] can be used [or classifying the indecom-
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posable reflexive modules over simple elliptic surface singularities [Ka87],
[KaX¥8]. These include the surface singularities given by the polynomials

Y(Y = X)Y —aX?)+ 22, aek\{0, 1} (type Eg),
XY(Y-XUY—aX)+2Z2 aek {0, 1} (type E,),

On the other hand, Kndrrer has described the connection between the category
of maximal Cohen-Macaulay modules over a hypersurface singularity given by
a polynomial f(X,,....X,) and the category of maximal Cohen—Macaulay
modules over the associated hypersurface singularity given by
f(X,.....X )+ Z* [Kn87]. Applying this to the simple elliptic surface sin-
gularities of type E, and E,, one obtains from Kahn’s result a new solution for
the classification problem of X . and an original solution for the classification
problem of X. Both curve singularities are nondomestic tame of finite growth,
and their Auslander-Reiten quivers have tubular structure of tubular type D,.
Within our context of tame orders, 2, is the first example which does not
originate from integral representation theory of finite groups.

(5) Ttis typical for the historical development of the subject of tame orders
that for 2, ..., 25 tame type has been proved by five mathematicians, using
five different approaches. Accordingly, these cases are stray examples which tell
us nothing with respect to problems (A), (B) and (C). Knowing the efforts which
had to be undergone to reach this state, this seems to be a very discouraging
result.

(6) Finally, concerning conjecture (D) it is known that a curve singularity
is wild whenever it does not dominate a unimodular plane curve singularity
[Scha85b]. [Kn85]. Moreover, the cases 2, ...,Z5 are consistent with the
conjecture. But still. there is an abundance of curve singularities dominating
a unimodular plane curve singularity and not being 1somorphic to 2, ..., 2.

Motivated by this background. and as an attempt for better insight into
the subject of tame curve singularities, | have begun to study systematically
a particular class of curve singularities % . It consists, by definition, of all those
A€ % which satisfy the following two conditions:

(a) A has 4 branches, and

(b) the conductor of A contains the radical-squared of the normalization
of A.

A more algebraic definition of 6, can be given by means of the following
data. Let R, = k[[n]], @ = [ [/~ R, # =[]-1mR;, and I' = #@k-1,. Note
that I' is the tetrad (over R = k[[n]]), and ¢ = radl" = rad Q. In these terms,
Co= A€l fPcAcT].

As before, let Q be the quiver of Fig. 4. Denote by .7 the class of all those

k-representations T = (T, «;) of @ which contain no simple injective direct
I

summand and have dimension type dimT = |r.
1
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There is a mapping ¥,— 7 and a construction . — ¥, as follows. For
any Ac%,, set J = rad A. The filtration of ideals #? — J = ¢ gives rise to the
object J/ #% = ¢/ #% which, in view of ¢/ #%? >~ @} kn,,is in 7. Conversely,
for any TeJ the choice of basis elements t,eT, i=1,...,4, defines an
isomorphism n: @ T, @i kn,. Set

o, a
a=|: ) Thea@®T, U=im@ha), A= #:@UdDk I,

i=1

Then A is in €,.

These constructions induce a bijection between the analytical isomor-
phism classes (i.e. k-algebra 1somorphism classes) of €, and the equivalence
classes of  under the equivalence relation which is generated by isomor-
phisms in rep,Q and by permutation of the k-linear maps o, ...,2,.

The main result, concerning tame curve singularities in %,, is the
following.

THEOREM. (i) A complete system of representatives for the analytical
isomorphism classes of €, consists of a list of 16 objects, together with an infinite
series of objects which is parametrized by k\{0, 1}.

(i1) Among these, 10 curve singularities are wild, and the remaining
6+ 1-co curve singularities are tame.

(i) The tame ones are the singularities A, ..., Ay given in the following
table.
4
Ag To @D I; Fig. 10(a)
i=1
A, T, t, Fig. 10(b)
A, T, 1@, Fig. 10(c)
A‘g_a TJ.n R]_(a) F]g 11
A, T, 1,®1,®R,(e) Fig. 12(a)
As  T; R, (e)®1R (e) Fig. 12(b)
Ag Ts R,(e) Fig. 12(c)

(iv) Among these tame curve singularities, Ay, A,, A, are domestic, A4, are
nondomestic of finite growth for all aek\{0, 1}, and A,, A5, A are of infinite
growth.
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la) 77 (a) 777
N T
(b) [ = : O 1.1 .1.
o——0
V=] T YTl
Fig. 10 Fig. 11 Fig. 12

In conclusion I add a few explanatory remarks to this theorem.

(1) In the table I have indicated the curve singularities A by means of their
corresponding representations 7. In the third column, the representations T are
specified as objects in rep, O, using the following notation: I; is the indecom-
posable injective representation corresponding to i€ {0, ...,4}, and R,(4) is the
indecomposable regular representation of regular length [ and corresponding
to AeP'(k). Further, 1 = DTr, aek\{0, 1}, and ee{c0, 0, 1}. In the fourth
column, T is specified in base-dependent terms, by defining a subspace
U = @? kr;. Here, the meaning of the pictures should be self-explanatory.
For example, the picture corresponding to T, indicates the 3-dimensional
subspace of @?.,kn, which is spanned by the rows of the matrix

1 0 0O
01 0 1
0 0 1 1

(2) Some of the tame curve singularities A,, ..., 4, are old acquaintances
of ours, reappearing in the context of €,. Namely, A, is the tetrad I', and also
it 1s the unique minimal overorder of A,; A, is X,, the curve analogue of
Z,(C,xC,); Ay, is X5, the simple elliptic plane curve singularity of type E,.
The remaining four singularities 4,, 4,, A4, 44 have not occurred so far. They
are substantially new examples of tame orders.

(3) I also include a few remarks concerning the proof.

(1) As mentioned above, the classification of %, up to analytical
isomorphism amounts to the classification of  up to equivalence. The latter is
a matrix problem which is easily solved.

(it) For any A€ ¥,, the triple (J, A, I') is admissible. According to Section
3, there is an epivalence # ,: lattA —sub’'% associated with it. On the other
hand, consider the functor #: lattI’ > modk given by Z(N)= #N/JN. 1' is
a subfunctor of &, and it factors through the epivalence & [: latt{ —rep;Q
associated with the Backstrom triple (#, I', Q). Indeed, there is a functorial

17 — Banach Center t. 26, cz. 1
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isomorphism
#(N) > Homy(Z (N), T,

where * denotes vector space duality and T:= S (T*), with S§ being the
reflection functor. For any object (U, N, o) e sub’ & there exist bases of U and
F(N), the latter adapted to the subspace #(N) = & (N), such that the k-matrix
0 ;] The condition Y = 0 defines a full
subcategory # of sub’'¥, and there is a sequence of epivalences
U — subZ — sub(Hom,,(?, T)*) starting with %. Now suppose that Ae€%,
belongs to the singularities which are claimed to be wild. Then the associated
representatlon T contains a preprojective direct summand, and therefore
T contains a preinjective direct summand. Hence clearly sub(Hom,(?, T* ) is
wild, and therefore so is A.

(iii) Suppose A€ C, belongs to the singularities which are claimed to be
tame, and let T be its associated object in rep, Q. The key to the solution of the
classification problem of A lies in the exhibition of an epivalence sub’'¥ — &5,
where & is the following new category. Objects in & are pairs (X, &), where
X is in rep,Q and without simple projective direct summand, and
e Exty(X, T®X). Morphisms u: (X, £)—(Y, ) in & are those morphisms
pe Hom,(X, Y) which satisfy the equation (id;®u)¢ = nu. Specifying T to
any T, out of the table, the classification problem for & ; can easily be rephrased
as a matrix problem over k, with explicitly given admissible transformation on
row strips and on column strips. This is accessible to representation-theoretical
techniques. For details I must refer to [Di88].

(4) Finally, reflecting the above theorem with respect to problems
(A), ...,(D), we see that indeed it contains solutions to all of them, when
restricted to the range of €. First of all, the theorem has the following obvious
consequence.

representing o is of the form |:

COROLLARY. For any curve singularity A€ %, the following assertions are
equivalent:

(1) A is tame.
(i) The object Terep,Q associated with A contains no preprojective direct
summand.

This is a satisfactory answer to problem (A). Problem (B) is solved in the
table. Problem (C) has an answer in the sequence of epivalences
latt A —sub’ ¥ — &, which provides a unified approach to the classification of
ind A, for all tame A€%,. Finally, the list of tame curve singularities in %, is
consistent with conjecture (D).
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