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§ 1. Introduction

One of the main problems in complex analysis is the problem of holomor-

phic approximation. There are of course many variations of this problem,
for instance

1° approximation of holomorphic functions by functions which are
holomorphic in essentially larger sets;

2° holomorphic approximation of functions from wider classes ol func-
tions, for example: continuous, smooth, CR, continuous and holomorphic in
the interior;

3° holomorphic approximation by functions from restricted classes, for
example: exponential polynomials, functions of restricted growth;

4° holomorphic approximation in different senses, for example: uniform,
L*, weighted, and in other norms or distances.

There is a natural generalization of the holomorphic approximation
problem in the direction of partial differential equations. Namely, instead of
holomorphic functions we may consider solutions of one equation or of a
system of partial differential equations. Mainly elliptic equations, elliptic
systems or homogeneous first order systems are considered. There is a vast
literature on this subject; see for example Lax [12], Malgrange [13],
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Browder (3], Narasimhan [15], Polking {17], Modica {14], Hormander
[11], Dufresnoy, Gauthier and Ow [4], Baouendi and Treves [2].

In many cases, holomorphic functions are used for approximation of
functions which satisfy some system of PDEs (CR functions, RC functions),
weaker than the full Cauchy-Riemann system. The problem is then to
approximate functions satisfying one system of equations by functions satis-
fying a larger system of equations.

The importance of such problems is obvious, not only for complex
analysis, but also for the theory of partial differential equations and the
geometry of submanifolds (Gaier [8], Gauthier and Hengartner [9], Wells
[22]).

The purpose of this paper is to give a short survey of results concerning
Runge type theorems for soluttons of one PDE or a system of PDEs (§ 2,
§ 3). The survey does not pretend to be full; we formulate only a classical
Runge type theorem for solutions of PDEs and also give a few fairly
recent results in this direction. For a more ample description of this topic we
refer to the books of Hérmander [11], Treves [18], [19], [20]. In § 4 we give
a PDE point of view of the authors’ result concerning global holomorphic
approximation of CR functions.

§ 2. Approximation theorems for linear PDEs
Let P be a polynomal in R" with constant complex coefficients

P(x)= ) a,x*, x=(xg,..., x)eR", a=(ay,...,a,)eZ%,
lalsm

where x* = x3'...x;", || =a;+ ... +,. We obtain the corresponding opera-
tor P(D) by replacing x, by id/dx,.

For such operators we formulate a Runge type theorem due to Mal-
grange [13]. Denote by M* = M u [} the one point compactification of M.

THEOREM (see [11, Th. 44.57]). Assume that P has a fundamental solution E
which is real analytic in R*\{0}, and let U = M < R" be open sets such that
M*\U is connected. Every solution ue C*(U) of the equation Pu = 0 is then a
limit in C™ (U) of restrictions to U of solutions of the same equation in M.

Of course for the Cauchy-Riemann and the Laplace operators we have
fundamental solutions which are real analytic in R"\{0}; therefore the above
theorem is applicable to these operators.

We remark that the condition that M*\U be connected in the above
theorem just says that M\U has no compact components. Also, this is
equivalent to saying that M\U cannot be written as the union of a
nonempty compact set and a set which is closed in M. The equivalence can
be seen by an exhaustion argument. It also follows from Proposition 3.104
in [15].
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The above theorem can be extended to more general differential opera-
tors with constant coefficients and sufficiently wide spaces of distributions.
However, the formulation of the extended version needs many special
definitions, and therefore we refer the reader to Chapter X, Theorem 10.5.2 in
the book of HGrmander [11].

In the next section, we shall formulate some theorems of Runge type for
systems of operators with nonconstant coefficients. Of course, such theorems
also apply to a single operator.

For operators with constant coefficients we formulate also some results
obtained by Dufresnoy, Gauthier and Ow [4] on uniform approximations on
closed subsets (not necessarily compact).

Let M be an open set in R" and P(D) a linear elliptic differential
operator with constant coefficients. For an arbitrary subset F of M denote
by #(F) the space of smooth solutions u of the equation P(D)u = 0. By
A (M) we denote the space of solutions u of the same equation which are
smooth on M except for isolated singularities where the singular part of u is
a linear combination of a fundamental solution and its derivatives. Finally,
for an arbitrary subset F of M let .#(M) denote the space of those elements
from .# (M) which have no singularities on F.

THeoREM ([4]). Let M be an open set in R" and suppose one of the
following:

(a) M is bounded.

(b) P(D) has a fundamental solution which is uniformly continuous away
from zero.

(¢) P(D) is homogeneous.
Then, for each (relatively) closed subset F of M, every element of the space
H (F) can be approximated uniformly on F by elements of .#g(M).

THeoOREM ([4]). Let F be a (relatively) closed subset of M. If M*'F is
connected and locally connected and P (D) is homogeneous, then every element
of the space 3¢ (F) can be uniformly approximated on F by elements from the
space ¥ (M).

An interesting result was given by Polking [17] who showed that certain
approximation problems can be reformulated in a way which is independent
of the particular differential operator P(D), even with variable coefficients.
and also independent of the open set Q on which it is defined. We shall now
[ormulate his result.

Let P(x, D) =) |5 <m @ (x) D* be an elliptic differential operator of order
m with infinitely differentiable coefficients defined in an open subset M of R".
For a closed subset F < M, let as before s (F) denote the set of all smooth
solutions u of the equation P(x, D)u = 0 in a neighborhood of F. For 1 < p
< oo we set JIP(F)=IP(F)n #(F), the set of functions ue L”(F) which
satisfy the equation P(x, D)u = 0 in the interior F of F.
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The operator P(x, D} i1s said to have a biregular fundamental solution
E(x,y) on M if Ee Ll (2 xQ) is infinitely differentiable off the diagonal in
M x M and satisfies the equations

P{x, D)E(x, y) =d,, 'P(y, D)E(x, y) =9,.

THeorem ([17]). Suppose P(x, D) is an elliptic differential operator of
order m with infinitely differentiable coefficients defined in an open subset M of
R" and suppose that P(x, D) has a biregular fundamental solution in M. Then
if K © M is compact and 1 < p < oo, the following statements are equivalent:

1) #(K) is dense in #17(K).

2) C¥(K) is dense in the Sobolev space W3(K), 1/p+1/q = 1.

3) Co(R"\K) is dense in W2, (R"\K).

§ 3. Approximation theorems for systems of PDEs

In this section we formulate the classical approximation theorem of Malgran-
ge and Lax (see [12], [13]), and also we give another recent result concern-
ing this type ofl problems.

Let M be an oriented real analytic manifold and ¢, # be real analytic
vector bundles on M whose fibres are complex vector spaces. Assume
moreover that the complex dimensions of the fibres of these vector bundles
are the same, i.e. rank(£) = rank (p).

Tueorem ([15, Th. 3.10.7]). Under the above notation let P be an elliptic
operator of order m from £ to n with analytic coefficients. Let U be an open
subset of M such that M*\U is connected. Then any smooth C™-section of the
bundile £ over U such that Pu = 0 on U is the limit together with all its partial
derivatives, uniformly on compact subsets of U, of smooth sections u, of ¢ over
Mwv=1,2,..) with Pu,=0 on M.

Next, we shall formulate a Runge type theorem for overdetermined
systems with constant coefficients due to Modica [14].

Let M(D) be a linear partial differential system with constant coeffi-
cients, that i1s, M(D)u = 0 1s the short form of the system of r equations in s
unknowns uy, ..., U

ZMU(D)u-’:O, i=1,...,r,
j=1

where M;;(D) are differential polynomials in n variables with constant
coefficients.

We say that a square system Q(D) is elliptic if (detQ),(¢) # 0,
&e R"\ {0}, where m is the degree of the polynomial det Q and (det Q),, is the
homogeneous part of detQ of degree m exactly.
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We now proceed to a formulation of the theorem.

Let P(D), Q(D) be two square (r xr) systems of partial differential
equations (in n variables) with constant coefficients, such that PQ = QP and
0 is elliptic.

Tueorem [14, Th. 4.1]. Let M, U be two connected open subsets of R",
with M o U, such that R"™*\M and M*\U are both connected. Suppose that,
for every function f of cluss C® on M such that G(D) f = 0, the overdetermined
svstem P(D)u = f, Q(D)u = 0 has a solution u of class C* on U. Then, if M,
= 1xe M; dist(x, M) > v} < U for some v > 0, each solution of class C* on
M. of the homogeneous system P(D)u = 0, Q(D)u = O can be approximated by
a sequence of solutions of class C* on U of the same system uniformly with all
their derivatives on the compact subsets of U,.

As a corollary of the above theorem, it is easy to obtain, roughly
speaking, the following result:

If the system P(D)u = f, Q(D)u = g is “solvable” on each element of an
increasing sequence of open subsets, then the system is solvable on the union
of this sequence.

An exact formulation however would require that we introduce some
additional notions, so we refer the reader to the paper of Modica [14],
Section 5, Theorem 5.2.

§ 4. Approximation of solutions of a system of PDEs
by solutions of a larger one

(a) Definition of RC and CR manifolds

First we introduce the notion of RC manifolds, where RC is the
abbreviation of real/complex. RC structures were introduced by Treves [21].

Let M denote a smooth manifold of real dimension m>=1, TM its
tangent bundle and T* M its cotangent bundle, CTM and CT*M their
complexifications. Take an /-dimensional complex subbundle H of CTM and
let H' be the subbundle in CT* M orthogonal to H with respect to the
duality between tangent and cotangent vectors. We shall use the subbundles
H and H*' interchangeably, depending on the context.

We say that a subbundle H of CTM is involutive if it is closed with
respect to the Poisson bracket, i.e. [P, Q] is a section of H whenever P and
Q are sections of H.

We say that H (or H?) is locally integrable if any point poe M has a

neighborhood U in which there exist smooth functions &,, ..., &, -, such that
the differentials d¢,, ..., d¢,_, are linearly independent and span the sub-
bundle H|U.

Following Treves [21], we say that the subbundle H defines an almost
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RC structure on M if H is involutive and we refer to the pair (M, H) as an
almost RC manifold. Any function whose differential is a section of H* will be
called an RC function. When H is locally integrable we say that it defines an-
RC structure and (M, H) is an RC manifold.

By an RC submanifold (N, Hy) of the RC manifold (M, H) we mean an
embedded smooth submanifold N of M together with the structure bundle
Hy = H|ynCTN, provided Hy is a bundle and gives an RC structure on N.

The most important subclass of RC manifolds is the class of the so-
called Cauchy-Riemann (CR) manifolds. Recall that by a CR manifold we
mean an RC manifold M with an RC structure bundle H which satisfies
HnH =0, where 0 is the zero section and the bar denotes the complex
conjugation. By the RC (or CR) dimension of an RC (or CR) manifold we
mean the fibre dimension of the bundle H. Of course CR functions on a CR
manifold are defined in the same way as RC functions.

It is worth mentioning that a smooth submanifold M of C” is said to be
a CR submanifold if the dimension of the holomorphic tangent space to M
at a point pe M does not depend on p, 1e. the function

I(p) = dimcH (M)
is constant, where

H,(M) = {X =a, Eal'Jr +a,,—a§~"; XeC’I},M}.
For a more ample description of CR submanifolds see for example Wells
[22], Treves [21]. '

We shall not go into definitions of other subclasses of RC manifolds, for
example hypo-analytic manifolds or hypo-complex manifolds. For a descrip-
tion and study of the mentioned classes see for example the papers of
Baouendi, Chang and Treves [1], Hanges and Treves [10], Treves [21].

Notice that from the defimition of an RC function on an almost RC
manifold it follows that such a function is annihilated by all vector fields
which are sections of the subbundle H; consequently the function satisfies
locally a system of linear first order partial differential equations.

(b) Approximation by solutions of extended systems of PDEs

We can formulate the main problem in the following way.

Let there be given an almost RC manifold (M, H) and an almost RC
submanifold (N, Hy). Assume that an RC function fis given on N (or on an
open subset ¥V of N). Under what conditions can such a function be
approximated on N (or V) by RC functions defined on neighborhoods of N
(or ¥) in M?

The problem formulated, in such a general version, seems to be very
difficult. Even in particular cases (holomorphic or CR), the solutions are far
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from satisfactory, particularly in the global situations. For a review of
approximation problems in complex analysis and CR theory, see for example
papers [5] and [22].

Notice also that, roughly speaking, we want to approximate functions
satisfying some system of PDEs on a submanifold by functions which satisfy
a larger system of PDEs on an ambient manifold.

First we give an example, from the PDEs point of view, that such a
problem is not an artificial one.

ExampLE. Let M be a CR submanifold of C" of real dimension k (k = n),
and CR dimension k—n. In this example we consider the problem only
locally. Take an arbitrary point poe M. There exists a neighborhood U of p,
in C" and a parametrization of U, say

RZH = VB(X, y)_g, (P(X, y)EU < Cn, (.X, Y) =(x].’ cony Xpy Vi oo yln—k)’

such that ¢(0) = p, and the submanifold M in the coordinates in V is given
by the equations y;, =... = y,,_, =0, ie.

o(lx, eV; y=0)=MnU.

Denote the set standing under ¢ above by N. We can pull back to V
and N the antiholomorphic tangent bundles to U and M, respectively. So we
have the following bundles over V and N:

(1) o ' (H(CYy) and o' (H(M)ly.u).

Decreasing U if necessary, we can assume that there are global vector fields
on V which span the above bundles. We can choose the complex vector
fields, i.e. with complex coefficients, of the form

0 0
Ly =a(x, J’) otan(x, Y,
Jc1 0x;,
2) S
¢ ¢
Lm Qpy (xs y)aa+ "'+amk(xa _V)—,
X, Cx,,
0 C
Lpi1 = Gmyq (X, }’)a ot O x (X, }’)a—
Xy X
3,
+ams 1441 (X, )6 + oo+ g, 20X, Y)a ,
Y1 Y2n-k
3) G e
¢ C
Ln =4, (x7 }’)a— +ank(x y)_
X1 X
6 0
+ank+1 (x y) . +an.2n(xa y) ’
6 1 OVan—t
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where the vector fields L,, ..., L, span the first bundle of (1) and L,, ..., L,
restricted to the points (x, 0) span the second bundle of (1).

The functions on N which correspond to CR functions on M nU are
the functions u which satisfy the system of equations

(4) Liu=...=L,u=0 on N.

The functions on V which correspond to holomorphic functions on U are the
functions v which satisfy the system of equations

(5) Lyv=...=L,v=0 on V.

From the Baouendi-Treves theorem [2] about holomorphic approximation
of CR functions (see also the paper of the authors [6]) it follows that we can
uniformly approximate solutions of the system (4) by solutions of the system
().

Now we formulate some global result about holomorphic approximation
of CR functions but from the point of view of PDEs.

Let U be an open subset of R*" and H a complex subbundle of CTU
such that (U, H) forms a complex manifold. Take the intersection V
= U n(R* x {0}), where k > n. Take the subbundle H, = HnCTYV, and
assume that (V, Hy) is a CR submanifold of (U, H) of CR dimension m =k
—n. Assume moreover that the CR submanifold V satisfies the following
condition (R).

(R)  There exist global holomorphic coordinates (z,, ..., z,) on U, a global
CR matrix-valued function on V, 4: V — GL(n, (), and a smooth n-
real-dimensional distribution L: V — TV such that for each vector
¢eA(p)L,, pelV,

Im¢&} <|Re],

where the coordinates of the vector ¢ are induced by the coordinates
(211 ey Z").
Tueorem ([7]). Let (U, H), (V, Hy) be complex and CR submanifolds

respectively as above and assume that V satisfies the condition (R). Then there
exists a neighborhood Q of V in U with the following property:

If in U there exists a strongly pseudoconvex domain G with smooth
boundary 0G, then an arbitrary CR function on V can be uniformly
approximated on G 'V by holomorphic functions defined in a neighborhood
of G.

Roughly speaking, the above theorem gives a sufficient condition for
approximating, on the compact set G N V, solutions of a system of equations
(CR functions on V) by solutions of a larger system of equations (holomor-
phic functions in a neighborhood of G). More precisely: assume that there are
global sections of the bundle H over U and the bundle H, over V. Then we
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can take the sections of the same form as in (2) and (3), where
X=(Xyy s Xpamh ¥=(V1, ..., Yo_m), and all coefficients a,, are smooth
complex-valued functions defined on V or on U. Moreover, the vector fields
L,,..., L, span the vector bundle H, over V and all vector fields L,, ..., L,
span the vector bundle H over U. The theorem then says that under certain
assumptions, any solution f = f(x) of the system

Lf=0, .., L,f=0 onV

can be uniformly approximated on G~V by solutions g = g(x, y) of the
system L,g =0, ..., L,g =0 on a neighborhood of G.
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