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Introduction

1. Approximation with nodes. In this paper the properties of approx-
imation with nodes are considered. This notion, introduced in the paper
[6]1), will be presented in §§ 1 and 2 with the generality needed for the
sequel. .

@ will stand for the set of all continuous functions in a finite inter-
val I = {a, b)?).

Y, will denote the set of all algebraic polynomials of degree not
greater than n. :

T is a fixed set of m distinet points ¢,,1;,...,1, (where t; <{,
< ... <ty), called the nodes. We suppose that
(1) TCI, wm<n?d).

Given a function £eC, we introduce the class

W& T) = B [|é—olr = 0};
e ),

it is the set of all polynomials from Y/, taking on the same values at the
nodes as the function & Inequality m < » guarantees that this set
is non-denumerable. On the space of continuous functions we define the
functionals

(2) en(£) = int |E—yll,

ws’)fﬂn .
3) &3 T) = inf  [lE—ol;.
. weW, (4;T)

The theory of approximation (without nodes) is based on the classi-
cal theorems of Borel and Tchebyshev. These state that there exists exact-
ly one polynomial y, at which the infimum (2) is attained, . e. such that

1) Numbers in square brackets refer to the bibliography at the end of this paper.

2) All the symbols used in this paper and not belonging to the theory of approx-
imation are listed in § 3.

3) Each paragraph has a separate numeration. When quoting the formulae from
another §, we give fi.st the number of that paragraph; e. g. the formula (2) of § 1 is
quoted as (1.2). ”
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|6 —vpnll; = ep(&). This polynomial is called optimal for the function ¢
in the class 9y, and the interval 1*). The theory of approximation deals
among other problems with the following ones: 1° the properties of
optimal polynomials for fixed =, 2° the limit properties of optimal
polynomials as n — oo. For example, the first problem is the subject
of the theorem of Tchebyshev on the alternant, the theorem of Weierstrass -
deals with the second.

The same problems may be considered for approximation with nodes,
which consists in the fact that we approximate a continuous function ¢
by polynomials of the class O¢,(&; T) depending both on £ and on a sys-
tem 7' of nodes. Therefore we impose on the polynomials o approximat-
ing & the conditions w(f;) = &(¢;) (¢ = 1,2,..., m) which deteriorate
the quality of the approximation (in the sense of deviation |&é— o)),
and simultancously modify its properties in a direction which may happen
advantageous, in some cases.

In paper [5] we have examined the properties of the optimal polyno-
mial @, for the function £ in the class W, (&; T') and the interval I. By de-
finition, this polynomial realizes the infimum (3), 4. €. ||§—wy,|l; = ,(&; T)
holds. We have proved that «, is uniquely determined, and we have
given a necessary and sufficient condition for a polynomial of class V7,(&;T)
to be optimal for £ in this class. Three equivalent formulations of this
condition, which will be used in chapter II, are quoted in § 2.

In the first chapter of this paper we compare the limit propertics
(for n — oo) of approximation with nodes with the same properties of
approximation without nodes. One of the results is that, for sufficiently
large n, approximation with nodes is at most two times less accurate
than approximation without nodes. The error of approximation of both
kinds is determined by the deviations (2) and (3). The case m = 2, in
which T consists of two elements, is worked out with more detail.

In the second chapter we put forward problems which seem to be new
cven in the domain of approximation without nodes. We give necessary
and sufficient conditions for two polynomials ,€%, and g, W, ,, to
be optimal for the same function £ in the classes 7, and 9, ; or W,(&; T)
and Y, (&; T) respectively. As a by-product we obtain some modifica-
tion of a well-known theorem on Tchebyshev polynomials, dealing with
their rapidity of increase outside the interval (—1, 1). o

2. Characteristic property of the optimal polynomial. Let us first
recall some definitions used in the theory of approximation.

The alternant of the polynomial « is the set of those points ¢ of the
interval I for which |£(t) —w(t)] = ||&E— o]

%) Several authors use a longer term: polynomial of best approximation.
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The elements of the alternant are called the (e) points; an (e) point ¢
is called a (+) point if E(t)—aw(t) = 0;if (1) —w(t) < 0, it is called a (—)
point. Two (e) points are said to be of the same kind if they are both (+)
points or both (—) points, otherwise they are said to be of different kind.

Each of the conditions (I)-(III) given below is necessary and suffi-
cient for the involved polynomial w, to be optimal for the function & in
the class OV,(&; T) and the interval I. We disregard in these conditions
the trivial case £e9),; then ¢,(&) = ¢,(&, T) = 0, and the optimal poly-
nomial for & in the class V¢, and W,(&, T) is £ itself. Apart from this case
the nodes are not (¢) points of any polynomial.

(I) In the interval I there exist (e) points p, < p, < ... < p; such
that if ‘

(1) [31332)'--131+m] ={P1»P2;---;Pz'VT (81<32<'--<sl+m\1
=3, S=i—w, 5 =(—1)signd(s),
2 = Sign 8(s) +2;_y(sign|8(sy)|—1) (6 =1,2,...,1+m),

then in the sequence z,,2,, ..., 2;,, there are at least n+1 changes of
sign.

(IT) In the interval I there are (e) points p; < py < ... < Pr_my4e Such
that if s, are defined by (1) with I = n—m+2, then (—1)'sign(&(s;)—
—og(e)) =0 for i=1,2,...,n42, or (—1) sign(&(s;)—wa(s) <0
for i =1,2,...,n42.

(III) In the interval I there exist (e) points p; < Py < ... < Pp_my2
such that the number of nodes lying between p;, and p; ., (¢ =1, 2,
..., n—m-1) is odd if p; and p;,, are of the same kind, and even if they
arc of different kinds (in particular it may be equal to 0).

. Condition (I) is proved in paper [5] (theorems 2 and 5). The impli-
cation (IT) = (I) is trivial, since with (II) being satisfied the sequence
21y %9y +vvy Zpyq 1N (I) consists of numbers equal to 41 and to —1 alterna-
tely. The equivalence of (II) and (III) is also obvious. Finally, the impli-
cation- (I) = (II) results from the definition of 2,,2,,..., 21 ;.

3. Notation. In the whole paper small Roman letters denote numbers,
great Roman letters — set of points on the straight line or in the plane,
small Greek letters denote functions, great written Roman letters denote
classes of functions. Moreover

1° z¢ X denotes that x belongs to X, xe X denotes that x is not in X
2° X is the closure of the set X;

3° XY~Y and X v Y denote the intersection and the union of the
set X and Y, respectively;
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4° lwl, Ty ouny .fr,,l denotes the set composed of the elements
Tyy Xgy «eny Tnj .
5° E{ } denotes the set of points ¢ satisfying the condition in { };
¢

6° (@, b> and (a, b) stand respectively for the closed and the open
interval with the bounds @& and b; semiclosed intervals are denoted by
a, b) and (a, b);

©7° & = 5 means that the functions £ and 5 are identical;

8° the norm of the function £eC on the closed set F CI is defined
as

1€llp = max[&(t)];
teF )
9° degw is the degree of the polynomial w;
10° max{x, y} denotes the non-smaller of the numbers z, y; min{x, y)
denotes the non-greater of the numbers z, y;
11° [x] denotes the integer part of . '



CHAPTER I

Limit properties of approximation with nodes

4. Statement of the problem. In this chapter the notation adopted
in § 1 and the hypotheses (1.1) are retained.

We shall compare the properties of the sequences {en(£)} and {en(&; T))
characterizing the accuracy of approximation of the function £ by algeb-
raic polynomials, without and with nodes respectively. Let us first reca-
pitulate what is known about these sequences.

Weierstrass has proved that for every function e we have

~ lim g,(&) = 0.

N—o0
From a theorem of Yamabe [8], dealing with a more general problem
it follows that for every £eC and every system 7 of nodes

lime,(&;7T) =0

N—»00
holds. Hence, imposing at the nodes additional conditions on the polyno,
mials approximating the function, we retain the possibility of arbitrarily
precise ap proximation of every function by algebraic polynomials.

Since W,(&; T) CW,, the definitions (1.2) and (1.3) imply that for
n > m the inequality e,(&) < e,(&;T) is satisfied for every function
£eC and every system T of nodes. It is also known [6] that there is such
a constant s > 0 depending only on the basic interval I and on the set 7'
of nodes that for every continuous function £ and every n > m

(1) P,n(‘f; T) < sen(&).

The last two inequalities give the estimation from above and from
below of the terms of the sequence [e,(&; T)}.

We know many theorems dealing with the kind of the convergence
of {e,(&)} for several classes of continuous functions. By (1) these results
may be transferred to approximation with nodes.

In §§ 5-7 we strengthen inequality (1) by various methods and pre-
sent some related results. The principal results are the theorems 5.2,
6.3, 6.4, and 7.10,
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5. Qualitative results. We shall prove

THEOREM b5.1. If the system T = [fl, tyy ...y tm} of different points
is contained in I = {a,b)>, then there exists a positive integer v = v(T')
such that for arbitrary numbers xi, 7y, ..., ¥m there exists a polynomial @
satisfying the conditions: 1° ¢eQy,, 2° @(ty) = a, for k=1,2,...,m,
5° lplly = max o).

It is essential in this theorem, connected with a result of Wolibner
[7], that ¥ is independcnt of x,, 7y, ..., Tp.

Proof. If #y =09y =... =™, = 0, the polynomial ¢ = 0 satisfies
the condition 1° for every positive integer », and the conditions 2° 3°.
Suppose now that x,, v,,..., 2, do not vanish simultaneously. Let us
suppose, for simplicity, that ¢ <t, <1, <... <t, <b (from the theo-
rem proved for this case follows its validity for the case t; = a or ¢, = b).
Let us write v; = a, ‘

24t - =1k+2fk+1
3 7 st 3

-

for k=1,2,...,m—1 and #4,, = b. Hence from.the ordering of nun-
bers t;'s it follows that

U < by <y < Uy <My <y <.ov < Uy < oy < Ugpp.

Let ¢ (k,! =1,2,...,m) be such that ¢t; =1 (the signs will
be fixed latter). Lt L, be the polygonal line with vertices — -

ckl) Ck,1 Ck,2 Cr2 .
Wy, — (ty, O {u. 2 U, . ty, 0), {u =1, ...
( 1 om ! ! ) 2) Im ? 3 2m ’ (2’ )1 4 3Im ’ ’

Ck.k Cr i Cem) - Ok,
('sz—l, om )) (Try 1), (1‘-'2lcv T)1 Ry ('uzm—u _:Z;'L_)’ (tmy 0), ('”27:13 3,’::)1

& @211

and let i, be the function defined in the interval (v,.,,> = I, whosc
graph is L.

The adjacent vertices of L, have different ordinates, whence we may
apply to the function 2, the theorem of Wolibner of [7]. Let ¢
= @'Ck1 k2309 Ckms 1 T2y ...y Im) DY the polynomial existing in virtue
of this theorem; c¢; decr.uses and incrcases together with 4, its graph
passes through the vertices of L. Thus

(1) TE) = Oy
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and in (wy_,, uy> the derivatives of the functions g, ..., ¢1 1, ¢1: €11y
...y ¢m change the sign only at #; from —e,3,..., — €10, 1, =€y ...
—Cmp 80 €135 .0y Crgy —1y Ciay ooy Omy respectively.

Put

where z;.%,,..., %, do not vanish simultancously. 1f x; = 0 for a k,
then the definition of ¢, ¢xgy ..., Cxm does not atfect the form of ¢;
let us set, for example, ¢x; = Cty = ... = G = 1. Now let x; # 0.
Setting ¢y = —signa,a; for a, #0 (for x, =0 the number ¢y is
already defined) we see that the derivatives

! ! ’ 7 ?
Trquy oo s T390y T1 Py Prp1F141) ooy TmFm

m
of the terms of the sum > x;-x, change the sign in {wy_;, uy) only
k=1 N

at t; from

risignay, ..., xf_ysighay, signa, i, signay, ..., y,signay
to

—alsignay, ..., —a;_;sighay, —signo;, —aj, 8ignay, ..., —ansignsy

respectively. Hence the polynomial ¢ constructed for the formerly.defined
numbers ¢;’s increases in the left-hand neighbourhood of ¢ to «;, and
decreases in the right-hand neighbourhood if 2; > 0; if 2; < 0 it behaves
in the oppositc manner. :

We shall prove now that ¢ satisfies all the desired conditions. Indeed,
2° follows from (1). Now we prove 1° and 3°. Letus consider ¢ in {uy_,, ugy).

As has been proved ¢ may attain its extrema in this interval only at the
points wy_,, t;, uy. Since ‘ '

m m
Ck1 1
P (try_1)| = E Tp = | < — E | 2] < max |xy!,
2m 2m &
k=1 k=1
m m
: ck,l 1 )
@ (ug)| = E T ——| < —Z |y < max |y,
st 3m 3m L k

we see that for x; 540
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In  (ug, usy, gy ugdy ...y {Ugp_s, Ugm.,» and in those intervals
(Ug_1,Ugy for which ; = 0 we have

;
lre@r(t)] < W Ll

-~

since [rgy(t)) = 0 and |qu(t) < 1/2m for k1. It follows that
(3) F0} < 5 D rel < maxin,

in these intervals. By (2) and (3), ¢ satisfies condition 3°. The polyno-
mials ¢; depend on zy, 2y, ..., 2, only through the parametres ¢, ¢xq,
.«+y Cmy €ach of which can assume only two values (1 or —1). Hence for
an arbitrary system z,, 1y, ..., 2, of values

dege < max max degqi(crq, Cray - : Coms trslzy ooy tn)
2
C =1
k)

and the quantity on the right-hand side may be taken as »(7T). Then for
every system x,, s, ..., I, O0f numbers we have geW,.

THEOREM 5.2. Let v(T) be the number defined by theorem 5.1, the
system T of modes being arbitrary. If £€C and n = v(T), then

(4) en( 65 T) < 2ea(£).

Proof. Let y, be the optimal polynomial for the function £ in the
clags <), and in the interval I. Thus,

t5) 1€ —ally = ea(&).

Applying theorem 5.1 to the nodes ¢, f{,. ..., 1, and numbers
L on = E)—valt), T = E()—yalla)y s T = Elim) —yallm)
we see that there exists a polynomial ¢ such that
(6) ¢(t) = E(te) —yally)  for bk =1,2,...,m,
(7) gl = mi‘xls(tk)_'/'n(fk)L

By (5), (7) and the first relation of (1.1)

(8) &= (ynto)lr < Fn(E)-I-m;hX|§(fk)—V‘n(l'k)i < 2eg(€).
Since deg(y,+¢) < max {n, »(T)}, we have virtue of (6)

Yot o eWn(&; 1) for w3 w(T),
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and by formula (8)
el &5 T) < N§—(ynte)ly < 26,(8),
q. e. d.

6. Quantitative results. From the theorem of Wolibner, fundamen-
tal for the proof of theorem 5.2, we cannot deduce for what » the inequa-
lity (5.4) is valid, 7. e. we cannot estimate »(7') from above. Only for m = 1
(as T = {#]) it is obvious that (5.4) holds for every = since

Yot (E (1) —"/"u(fl‘) € q‘yﬂ(g; {fl”
and "

E“(E; "1” SS l|E_V'n_(5('l)—‘/'n(’l))lil < NE—yallr + £ (L) —yalty)] < 2en(8).

Hence we suppose in this § that 7 contains at least two nodes.

Theorems 6.3 and 6.4 give some quantitative results dealing, how-
ever, with inequalities weaker than (5.4): the constant 2 is replaced by
a greater one.

THEOREM 6.1. Let

1 T2 T T1,m
T2 1 To3 Fom
(1) V=731 T2 1 Fam s
/'170,1 '1"'2 '7" 3 1
Fix o g i Tion
Yo 1 T23 Fam
] — .
(2) W= (731 732 1 Pam
Fmai Tmg Tmga 1

n m p
Um == fm(o)"m‘*‘fm—l(l)rm_l_*_"'+/1 (m’il) r,

. _1_ m\ o m\ a1 m o\ .
ﬂm = (fm+l(0)'r *‘fm(l)r +H‘+i2(m.—1)1)’

11 1
(4) fk=k!(1—1'!+g—...+(—1/‘-—) (k=1,2,....,m).

(3)

where
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If |rigl <7 for k,1=1,2,...,m, then

(5) 1—an(r) < v < 140k(r), [w] < (1) s)

Proof. To estimate the determinant » from below we develop it into
the sum of products of its elements and replace all signs of the products
by —, except the sign 4 of the product 1 of the principal diagonal, and
we replace all 7;; by ». This gives v > 1—o,(r) where 1—a,, is the poly-
nomial of degree -m arising from the determinant v by the described
procedure. Then we change in the development of v all the signs to +
and replace 7; by 7;this gives v << 1+4-an,(7), an being the same as above,

To obtain an upper bound for the determinant w we change all signs
in its development to + and replace 1; by r. On the other hand, to
obtain a lower bound for this determinant we change signs in its develop-
ment to — and replace r; by . These estimations give jointly —pBg(r)
L w < Pul(r) where 3, is a polynomial of degree m.

We shall obtain recurrence formulae for the polynomials ¢, and 8,
which will enable us to prove (3); to do this we vary the procedure leading
to the estimation (5). Developing v and w by the first line we get

(6) v="20 — (11U 71 3Ws o 7 m)s

(7) W = 70 — (107 W+ 7y ),

where the determinants o', wy, oy, ..., w, are of order m—1, »" is of
the same type as v (the principal diagonal consists of 1’s, other terms are
the 7,,’8), and wu,, ws, ..., w, are of the same type as w (the principal
diagonal, -except the first element, consits of 1’s, the other elements are
Tx'8). We may obtain the estimation from above for » by the bound
1+4-on(r) replacing 75,73, ..., 7 in formula (6) by r», writing for v’

5) Several papers have appeared recently, dealing with the estimation of de-
terminants of matrices with dominant diagonal. We quote them in chronological
order: E. B. Price, Bounds for determinants with dominant principal diagonal, Proc.
Amer. Math. Soc. 2 (1951), p. 497-502, A. Ostrovsky, Note on bounds for deter-
minants with dominant principal diagonal, ibidem 3 (1952), p. 26-30, J. L. Brenner,
Une borne pour un délerminant avec diagonale majorante, C. R. de I’Acad. de Sci.
238 (1954), p. 5565-556, J.L. Brenner, A bound for a determinant with dominant
main diagonal, Proc. Amer. Math. Soc. 5 (1954), p. 631-634, [I. M. KoTenanckuii,
Oyenku dan onpedeaumeneii mampuy c npeobaadarwweli 2aasnoii Ouaconaawvio, Masec-
tua Axagp. Hayx CCCP, cep. mar. 20 (1956), p. 137-144.

The strongest estimation (of Brenner) gives for the determinant (1)

” (1— (m—=1)kr?)

as lower bound; our bound (3) is better,



Limit properties of appreximation with nodes 13

its upper bound 14-0,_;(r) and estimating the determinants wy, ws, ..., %y,
by their lower bound —p,,_,(+). Hence

(8) 1+(1n = 1+(’m l+(m . 1 Tﬁm 1

An ana,logous procedure for the upper bound of w, stm‘tmg from for-
mula (7), gives

(9) Bom —7(1+am 1+(m—1 ﬁm 1)

Now, m = 1 implies v = 1, w = r,;, Whenee ¢, = 0, f, = r and the
formulae (3) are satisfied for m = 1. Thus, it suffices to verlfy that for
m =1, 2, ... the polynomials «, and g, defined by (3) satisfy the recur-
rence formulae resulting from (8) and (9):

(10) "d'r.n+1 - am+mrﬂma ﬂ@n-;-l = 7‘(1+am+mﬁ'n;)-

By computation

“m+m"rlgm—fm( ) +-.. +f2( __2) 2+f1( —'l) r+

o) a, ")

m+1y m+1\ . m+4-1 m~+1\"
=fm+l( 0 )7' +l‘1“f‘m( 1 )’)‘ ++f2( _1)T2+f1( m )?‘:-am_“

(we have used the fact that, according to (4), f, = 0). Testmg the second,
of the formulae (10) we get by computation

I

1

+fmia (7(7:) "+ fm (71") Pl (mﬁl) r+f; (”ﬂt)

=t fos) () 7 Ut (1) et )0

m

1+cpt-mpy, = fm(i )T - fm 1( ) e +.. +f1( 1)f+1+

By definition (4) we have, for k¥ =1, 2,...,m,

1 1 : 1
fetfesr = k! (1— — = —..‘+<—1)"—)+

1. 1. 1
(k+1)! (1— e L (1 +(—1)"+‘——7)'
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1
= (k!+(k+1)!)(]— i - 51'— —...+(—1)"+1—1—---« +(—1)"+2——1—)-—

(k+1)! (k+2)!
1 1 | 1
— k! K+l & k+2_____) —(k o qyR+2
(( D gy Mgy ) SN
k'+(k+1)'f e )( _ 1 1 )_ fiss
ko)t k1 (k+1)(k+2) k+2] k41

and 1 = f,, whence using the properties of the binomial coefficients

r(14+ay+mpy)

) B )AL

1 m+1\ m-+1 m+1
=m,+1(fm+z( 0 )7' +1+fm+1( 1 ) +.. +/2( . )) Bmirs

q. e. d.

Now we introduce new notation. T = {t;,1;,...,1,) With & <t,
< ... <ty being a system of nodes in the interval I = (a,b), we set

¢=13 min (1 —1), 4= max max [t,—a, b—t}.
I1gkgm—1 I<kgm
By 7, we denote the positive root of equation an,(r) =1, where m
denotes the number of nodes of 7 and a,, is defined by the first formula
of (3). There follows a,(0) = 0, a7 ) > 0 for r > 0, whence r,, is uniquely
determined.
THEROREM 6.2. Tf
: d+e
(11) n > 210g—/log +

—C

then for every system Ty, Ty, ..., Ty of numbers there exists in the class Wy
a polynomial ¢ such that

ell) = for k=1,2,...,m,

(1+(m—1)7)Bm(r)
7 (L— 05 (1))

(12) lplly < max |2l

where

7 d—c n/2
(13) 7=2(d+J :
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Let us notice that in virtue of (3) the function

(L+(m—1)7)Bm(r)
r{1—om(r))

involved in the inequality (12) is greater than 1 for » > 0 and decreases
to 1 as r — 0, 4. e. a8 » — oco. This means that theorem 6.2 is weaker than
5.1, but asymptotically (as n — oo) tl’ley are of equal efficacy.

Proof. Let T be the ith Tehebyshev polynomial: T, = cos(l arccos«),
—1 < u <1 (to retain the traditional notation, we give up the principle,
assumed in this paper, of denoting fdnctions by small Greek letters).
It is known ([1], p. 303) that for 0 < 2z < 1 the polynomial of degree
20 in u, defined as

,2_] ‘

ut—zi—1
1(u;z) =T 1y

satisfies the relations

<1 for we{(—1,—2) and for welz, 1),

14 (U3 2
(14) (s 2)] >1 for wue(—z,z),
) 1422
(15) maxt(u; 2) = 1(0;2) =T, (—]_ ‘2)-
<z e

As (14:%)/(1—:* > 1, we can determine the gnantity in (15) from
the formula

Ty(u) = }{(u VU — 1) (n —l/wz_——])l}

= @+l —1) + (uVaF 1)
([4} p. 72). We have

1+zz+l/(1+32)2_1 L4242 14e

1—22 1—22 1—:2 T 1=z’
{142 1{{142\" [1—2\
{129 )
1—=z 2 W\ —: 142
whence
1 /142\
(16) n(052) > ‘_Z(l—z)’

and Iim 7;(0; 2z) = + oo for every z€(0,1). Let
>

Iy = {x—e, tetc)y,  u = 7
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Hence tel, if and only if uwe{—c¢/d, ¢/d>, and by definition of the
quantity d, tel = (@, b) implies |u| < 1. Hence for th~» polynomial

L—t, ¢ -1
P xt) = r7 k; — with 7 =|1{0; °
’ d d d

iheqﬁéliﬁes (14) give

(17) S @I <r o for tel—I4,

(18) - ' ' < p(t) <1 for  tely.

For xy, x4, ..., v, tixed, the coefficients y,,¥,, ..., ¥, of the linear
combination
’ m
Y1 = 2 YeT1x
k=1
are defined by the equations

yk‘fl,k(.fj) =y (g =1,2,...,m).

liﬁ 3

(19) ity =
k

Il
-

Since ¢q;(fx) =1, the determinant of the system (19) is equal to

- 1 <pl,2(tl) voe (Fl,m(tl)
(20) 0= ‘rl,l(tz) 1 e q’l,m(rz)
| Praltm)  Prallm) 1

By the definition of ¢, in this determinant |t;—t| > ¢ for j # k,
whence {#; is in I —I, and the inequality (17) implies |¢;.(t;)| < r for j + k.
By (16) and definition -of r we get » < 2((d—¢)/(d+c)), whence r —> 0 as
I - oo. Therefore we suppose that ! is so large that the lower bound
1—a,/r) of the determinant v is positive, <. e. that a,(r) < 1, or, using the
notation introduced previously, that » < r,. Then v 54 0 and the system
(19) has precisely one solution y;, %,, ..., ¥,,. Determining this solution
by Cramer’s formulae we obtain

m
(21) Yr = ng;"ri (k =1,2,...,m).
7=1 .

Every coefficient g,; is the ratio of two determinants: the nume-
rator is a determinant of order m —1, of type (1) if k¥ = § and of type (2)
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if & # j. The denominator is the determinant (20). The bounds of theorem
6.1 (with m replaced by m—1, if necessary) lead to

(22) gl <Pt gn k2,
Tp—
11— y(7) 14 0p_y(7)

< < —
L+ omn(7) ' 1—om(r)
whence, in virtue of the inequality |1—a,,_,(7)] < 140, (r), we get

1+ 0m_a(r)
, P <l —————.,
(23) grp! < rp—

Setting # = max [
—_— H 7‘
i

and applying (22) and (23) we obtain for the quantity (21)

(m_l)ﬁwau—l(7)+] +am—l(r) 2
1—cp(r) h

|yk| =

Formula (9) may be written in the form (m —1)f,_1+14+a,_1 = /",
whence
Bml7)

(24) ‘ lyel < r(l—_m X,

Now we determine a bound for the function ¢; in the intervals
Iy, 1,,...,1I,, which, by the definition of number ¢, do not overlap.
For tel; it follows from (18) and (17) that

m

lga(2) | y"/k‘flk(t | < |3/1|+'3'2|’!/k!,
=
whence, by (24),
(14 (m —1)7) Bualr)
(1 —ou(r))

In the rest of the interval I, i. e. in the set

m
(25) ()] < for eI
i=1

m
_Uli’
=1

all the functions ¢;; satisfy inequality (17), whence

m

lgre(t)] = lE%‘Pu t)' ?‘Z Yl < MPmlr)

1—ap(r)
Rozprawy Matematyczne XIV . @%}{)

| =1
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This estimation is stronger than (25), for r << 1, and therefore inequality
(12) follows finally from (25). This inequality is satisfied in particular when
r i8 equal to 2((d—c)/(d+c)), 4. e., when it satisfies (13) where n = 21
is the degree of the polynomial ¢;. Condition (11) results from the pre-
viously postulated inequality » < r,, and from (13). Thus we have pro-
ved that the polynomial ¢, satisfies the conditions of our theorem.

THEOREM 6.3. If
2 d
n > (2 log —-) / log —j:ﬁ,

Tm

then every funmction & of Q satisfies the inequality

(L+(m—1)7)Bm(r) } .
’l“(l —am(T)) £u(§)

en(&; T) <{1+

where r = 2 ((d—c¢)/(d+e))"".

Proof. Let y, be the optimal polynomial for the function £ in the
class W, and in the interval I, 7. e. ||§—w,llr = &/(&). By theorem 6.2,
for n satisfying the hypothesis of the theorem, there exists a polyno-
mial @Y, such that (i) = &(1p) —yalty) for ¥k =1,2,...,m and

(1+0m—1)7)fm(r) | (L+(m—1)1)Bm(r)
1.(1 —T)m(i')) mtl]c)x |&(1r) _Vn(fk) | < T(I—(Im(l'))

There follows ¢+, e W, (&; T),

lellr <

enl£).

(L+(m—=1)7)Bulr)

a5 1) < Il plls < eal)+ =

q. e. d.
THEOREM 6.4. If n > p/lc where

enl€),

m—1

(26) p = min {6(b—a), (2(l—~(m--1))c},

¢c=4% min (f,,~%), d=max max{tz—a,b—1},
t<hksm—1 1<hkgm

‘then for every continuous function £ the inequality e,(&; T) < 26,(&) [(1—p/cn)
holds.
Proof. The inequality to be proved is trivial when ¢,(§) = 0.

If e () >0 let us write s, = 6,(&;T)/e,(6). We must prove that
n > ple implies N

2
(27) 8¢ <

1—plen’
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Let y, be the optimal polynomial for the function £ in the class Y,
and let 6 = §—vy,. Let 4, be the function defined in I = (a, b)>, whose
graph is the polygonal line with vertices

(28) (a7 6“1))7 (t11 a(tl))’ (t2; 5(7‘2))’ e (tmy é(tm))a (ba 6(tm))-
In particular

(29) Zs(tk) = () (k=1,2,...,m),

(30) 1ellz = mgxlé(tk)l < en(£).

Now we estimate the deviation ¢,(4,) in two ways.
1. By a theorem of Jackson ([3] or [4], p. 161)

b—a
sn(le) < 12w (W),
where w is the modulus of continuity of A,. By its definition
Ae(tryr) — Aot
o(h) < max Aeltierr) =2t
1<ksm—1 e —U

By (29), (30), and by the definition of the quantity ¢
el = Ae(te)l _ 16(tkes) — 0 (t)] < 2en(8)

~=z
2¢

(31)

b
fer1—l Tep1—1tk

whence o (h) < he™ e, (&) and
6 (b—a)
(32) enlle) < —cn—en(§)~

2. The function 1, may be represented in the form

1 6(t)—6(ty)
(33) A= ———t—t;|+
2 1
13 [ 8(t5.1)— (1) 6‘(t) (1)
+§_ ( 1,:1 i [4 i-1 )it—tii—'
o i1 ti—ti
8(1, ) — (1
___1_‘ (m (m—l) !thf1n1—
2 fm tm—l
10 [Olti) =0t 8(t:)—8(t;_)
_E ( 1+1 v % 1—1 )|t1—ti|+
=2 fz-g-l £ fi—tia
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Indeed, it is casy to see that 1° the graph of the function (33) is a po-
lygonal line whose vertices have the abceissae &, £,, ..., f,, 2° 2:(1;) = 6(t,)
by (33), 3° the sum of the coefficients at |t —t,|, [t—1,|, ..., [t—t,| is equal
to zero. From 3° it follows that for ¢ <t, <it, < ... <t, and for ¢t > 1,
> ... >t, >t, the function A, defined by (33) does not depend on the va-
riable t, whence A a) = A,(t,), 2:(b) = 7.(t,). We must verify that this
function satisfies cqualities (29) for k = 2, ..., m. It suffices to prove
that in the interval (#, ty,,) where k = 1,2, ..., m—1 the derivative of
funetion (33) is equal to (O(tey1)—0(tx))/(ty1—Tx), 2. €. equal in virtue of
(28), to the derivative of 7,. If t, <t <1, then [{—t,|" = ... = [t—t,/
=1, t—trp1l = ... =ty = —1, and the derivative is equal to

2 ty—t 2.

1 8(t)—6(t) | 1 "(6<n+1)—a(m é(m—am__l_)_)_

9 9
2 2 tmn—lim—1

1=2
1 Ew‘ (a(fm)—a(m B a(ri)—ém__l_)_) 1o 6(tm) —0(h)
; .

2 i+1— 15 i =1y

The sum of the terms of each line of the above expression is equal to
(0(thyr) — 0 (th))[2(ths1—1e)y 4. e. d.
Bernstein has proved that if the interval of approximation is (—1,1),

then e,(|t]) < 2/nn (see [2] or [4], p. 187); it follows that for I = {a,d)
as the interval of approximation we have

2
1)) < —max {|a], [b]}.
an

The approximation to the function |t—t;| in the interval {a, b} is
cquivalent to the approximation of the function [¢| in the interval
(a—fk, b—t>. As a <t < b,

2
(34) Fn(lt—-tkn < —”;; max {tk—a,, b—-tkl

It is known that for arbitrary continuous funetions é&,, §,,...,& and
arbitrary values x,, x,, ..., 1y

(35)  en(@i1+webs+. . k) < 1wyl en(r) +1o] en( &)+ o A lan] en(ED),

and if » is constanﬁ, then ¢,(n) = 0. Taking into account (31) and (33)-(35),
we get

Fn(;e) <

CTTN

9 5 L nm—1 .
enl ) (E max {t, —a, ?)_tl’ + ;; max {t;—a, b—t:} +

+ %max {tm—a, b—t,,.}).
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We have
max {t;—a,b—t,} <d, max(t,—a,b—t,} <d,
max {t;—a, b—1;) = max {t,—a—(t,,—1;), b—t,—(t;—1,)}

for ¢« =2,...,m—1.
By the definition of ¢ and d: |t,—1; > 2|k—I|c, whence

tm_a'_(tm_ii) < d_2(m_7’)cy b_fl—(fi_fl) < d—2(7’—1)07

max {t;—a, b—t;} <d—2¢min{m—i,i—1].

Therefore
2ea(£) o ovd—90 S i o
(A < Gﬂ%—-(d-]—(m—d)d—-—_c/ mm{m-z,z—ll).

1
[

i
If m is even, then

m-—1

D' min{m—i,i—1} = 2(1+2+...+
=2

m—2 m(m —2 . —1)
) _m ) < (m—1)
2 4 4

If m is odd (whence, by the hypothesis of this §, greater than 1), then

m—1

D' minfm—i,i—1} = 2(1+2+...+

=
~In both cases
en(le) < —— (m—1)(2d—(m—1)¢).

m—3)+ m—1 (m—1)?
2 2 4

Hence introducing the quantity p we obtain from (32)

el < Len(8), i e en(de T) < g, (8
ch cn §

(since A, is not a polynomial, ¢,(4;) > 0 and the quantity 81, is well defined).

If x is the optimal polynomial for the function 72, in the class
Wp(?e; T), then

=247 < 1= s, ea(8),
on ¢
whence, by (30),

2l < (1 + isze)ms).
ChR

As y(ty) = 2:ty) = 0(tx) = E(tx) —yn(ty) for £ =1,2,...,m, we get
¥ +yneNy(&; T) and

bl €5 T) < E—(g vl < | E—qullr izl < (2+ - s@) 8,
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i. e.
(36) se <24 sy
en ¢
we iterate this inequality putting successively i,, A‘e’ ... for &, and we
obtain
(37) s <2+ s ...
¢ cn i

Since s, < s for every continuous function 5 with s depending only
on the system 7' of the nodes and on the interval I ([6], and the estima-
tion (4.1)), by the superposition of ¢ of the inequalities (36), (37), ... we
obtain ,

1— Y i
( <odmtelen’ (2

1—p/en en

If n > p/e we obtain (27) as the limit-inequality letting ¢ increase
infinitely.
Theorems 6.3 and 6.4 give an upper bound for the ratio ,(&; T)/en(£),
defined when ¢,(£) > 0.
Both theorems imply that
H En(’f ’ T ) < 9

n—>00 f-n,(‘f)

Now we shall compare both estimations as » — oco. For theorem 6.3
this passage to the limit is equivalent to » — 0. For fixed m and r - 0
by (3) and (4) we see that au,(r) = o(r), Bn(r) = r+ (m—1)r2+4ro(r),

whence
(L+(m—1)r)Bn(r) _ - (14+(m—1)r)(14+(m—1)r+o(r))

r(l—an(r) 1—o(r)

d—c\"? d—c\M?
= 242(m—1)r+o(r) = 2+4(m—1)(d+0) +o0 (( d-l—o) )

1+

The quantity

d—c\"?
4(m—1)( )

d+c

tends to zero with the rapidity of the geometrical series, ¢. e. more rapidly
than : _
2 2p

-2 —

1—plen en—p
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Hence the estimation of theorem 6.3 is asymptotically stronger than that
of theorem 6.4. This is especially evident for m = 2; in this case a, = 7%,
B, = r*+r, whence theorem 6.3 gives

nf2\ 6
en( €3 T) <2/(1_2(01—«:) /) )
&n(€) d—+c

7. The case of two mnodes. In this section we consider the case
when 7' consist of two points £, and ¢,; we determine a positive integer
v(ty, t,) such that e,(&; {t1, t,}) < 2¢4(£) for every n > w(ty,1;) and £eC.
This is a complement to theorem 5.2. To find »(t,, t;) we shall solve the
following problem:

Given two points ¢, and {, > ¢, of I and numbers z;, and z, such that
@ = max {|,], lz;|] > 0, in the class 9}, of polynomials pe), such that

(1) p(tl) =21, @(t) =y,
we must find a polynomial ¢, such that

lgally = inf |lgl;.
Fe WY
The existence of ¢, is almost evident; this polynomial, which is not
necessarily unique, will be called minimal in the class .

By the definition of Wi: lig.lly = ... = ligallr = lgnsallr = ... > =,
whence by theorem 5.1 there exists a positive integer »(t,, {,) (the same as
at the beginning of this section) independent of z, and z, such that |j¢,|z
=g for n = »(ly, 15).

Since we are seeking a polynomial of the best approximation to 0
in I among all polynomials of class ,, satisfying the conditions (1),
we shall use the terminology settled in § 2: an (e) point of a polynomial ¢ -
is any point ¢ of I such that |p(t)] = ||¢|lz; ¢t is called the (4 ) point if
@(t) = |lplly and (—) point if ¢(t) = —|lp|l;. The set of the (e) points is
called the alternant of ¢. We also consider two functions: a(p) denotes
the number of points of the alternant of ¢, and a,; (p) denotes the number
of points of the alternant lying in the interior of 1. a(p) can be infinite only
when #; = x,; in this case the alternant of the function ¢ = z, is the entire
interval I. For all other funetions we have a(p) << n+1, since if the al-
ternant of ¢ contained n-+2 points, then at least » of them would be
gituated in the interior of I. These points, however, are roots of the
derivative of ¢, which is a polynomial of degree <<n—1.

¢) In our later paper, On the accuracy of approximation with nodes, Bull. de1’Acad.
‘Pol. de Sei., €1. ITI, 4 (19586), p. 745-748, we prove that if n> 14[p/e] + 12, then the
inequality (5.4) for every continuous function £ is satisfied (added in the correction).
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THEOREM 7.1. The polynomial ¢eWs is minimal in the class W,
if and only if there exists no polynomial yeé W, such that

(2) 2(t) = x(t) =0,
(3) sign y(t) = signe(t) for ted,

where A is the alternant of ¢.

Proof. Suppose that a polynomial y with the above properties
exists; we shall prove that ¢ is not minimal. By hypothesis the points ¢,
and t, do not belong to the alternant. Indeed, if, for example, t,e A, then
gl = lp(t)] = . By (2) and (3) signe(t,) = signy(t,) = 0 and z = 0,
contrary to the hypothesis.

Let

Fy = ‘EI{W(t)! = llplr—h},

where 0 < h < |lpll;. As ted implies |p(t)| = |lgll;, we have A CFy,
and by (3) it is possible to choose h > 0 so small that the inequality

(4) sign y(t) = signg(t) # 0
will be satisfied in F,, since it is satisfied in A. Hence for te F),
(5) (@) = 1> 0.
Let
g —h I
(6) ¢ = min{”""’ R }>
lxllr ~ X+lxllr
Since min|p(¢)| = |l¢ll;—F, and by (6)
teF'p,

cmax |y (¢)| < ellg's << gl —1,
teFp,

we see that the inequality

min g (2)| > emax |y (t)]
teFy, teFy,

is satisfied. Hence, from (4) and (5) we obtain for te F)

(7) P —ex ()| = lpt)| — ¢lx(t)] < lplly—¢f.
On the other hand, for tel—F,, by (6)
h
L+l

By (7) and (8) it follows that |jp —cxll; < |lpll;, and since, by hypothe-
8is (2), p—cyeWh, @ cannot be the minimal polynomial in the class W,

(8) le®)—ex () < llplr=F, +ellxlr = llelz—h+ellylr < lll:—
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Let us suppose now that there exists no polynomial y with the pro-
perties described in our theorem. Hence for every polynomial w of class
W, the polynomial y = ¢ —w satisfies conditions (2) and at least at one
(e) point of ¢ have signy(t) # signe(t). It follows for every polynomial
weV), that |lp—xl; = llwll; = llgll;, whence ¢ is minimal, q. e. d.

In the following theorem we use the notation introduced in this section.

THEOREM 7.2. If ¢eWy, a(p) < +oo and if the (e) points of the
polynomial @, written in the natural order, can be divided into k groups
of (e) points of the same kind, where adjacent groups contain (e) points of
different kind, then k > a(@)+ciplp) —n+1.

Proof. Let the groups of (e) points consist respectively of g, ¢z, ..., ¢
points; thus g;+g,+...+gx = a(p). The (e) points inside I, a . (¢) in
number, are roots of the derivative of ¢. Moreover, between each two
consecutive (e) points of the same kind there lies a root of this derivative,
different from the roots distinguished hitherto. Hence the derivative
of ¢ has (g1 —1)+(g:—1)+... +(gx—1) +o1pe(p) = alp) +aypelp)—k < n—1
roots, q. e. d. '

In theorems 7.3-7.5 we give the conditions for the polynomial ¢ e,
to be minimal in the class ,. By theorem 7.1 their proof consists in tes-
ting whether or not there exists a polynomial ye<, satisfying condi-
tions (2) and (3).

THEOREM 7.3. If ¢e WS, Izl > @, a(p) > n, then the polynomial ¢
is nmot minimal in the class WP.

Proof. We divide the (e) points py, pa, ..., Py Of ¢ into groups
composed of (e) points of the same kind: :

P1y Pay -+ pll (fiI’St gI’OLl]_)),

(9) pll-i-l’ pll-|-27 R p’z (Secon'd groul))’

Plp_1+11 -+ Plp—a@e)  (Kth group).

The number of groups satisfies the inequality & < «(¢) < », whence
(10) k+1 < n.

The construction of the polynomial y will be carried out separately
in each of the four cases which will be distinguished in the sequel — they
are all the possible ones since |l¢|; > «, and t; and ¢, are not (e) points.

I. The points f,,¢{, do not separate (e) points in the group (9).
We choose k—1 points r,, 7y, ..., 7,_; S0 that

(11) Py <1 <prg o (i=1,2,...,k=-1);
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if one of the pointé t), 1, is situated between the jth and the (j4-1)th
group, then as r; we choose that point (or either of those points if both
are 8o situated). To the set of points r;, 7,,...,7_; We add those of the
points ¢;,7, which are not in this set, and moreover if both ¢, and {, lie
between the same adjacent groups we add a poiht ¢* lying between
them. Thus we obtain a set s, ¢, ..., S, of k' points where %' <k +1,
containing ¢, and ¢, as elements.

We define the polynomial y as

(12) £ = elt—s)(t—sy)...(t—sp),

where the sign of the constant ¢ is chosen so as to give

(13) sign y(p,) = signg(p,).

From the construction of the points s;, sy, ..., $z. it follows that the
polynomial 4 changes the sign between two consecutive (e) points of dif-
ferent kind an odd number of times, and does not change the sign bet-
ween (e) points of the same group (9). Thus,

(14) sign x(p;) = signe(p;) for 4 =1,2,..., a(e).
Morcover
(15) 1) = x(ts) =0,

and, by (10), ¥" = n, whence y€e)),.

1I. Exactly one of the points {,, ¢, (for example {;) separates the (e)
points of the same group (9).

From the hypothesis it follows directly that onc of the groups (9)
contains at least two (e) points. Hence the number of groups ¥ < a(¢)—1.
We define the points 7, 75, ..., 7x_, by inequalities (11); ¢, is not among
those points, and ¢, is among them if {;€(p;, Pa). Suppose,.for example,
that p, <t; <p,, whence [, > 2. We add the point ¢, to the set r;, 7, ..., 75,
if it does not lie in (py, Pa); We also add ¢, and a point {7 such that
t, <t} < p,. Thus we obtain a set s,,¢,,..., 8 of points where &’ <(k—1)+
+1+42 =k+2 < a(p)+1 < n and for these points we define the poly-
nomial ¥ by (12). Hence ye, and equalities (15) are satisfied. If ¢ ful-
fils condition (13), the polynomial y has, at the (e) points py, Pz, ... P
the same sign as ¢. Indeed, between two consecutive (e) points of diffe-
rent type it changes the sign precisely once. (at one of the points
Ty, Tay...y Tk—1) and between two consecutive (e) points of the same
type it docs not change the sign or changes it twice (at the points t,
and t}).
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III. The points t,, t, separate different pairs of (e) points in groups (9).

Hence one of the groups (9) contains three points or two groups
contain two points each. Thus ¥ < a(p)—2 < n—3. We define the points
7oy Tay oy Tg_y DY (11).

Let y = c¢(t—ry) ... (t—7x_1) (t—14)*(t—t,)*; then degy = (k—1)+4 < n,
whence ye,. Equalities (15) are also satisfied. When ¢ satisfies condi-
tion (13), the polynomial ¥ has at the points (9) the same sign a8 ¢; in
particular, because of the introduction of the factor (t—t,)*(t—1,)? the
polynomial does not change the sign between consecutive (e) points of
the same type.

IV. The points t,, f, separate the same pair of (e) points lying in the
same group (9).

In this case we set

(16) X =c(t—ry) ... (t—=rp_1)(t—1)(1—1,).

As in the case II: k < a(p)—1, whence degy = k+1 < a(p) <n
and yeW,. If ¢ satisfies (13), then (14) and (15) are satisfied.

THEOREM 7.4. If ¢e WS, |l > @, a(p) = n, then the polynomial
@ is minimal in the class WS, if, and only if, its (€) points are alternately

(+) and (—) points and lie all outside the interval (i, t,).

Proof. 1.We shall first prove the sufficiency, <. e. that if the (e) points
of ¢ are not alternately the (+4) and (—) points or if some (e) points
lie in (t;,1,), then ¢ is not minimal.

Suppose the first case: there are two consecutive (e) points of the
same kind. Then the number of the groups of the (e) points (9)
satisfies the inequality

n—1l=n4+mn—-2)—n+1 <k <n—1,

whose left-hand part results from theorem 7.2 and from u(p) = n,
(@) = n—2, the right-hand part results from hypothesis. Thus ¥ = n—1,
and applying theorem 7.2 again, we obtain a;,(p) = n—2 whence p, = a,
P» = b (both ends of I are (e) points).

Now, as in theorem 7.3, in each of the four cases quoted in it we
construct a polynomial y satisfying (14) and (15). In case I the construc-
tion is not altered and inequality (10) resulting from ¥ = »—1 is applied.
In case II we define the points 7, 7s, ..., 7x_; by (11) in such a manner
that ¢, is among these points (p, = a, p, = b implies that ¢, satisfies
one of these inequalities). We set y = c(t—7r,) ... (—7x_,)(t—1t,)% x chan-
ges the sign once between two consecutive (e) points of different kind,
and does not change the sign between two consecutive points of the same
kind, whence (14) and (15) is satisfied if ¢ satisfies (13). Case III in
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which k¥ < a(p)—2 = n—2 must be excluded, for k = n—1. In case IV
we adopt definition (16) and use the fact that ¥ = n—1.

We now pass to the second case: an (e) point of ¢ lies in (4, 1,).
Since a(¢) = » and since (e) points of ¢ lying in the interior of I are
roots of the derivative of ¢, e;,(¢) <n—1 and at least one bound of
I is an (e) point. Hence, by the existence in (#,¢,) of an (e) point, it
follows that one of the points 1,,?,, say {,, lies between such two (e)
points that the second point, say t,, does not lie between them.
Thus, in case I, t; is among the numbers 7, 75, ..., 1,_, of inequality (11)
if we suitably define these numbers. If f, does not lie among the points
1y ¥gy +ovy Tk_1, We join it to this system and obtain a system s,, &,,-..., S
of points, and then adopt definition (12). Since k' <k < a(¢) = n, we have
1€W,, and ¢ being determined in a suitable manner, (14) and (15) are
satisfied. From the hypotheses of cases I1-IV it follows that there exist
two consecutive (e) points c¢f the same kind. Hence we have the case of
the first possibility, considered above.

2. Now, by aid of theorem 7.1, we shall prove that if the (e) points
of ¢ are alternately (+4) and (—) points and lie outside (¢, t;), then poly-
nomial ¢ is minimal in class W5,

Suppose that ¢ is not minimal. Let p,, p,, ..., p, be its (e) points.
Hence there exists a polynomial y e/, satisfying (15) and having at these
points the same sign as ¢. Hence, by the hypothesis that the (+) and
(—) points lie alternately, it follows that y has in cach of the intervals

(17) (p11p2)5 (Pz:?a)a LR (pn—HTn\

an odd number of roots (counted with their multiplicity). Two cases
are possible:

I. There is a j such that ¢, and f; lie in (p;, p;;1). Then y has at least
three roots in (p;, p;,1), and one root in each of the intervals (p;, piy1)
for 4 # j whence it has at least » 41 roots and y = 0.

I1I. The points ¢, and ¢, lie either in {a, p;) or in (p,, b>. Then x has
a root in each of the n—1 intervals (17) whence it has together at least
n—+1 roots and y = 0.

The relation y = 0, obtained in both cases, contradicts conditions
(14) fulfilled by y. Hence ¢ is minimal.

THEOREM 7.5. If ¢, |lglly > 2, a(p) = n+1, then the polynomial
@ 18 minimal in class W, if, and only if, all its (e) points lie outside the in-
terval (ty,1,).

Proof. a(p) =n+1 implies a;,(p) >n—1. As already seen,
o (@) < 7—1, whence ¢;;(p) = n—1, and by theorem 7.2 it follows that
the number of groups of (e) points of the same kind satisfies the inequa-
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lity (n+1)+(n—1)—n+1 <k << n+1, whence k£ = n+1. This means
that the (e) points & = p; < py < ... < ppy1 = b of p are alternately ()
and (—) points.

We shall prove first that if there are (e) points of ¢ in (¢, ?,), then
@ is not minimal. We choose the points r;, 7y, ..., 7, 80 that p; <7, < p;
for ¢ =1,2,...,n and so that they comprise the points t,, ¢, lying, by
hypothesis, each between different consecutive (e) points. Let

% = signg(py) - (r—1)(ry—1) ... (ra—t).

Thus xeW,, x(t;) = x(fy) = 0 and signy(p;) = signe(p;) for i =1, 2,
..., n+1, and from theorem 7.1 it follows that ¢ is not minimal.

We shall prove now that if there are no (e) points of ¢ in (¢, t,), the
- polynomial ¢ is minimal in class 9#%,. Suppose the contrary. Thus there
exist a polynomial ye9, vanishing at ¢, and {,, having at the (e) points
D1y P2y ---5 Pny1 the same sign as ¢. Hence in that of the intervals (p;, p,),
(P2y P3)s -+« (Pn, Pny1) which contains ¢, 7, there exist three roots of g,
and in the remaining » —1 intervals there are » —1 roots of this polyno-
mial. It follows that y = 0, which proves our assumption to be false.

Taking into account thcorems 7.3-7.5 and the fact that a(p) < n+41
for |lplly > =, we can formulate the following ‘

COROLLARY. If e WD, lol; > x, then the polynomial ¢ is minimal
in class Wb if, and only if, conditions 1°-3° are satisfied:

1° < alp) <n+1,
2° the (e) points of ¢ are alternately (+) and (—) points,
5 all the (e) points of ¢ lie outside (t),1,).

For a(p) = n+1 condition 2° was proved in theorem 7.5.

Let us introduce the following notation: the polynomial " -¢"~'4-...,
giving the best approximation of zero in the interval (—1, 1> among all
polynomials of degree » with the coefficient 1 at t* and with the coefficient
¢ at 1*~", will be denoted by 7,{c}. The properties of 7,|c}, which will be used
later, are listed in the monograph [1], p. 297-301. Here let us notice that:

1° the Tchebyshev polynomial

1

Weos (narecost)

is, by definition, identical with the polynomial 7,{0}, for it gives the best
approximation of zero among all polynomials of degree » with the coeffi-
cient 1 at t*, and contains ¢ only in even powers when » is even and in
odd ones when » is odd; '

2° the polynomial p = "4 '+t 2 4...4¢, has in the interval
{—1, 1) »n points of the alternant, which are alternately (+) and (—)
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points if, and only if, y = 7,{c}. This follows by the application of the
theorems of Tchebyshev ([4], p. 51 and 56) to the approximation of the
function 1" +¢t*~' by polynomials of degree n—23

3° if ¢ #0, the alternant of 7,{c] consists of precisely n points,
which are alternately (+) and (—) points.

THEOREM 7.6. Let ¢ <¢' <0 or 0 <c <c'. If the points py, p1,
covy Py (Where —1 <py <py < ... < Pny < 1) and py, P71, ..., Pu_1 (where
—1 <P <P1 < ... <Pn_y < 1) are all the (e) points of the polynomials
Talc) and 1,(c¢’} respectively in (—1, 1), then p, > py, p; > pi fori = 1,2,
ey "‘—21 Pn_1 = p:z—l-

Proof. The hypotheses being symmetrical, we consider only the
case ¢ < ¢* < 0.

I If
2 Tt : .
—ntg" — < e < e <0,
29

then

1 c\" t+c/n
18 ct=——I(1——} T, |————
(18) ] z"—‘( n) ( l—c/n)

(formula (18) results from the formula for the polynomial ¥, given in the
monograph [1], p. 297, with ¢ = —»n(f—1)/2) and similarly

. 1 A\ [t n
ta{c’} :‘)_n—_l(] —';) -T'n.( )

i ] —_— (fr/?

The Tchebyshev polynomial T, = cos(narccost) takes on in (—1, 1)
its extremal values at the points —cosin/n where i = 0,1, ..., n (written
in their natural order). Hence the (e) points of 7,[¢} and 7,{¢*} may be
expressed by the formulae

¢ i e )
(19) Pi:(—'—')(‘-OS - (1=0,1,..., n—1),

n n

(for ¢ = m we obtain the points 1—2¢/n > 1,1—2¢"/n > 1 lying outside
{—=1,1%). For i = 0 we have p, = p, = —1 and for i =1,2,...,n—1
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II. Let us suppose now that ¢ < ¢* << —ntg®n/2n. Then
(20) Po="Ds = —1, Paai=Pua=1

([1], p. 298), the points p;, p: (4 = 0,1, ...,n—1) are of the same kind
and pg, P1y ...y Pp—y are alternately (4 ) and (—) points.

It is sufficient to prove that p; < p; (0 < i < n—1) holds for every
¢* < —ntg*n/2n and for an arbitrarily small positive difference ¢*—c.
The polynomial 7,{c} and its (e) points depend continuously on the pa-
rameter ¢; thus, let us suppose ¢*—¢ to be so small that

(21) max|{p;_y, pii} < min{p;, pi}  (1<i<n-1).
Let us set
(22) g = —Ti{i—, P L,{c‘}—-, 8 =o0—0".
[7aleflic-n [7afe™}Hlc-1,15

If p; = p;, where 0 < i < n—1, then p; is a double root of the po-
lynomial 4, for

8(ps) = o(pi)—a"(pi) =0, o'(ps) =" (pi) =0, &(p:) =0.

If p; # p;, then the interval (min{p;, p;}, max{p;, p;}) contains
a root of 4. Indeed, by definition (22),

(23) o(p) = o*(pi), lo(pa)l = 1.
On the other hand from (21) and from the fact that in (—1, 1) the

functions |o|, |o*| assume the value 1 only at the points p,, Py, ...y Pa_i
and p;, 1, ..., pn_, Tespectively it follows that

(24) lo(p)l <1, lo*(pa)| < 1.

By (23) and (24) signd(p;) = —signd(p;) # 0.
By (20) —1 and 1 are also roots of 4. Thus we have shown that §

has in {(—1,1) at least n-2z roots, z being the number of zeros in the
sequence

(25) Px—P:; p2_p;y ey Pn_z—P;-z'

Now degd <n and by hypothesis t,]c} # 7.{¢"}, 0 ¢*, whence
¢=0,4 e p; #p; fori=1,2,...,n—2. We have also proved that &
has no multiple roots, and has precisely n single ones lying, except

—1 and 1, in the interval (min (p,, p}, max{p,_,, pn_,}). Let us notice
now that none of the inequalities

Dia < Pis1 <P < Diy DPio1 < DPi1 < Ppi < P
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can be satisfied. Indeed, suppose that the first of them holds.
Then o(pi1) = —a(pi), lo(pd)l = 1, (6" (pi)| < 1, |o"(ps)l <1 whence
signé(p;_,) = —signd(p;) # 0 and the interval (p;_,, p;) contains root
of 4 different from the n roots quoted above, which is impossible. Thus
all the quantities (25) are of the same sign.

In case II each of the polynomials 7,{c} and r,[c*} has exactly n—1
roots in {—1, 1) (one between each two consecutive (e) points) and exactly
one root greater than 1 ([1], p. 298, in particular fig. 7). Since the values
of these polynomials tend to oo as t - 4 oo, by definition (22) we get
o(l) = a"(1) = —1 and o(py_sy) = 6" (ps_o) = 1.

If the quantities (25) are positive, then in particular p, _, < Pn_s;
the last equality implies o(p,_s) = 1, 6" (Pa_s) < 1, 6(pn_2) > 0, and in
the entire interval {(p,_,, 1) in which there are no roots of §, the inequality
é(t) > 0 is satisfied. On the other hand, if the quantities (25) are nega-
tive, then p,_, < pn_. and 8(t) < 0 in {(ph_,, 1).

Thus é has in the left-hand neighbourhood of its single root 1 the
same sign as the quantities (25), and in the right-hand one the opposite
sign. It should also be taken into account that if ¢ decreases to —oo,
then the greatest root of r,{c] increases to +oo. Since ¢ < ¢*, 6 = o—0o"
is negative for ¢ > 1 and the quantities (25) are positive.

Thus theorem 7.6 is proved completely.

THEOREM 7.7. If the polynomial ey, satisfies in the interval I
= {a, b) the conditions
1° n < a(p) < n+1,
2° the points of the alternant of ¢ are alternately (+) and (—) points,
then the polynomial '

(26) gD((b—a)t—{—a—}—b)

$
P

is equal either to 1, _,(0) or, for a suitable ¢, to ,(c), multiplied by & constant.
As above, a(¢) denotes the number of points in the alternant of ¢.

Proof. By 1° there are at least n—2 (e) points of ¢ in the interior
of I. Since they are roots of the derivative of ¢, degp > n—1. If dege
= n—1, then inside I lie exactly »—2 (e) points, and, since a(p) = n,
both bounds of I are (e) points. Thus by hypothesis 2° it follows that
if we transform I into the interval {—1,1)>, which corresponds to the
introduction of the polynomial (26), and divide this polynomial by its
coefficient at i"~!, we shall obtain the Tchebyshev polynomial of degree
n—1, whence

,1;_2 cos ((n —1)arcost) = 7,_,{0}.

‘5
]
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If degey = n, we infroduce again the polynomial (26) and divide
by the cocfficient at *. In virtue of the remark 2° preceeding theorem
7.6 we obtain thus the polynomial rﬂ{c}

THEOREM 7.8. If the polynomial @€, satisfies in I = {a,b) the
conditions
1° n<alp) <n+l,

<o

< (e) POINIS D1y Pay ooy Doy (Where a <py<pp < ... < Pupy < b) are
alternately (+) points and (—) points,

then for n =5 the inequalily
7 b—a

(27) ma’xlpl_a! p2_pl? ey pa(w)_pu(‘p)—l’ b_aa(qb)] < ? n

is satisfied.

Proof. Let d be the maximum of (27). It is sufficient to prove that

if (a,b) ={(—1,1), then, for n > 5, d < T/n; (27) will the follow by
a change of the unit and translation along the axis ¢.

Let us observe first that the greatest distance between the conse-
cutive (e) points of the » th Tchebyshev polynomial, which are —1,
—cosm/n, ..., co8x/n, 1, is cqual to

B N

2 2 7 . L2 ” . om 1 n
CcoS —.

n

— = 28in gin — < 2sin — <
n 2n o 2n n

(28) cos

I. If degy = n—1, then by theorem 7.7 and (28) d < #/(n—1).
For n > 5 we have
i< 7 n < 4 5 b
T on—1 n 4 n

for the expression n/(n—1) is a decreasing function of =.

II. If degp = n, then dividing ¢ by the coefficient at i* we obtain,
in virtue of theorem 7.7, the polynomidl ty{c} with the same (e) points
as p. Let ¢ < 0 (the case ¢ > 0 is symmetrical).

II.1. Suppose first that —ntg’z/2n < ¢ < 0. Then t,,[c] is expressed
by formula (18). The argument of the Tehebyshev polynomial involved is

=) |

and the introduction of the argument u enlarges the interval (—1, 1)
of the variable ¢ at most 1—e¢/n < 14+tg’7/2n = 1/cos®n/2n times. In
the same ratio the distance between two consecutive (e) points of (18)
can increase as compared with (28), 7. e. with the greatest difference of

Rozprawy Matematyozne XIV ’ 3
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two consecutive (e) points of the Tchebyshev polynomial. For n > 5 this
distance is not greater than

7 < 4 < 4 - y
necos’z/2n - meos’m/10  0,9n  n

By (19) p = —1 and

c n e oy g .o 4
1—pp_1=14+{— —1)co8—+ — << 1—cos — = 258in" — < 28in — < —.
n n n n 2n 2n n

Hence by the foregoing inequality

5
(29) d < —.
n
I1.2. Let us suppose now that
7
30 < —ntgl—
(30) ¢ < —ntg

and let us denote by pg, p},..., Pa_, the (e) points of the polynomial
| —ntg’n/2n} defined by (19) for ¢ = —ntg®n/2n. Thus

7 . g
—¢08 — }-8in® —
° n 2n .
(31) i (t+ =0,1,...,n—1).

g T
CcOoS™ —
2n

As ¢ - —oo, the polynomial

(32) R e A e Y e R T

whose coefficients ¢, ..., ¢, depend on ¢, divided by ¢ tends in (—1,1>
to the Tchebyshev polynomial T,_,. Indeed, the best approximation of
zero by the polynomial (32), with fixed ¢ is equivalent to the approxima-
tion of zero by the polynomial of the form

Tn{cl — i +ln—1+ ﬁt"_z—l-...-l- ﬁl_’
¢ ¢ e ¢
whence, as ¢ - —oo, asymptotically equivalent to the best approxima-
tion of zero by a polynomial of degree n—1 with the coefficient 1 at ¢"~'.
Hence by theorem 7.6 it follows that as ¢ decreases from —ntg?n/2n
to —oo, the (e) points of r,,{c} ‘do not decrease and tend to the limit
values

i1
(33) ps. = —COS

p—) (t=0,1,...,n—1)
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(with the same indices ¢) which are (e) points of 7},_,. If the parameter ¢
in -r,,{c} satisfies (30), then its (e) points pg, py,y..., Pn_1 are such that
Po=1po=p7 = —1, pi<pi<p¥ for i=1,2,...,m—2, ph_1 = Pa_y
= Pn-1 = 1.
It follows that

Pi—Pioa S PTPI T (E=1,2,..,0n—1),
whence by (31) and (33) we have, for . =1,2,...,n—1,
cos (i — 1) /n —sin®z 20 in

2 —Co8
cos“z [2n n—1

0o 0
Pi —Pi1 =

Since —cost increases for 0 <t < =z, and

: 11
’ <H—- for +=1,2,...,n—1
n—1 n
we have
o 0 cos (i —1)7/n—sin’*z [2n —cos®x[2n - cos (i +1)m/n
Pe—Pia s cos’n[2n
_cos(i—1)w/n—cos(i+1)n/n—sin’x/2n-(1—cos (i+1)z/n)
N cos’z/2n
2siniz/n-sinn/n _ 2sinx/n
cos’m/2n cos’m/2n’
Taking into account that p, = —1, p,_, = 1, we see that for every ¢
satisfying (30) and for » > 5 we have
7 — max( 2w 1 _83 1 71
= NPT S cos’z/10 n 0,9 n '

whence by (29) the theorem follows for all ¢ < 0.

THEOREM 7.9. For every interval I = {a, b), poinis t;, t, (where t; < 1,)
belonging to I, and numbers x,,x, there is a polynomial ¢ such that

7(b—a)]}
d < 5’ Y IR
i max{ [2(t2—t1)

(34) p(ty) =, @(t) = x,
lelly = max[lwﬂ, ]Tz[l .
Proof. It is sufficient to consider the case when

@ = max {|z,], |w,]] > 0.
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We have shown (corollary, p. 29) that if the polynomial ¢ is minimal
in class 7 (i. e. satisfies conditions (34)) and if |¢|y > #, then between
the points t,, t, there are no (e) points of ¢. By theorem 7.8, whose hypo-
theses are fulfilled by the minimal polynomial, this is impossible when
n > 5 and

b—a
2

7(b—a)
n =2 maxybs. | — ¢,
2(lg—t;'
for in this case {,—¢, is greater than the length of the greatest subinterval
of I, containing no (e) points. This means that for

n = max{5,[7—(b—_—q—)]}
2(ts—1)

the polynomial ¢, minimal in class 95, does not satisfy the condition
llplly > @, whence it satisfies |j¢|; = 2, q. e. d.

From theorem 7.9 we obtain a result concerning approximation
with the system T = {t;,1,} of nodes. The method of the proof is the
same as for theorems 5.2 and 6.3.

THEOREM 7.10. If
T(b— a)]}
> —_
n /max{5,[2(t2_tl) ;

7
L—th = )
n

7. 6. when

then &,(&; {t, 1)) < 2en(£) for every function &eC.

To end this chapter, we shall prove that, except some particular
cases, inequality (5.4) is stronger than inequality (4.1), proved in [6].
In the latter

7=1 ti—1;

m
% |
$ = ”Z 2
i=1
F#£2

(see formula (3) in [6]); ¢; 18 a polynomial of degree m —1 defined by the
conditions

(35) gilt) =04 (7 =1,2,...,m).

The quantity
m
[ i:21 g4l

plays an important role in problems of interpolation (cf. [4], p. 512, where
it is denoted by A,).

;1 where ¢;=
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It has been proved (ibidem) that for every system 7 composed of m

nodes
m
| 3 1es
i::l

It follows that s> 2 but only for m > €*V* , i.e. for m > 1439247.
However, it is easy to prove that for m > 3

(36) wau
t=1

i.¢. 8§ > 2, Indeed, in this case a <t <ty <1, <b and the node ¢, is
inside I = <{a, b). Inequality (36) is true if |p,||; > 1; if, however,

;> (logm)[8Vx.

> 1,

(37) lra!lr = 1,
then by (35)
(38) 0a(ty) =0 and  @i(%) # 0 for i %2,

for t; is a root of the polynomials ¢; (¢ # 2), which have no multiple
roots. The functions |@;| for ¢ 5= 2 decrease to zero in the left-hand neigh-
bourhood of t,, and increase in the right-hand neighbourhood, whence
by (37) and (38) in every neighbourhood of ¢, there is a point ¢ at which

m
Dl > 1.
i=1

In particular, such a point cxists in I and (36) is valid also in the
case (37).

If at least one of the nodes lies in the interior of I, inequality (36)
is valid also for m = 2, for in this case

q} o t_tg _ t—tl
Thee T
and -
( 20 —1, —1
Z 12 for t<t,
th—1,
l@1()] +@a(t)| = 1 for 1, <t <y,
% —t,—1,
_— i t >t
l tz_tl or > 29

and for ¢t <ty, t > 1, we have |p(t)|+|qs(t)] > 1.



CHAPTER 11

System of optimal polynomials

- The subject of this chapter was explained in §1; the main results
are formulated as corollaries at the end of §§ 8 and 10 as theorems 9.1-9.4.

8. Necessary and sufficient conditions in approximation with-
out nodes. We shall prove

THEOREM 8.1. If the polynomials y,e W, yn 16 W, are optimal
for the function & in the interval I and in the classes W,,, W, ., respectively,
and if degyy,, = n+1, then the equation
(1) Yu(t) = Ynya(t)

‘has exactly n-+1 different single roots in the interior of I.

Proof. Let us remark first that the hypothesis deg y,,, = n+1
is equivalent to v, # vy, and equivalent to

(2) ‘°n+1(5)<fn(.5)°
This follows from the unicity of optimal polynomials ([4], p. 55). Henee

(3) Hyn-[-lHI < H?’n”I’

where Yo = Yn— 'E; T4l = Yagp1— §.
Let py, P2,y ..., Pnyz be the (e) points of v, written in their natural
order and such that

(4) Yu!Pi) =(—1)i0€n(§) (t=1,2,...,n+2),

where ¢ ='1; the existence of these points follows from the theorem
of Tchebyshev ([4], p. 51). By (3) and (4)

SIgN (7n(P:) — Ynsa(Pe)) = sigDYR(ps) = (—1)% # 0

and in each of the open intervals (py, pa), (P2, P3)s---y (Pny1s Pry2)
there is at least one root of y,—yni1 = ¥n— ¥ni1. Since y,—yy,,, is
of degree n+1, each of these intervals contains precisely one single root
of (1), q.e. d.
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THEOREM 8.2. If the polynomials y,e Wy, v, 1€, are optimal
for the function & in the interval I and the classes Wy, W, ., respectively
and degyy . = n+1, then

(5) enlE)+ f'n‘+l(§) = ”'/)n— '/'n+l”<u1,un_|_l) ’
(6) epl &) — Fn+1(§) < mju Iy — T/'n+1”<ui,ui+1)a
. Igign

Cmin(Fn( 5) + Fn+1(5)) < a < Cm.in(Fn( ‘E) - 'Pn-}-l/ E‘))
é-1.l:la.x('~""n(‘5)_ Fn+1(§)) <b < Cmu(en(é)_" En+l(§))’

where Uy, Uy, ..., Uy, denote the roots of (1) written in their natural order,
and ¢ (h) and (.. h) are, for h > 0, the smallest and the greatest of the
roots of the equation |yu(t)— yn,1(t)| = h, respectively.

Proof. By hypothesis, for tel we have |&(t)— v, (t)] < eq(8),

(8) 1E() — yapa(t)] < enya(8).
By addition, we obtain for fel
(9) . I'Pn(t)_'/'n+1(t)| < Fn(5)+3n+1(f)-

Since, by theorem 8.1, {u;, u,.,> CI, (9) implies that
lln— 1/'n+1”(ul,un+l) < en(8)+ enpa(é),

whenece (5) is satisfied.
If t is an (e) point of v, , then |£(t)— y./t)| = ¢,(§) and, consequently,

(10)  |yat) = yapa®) = (§(8) — pult] —16(E) — pnya()] Zen(E) — enya(§) > 0,

since, as in theorem 8.1, inequality (2) holds. Hence the roots of (1) are
not (e) points. On the other hand, between any two (e) points of different
kind of the polynomial vy, is a root of the equation (1). Indeed, if, for
example, £(p')—yu(p’) = en(£), E(P")— yu(P") = —ea(§) where p’ < p”,
then from inequality (8), valid for the points p’, p’’, it follows that
"Pn+1(p’)"'l’n(1”) > 0, '/’n+1(P”)_'/’n(P”) < 0 and in (p’,p”) there is a
point at which y,,;—y, is equal to zero.

Thus we have shown that each of the intervals d(a, ), (u, %),
ooy (Uny Upyy), (Ugy1, bY, whose bounds wu,,us,...,%,,; are all roots
of (1), only (e) points of the same kind ((+) points or (—) points) can
lie and that in consecutive intervals they are of different kind. At the
same time a theorem of Tchebyshev ([4], p. 51) states that the alternant
of y, contains at least n+ 2 points which are alternately (+4) and (—)
points. It follows that each of the intervals (u,, uz), (ug, %3), ..., (Un, Unyy)
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contains an (e) point of y,,. That point satisfies (10), whence it follows
that ea(€) —enpa(€) <lyn—¥npillwuy  for  i=1,2,...,n Hence
(6) is true.

There exist also (e) points p,e{a, ), pp€(Un,,, b) satisfying (10).
The function |¢,—1v,,,| decreascs in {a, ;) and increases in (v,.,, b).
Hence using the notation introduced above, we have
(1) Loun(enl &) — En11(E) €4y ¥y Srnan{En() — £051(€)) (W41, B,

since by (2) and by the definition of (e) points p,, 7,
Contal(n(E) — ens1(E) < %1y Crman(En(6) — En1a(£)) > "'M.lf
¥ Catalen(&) — €2 ) = PGl &) = st )|
= ta(&) — £n11(8) < [yn(Pa) — Y pa(Pa)ls
| ¥ Canaxl i §) = £041(8))) — Y Cmax(n( ) — 12 6))|

= Fn('f)—"n+l(§) < I’/'n(pb)_'/'n+1(pb”~
From (11) it follows that '

a < Cmin(en(s) - Pn+1( ‘5))7 b = .tma,x((:n( 6) — ( ‘E))'

The rcst of conditions (7) may obtained analogously from inequality
(9), valid for ¢t =a and t = b.

In the following theorems we shall continue to usz the symbols
'/:min(h)’ Cmax(h)

THEOREM 8.3. Let the polynomials y,e Wy, vy 1 €Wy 1, the numbers
enybny1 and the interval I = {a,b) satisfy the following conditions:
degyny, = n+1, the equation (1) has n+1 different real roots u; < u,
< oo < Upyy ONd

(12) 0 < epyy < en,

(13) entenir = llyn— ’I'n+1”(u1,un+1)’

(14) Ca— €py1 < NN [y, — V’n+1|l(ui, Y1)
1<in
(15) Cminllnt€py1) < & < Cpinlen—e€ny1),
J

Cma.x(‘on_en+l) < b < Cmux(ﬂn+en+l);

then there exists a continuous function & for which the polynomials vy, Yn .
are optimal in I and respectively in classes W,, W,.1, and &,(E) = ey,
eni1(&) = €nyyq.



System of optimal polynomials 41

Proof. We define the sets
(16) P =(‘E){|$_’1"n{.t)] < én and |.TD '/n+1(t)| t’n+1}
,T

A;:- = E‘U’ ll'n(t)'l'en) GPI, A':-z_ = -?{(h y'n(t)‘{ln) GP}) -An = A:VA;)

(17) An+1 = E[(t; V’n-l-l(t)“]' "n+1)fP}’ A;+1 = g'{(ta 'p"n+1(t)— f’1-;+1) EP}-

These sets have the following meaning: the graph of every continuous
function for which the polynomials v, v, are optimal in classes U/,
M,y With the deviations e,.e,,, respectively and with an arbitrary
interval of approximation lies in the set P. For every function of this type
the () points of v, belong to A7}, the (—) points to A, and all the (e)
points are in 4,. Analogously the (+) points of ¢,,, belong to A,
and the (—) pomts to A,.,. We shall first cxamine the properties of
these sets and then apply them in the construction of the function &.

We prove first that the interval I satisfying (15) is eontained in the
projection P* of P on the axis . This is a necessary condition for the
existence of the function & in this interval. By (16) ¢ is in P* if, and only
if, there exists a point »; such that —7, <x;—v, 1) < €, —€y, | < Ty—
— Pu1(t) <y, t.e. such thet —e, 4 yp(t) <ap < e+ yult), —epi1+ ynialt)
< < "n+1+1lfu+1 t).

The number a; satisfying these inequalities exists if, and only if,
=t ylt) < it vuga(t)y —lapit yaalt) < et yalt)y, toe if |, (t)—
— Pn1t)| < en+ €y, Whenee

Pt = -F{Whﬁ)- Y {-lft)l < lpte, 1-1} .
By the definition of the functions ;) and { .. and by (12) and (15)
Cnliu(P7u+P1z-l-1) <o < Cmin( n+1) < ¥y,
'”n+1 < Cmax(en_en+1) < b g Cma.x(en_*_ P’nll-l)'

Thus, since |y,—yy, | Is decreasing for ¢ < #»; and increasing for
£ > n,y, in the intervals {a, u,>, {(un,,,d) the inequality |y,(f)-~
— Ypp1{t)| < ep+e, holds, which together with (13) leads to |y,
— yniilr < eyt eupy. It follows that I C PP

By (16) and by the definition of A, we have

(18)

at) Fen— )] < e, fyalt)te—yaa)] <l (tedy).

The first of these inequalities is an identity, whence in virtue of
the second the definition of A} may be written in the form

(19) AF = -GE{W’n( — Yapr(t) T en] < 6n+l}
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Similarly
(20) ’ ) A4, = ?[]'}'ﬂ(”"“/'ﬂ{—l(t)‘" enl < P'n+l’ .
The union of (19) and (20) is equal to
4, = 1‘0{ —lp—Clnp < Yult) — yppa(t) < —ept-e5,, or

Cn—Cni1 < Yr(l) —ynya(t) < e+ '°n+l}9
whence

(21) An = F{en_‘)n-}-l < |7/'n(t)_ 14"11,-|-l(t)l < ot f)n-}-l} .
On the other hand, the intersection
A;l': ~nAy = ~!El—‘7n_"('n+l < "/'n(”"’/'n-}—l(t) SO Cnt1 and

Cn— Cpyg1 < "/’n(t)_ "I'vu-l(t) S (’n-}-ll

is empty, for, by hypothesis (12), —e,4cpy1 < Cp—€pys.
By (17) '

(22) A;u}.+l = F“le(t)_ ya(t) + (’”_“| < Oy
(23) nil = ? “wﬂ-l-l(t)_ Palt) — Gl < "n},

and by (19), (22) and (20), (23)

A;’,— ~ A;i-+l = El’/'n(t)_ "/'n+l(t) = Cpyp1— enlv

t

(24) N _ .
A7~ An-|-1 = ]f [%,,(t)— '/'n+l(t) = (’n_(‘n+1] ’

(25) A VA:.—-H = A4y, = -?{W'n(t)—"l"pwl(t)] < ot r'-:H-l] = P‘a
(26) A;—+1 s A1-u—+1 = tE{W'ﬂ.(t)_’ '/'n+1(t)| < ep— ('n+ll .

Let us consider the intervals

(27) {By Uy)y (Uyy Ug)y vy (Uy, un~|-l)) (un+l) b).

The first and the last are non-empty by (18). The set A4, has points -
in every of the intervals (27). Indeed, the point pje (ug, ux,,) where
k=1,2,...,n defined by |yu(Pr)—¥ns1(Pr)l = €n—eny; and existing
because of (14), belongs to 4, according to (21). It follows from (18)
that also in the intervals

(28) {a, up), (/”n+11 b)

there are points of A, ; in particular such points are ¢ and b. On the other
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hand %, ug, ..., #,,; do not belong to 4,, for, as roots of (1), they do
not satisfy the inequality |yy,(f) — ¢y 1(t)l = € —Cyyy > 0.

In each of the intervals (uy, up), (ug, u3), ..., (Up, Ugqyy) the poly-
nomial y,— y,,; has one extremum (being of degree m--1 it cannot
have more than one), and in the intervals (28) is a monotone function.
Thus the sets A,~{a,u;), Ap~(ug,ux,;) for k=1,2,...,n, A,N
~(Uy41, b) lying in I are disjoint closed intervals, which may be reduced
to single points. Their union is the set

n+1l

AunI = U Iy,
k=0
where

(24N

Iy =, a9 ) T <@, uy),
(29) Ik = <a’ll.:) a;c'> C (uk, u’k+l) (k = 17 2) ey “‘)7

In+1 = <a':1-|-15 by C (un-l-la by,
(whence

17

t l; ot " ’
(30) @<y <0 KO < en <y KOy <Ay D).

The points a and b are the bounds of the intervals I,, I,,,, respec-
tively, for, as we have observed, ae 4,,,be A,,. The intervals (29), separated
from one another by the roots of (1), belong alternately to the sets A,
and A5, since by (19) and (20) sign (yu(t)— ysa(?)) i8 equal to —1 when
teA;r and to 1 when ted,. Hence

31) Afeal = Tyolu... =a,aydvlas, a; dv ...,

' AznIl = Iulio... = <al, a)>ulal, aiSu ...,

or, conversely,

(32) A:’.‘I =Lvlv... = <a1; a1'>u(a;, a,;'>u R
Agol =Iiwlv... =<4, a0 yvla, 8> ...

By (22) and (23) it follows that the sets A, ,, A;,, are composed
of a finite number of intervals and from (24) we infer that intersections
AYmnAt A ~A;,, consist of a finite number of points at which
lyn(t) — ¥psa(t)] = e,—e€,41. By (21) these points are the bounds of the
intervals whose union is the set 4,. Thus, they are the points a, , a;,
@y .ouy Ony Gy, 0y, Moreover, taking into account the fact that, by
(25), ICAfVAt,, I T A 7047, we get in the case (31)

AT = (', agy ey v,

-_— 14 1 1
n+1ﬁI =4, a)v{a; ,a3)v...,

(33)
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and in the case (32)
(34) PR AN ANE
w1~ = {egy eppvdag, e ..
By (30), and by (33) or (34)
(35) AgandinnI =Layy o) uday, e oo oy, and. .

Consider now the case (31), (33) (the analogous case (32), (34) will
not be considered). Thus

(36) a&', a’é) “;'a “;’ "»;" «es € A;’“Aq}l,-.yl-
(37) 01,0, @3, 05, . e Ay ~AT .
Let us set
(38) vu(t)+ e, for ted}r A1,
(39) 4 Palt)—p for ted, ~1I,
, 6o Sa, +a; ., 20 4+ ap

(40) Yup1(t) aij;t’)’ ( 06 1 _t) for t€<(t0 ,%>,
6e ay +a, 200 +ay ¢y + 2a,

41 _ ’ { ntl (t—" 0 l) 0 0 ,

(1) £0) =y val+ 0 o] for te(Z = o,
6en,1 (a0 +5a, o+ 20

42 , A _ SO it SEPEAN

( ) wll«{-l(t)—}— 0/;—(36’ ( 6 t for t€< 3 ’ a.l/!
2(—1Y,., [er + ar., poos

(43) P+ S ( "Jf "'-“—t) for teay, @i,
ak-]-l—a‘lc 2

Ek=1,2,...,n.
Since I = {a, b) is the union of the following non-empty and disjoint
intervals
Iy =<a,00>, (a),a), Iy =<ay,ei'>, (a8, ...,
I, = <a,,,", a;z’>; (a;:.'y a’;b+l)1 I, = <0‘1’z+1’ by,

formulae (38)-(43) define the funection £ in the whole of I. It must be

proved that the individual definitions of & are not contradictory with

respect to one another; this will imply directly that & is continuous.
The function & is defined by two formulae only at the points

r 4 r? r
2a’ﬂ +a1 Qo +2a1 17 ’ " 7] ’
3 ’ 3 y Qo5 C1y A1y cvvy Apy Oy

The consistency of the two definitions at the first two points follows
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directly from (40)-(42). Concerning the remaining points, at points (36)
we obtain from (38), (40), (43)

(44) £(t) = yalt)+ €4, E(t) = Yana(t) +enta-

These relations are equivalent in virtue of (36) and the first of for-
mulae (24). Analogously at points (37) we have &(t) = y,(t)—e, and
&(t) = yny1(t)—eny1, Which are equivalent by (37) and the second of
formulae (24).

Thus it is proved that £ is continuous. We shall prove now that
(45) Il6—vully = €n and  ||E—ynplls = €asa-

The inequality
(46) 16 —yalt)] < e for tedynI

follows directly by definitions (38) and (39). Similarly, from (40)-(43)
it follows that in the rest of the interval I, ¢. e. in the set (35), we have

(47) 1€(t) — pnsa(®)] < €nyay
since the graph of &— ¢, ., over this set consists of segments of a straight
line whose end-points lie on the straight lines z = e,,; and ¢ = —e,,;.

Inequality (46) in the set (35) results from the addition of inequalities
(47) to the inequality [ya(f)— ¥nsi(t)] < €—epyy Tesulting from (26).
Finally, inequality (47) in the set A, is a consequence of (38) and (19),
and for the set A it results from (39) and (20). Equalities (45) follow from
formulae (46), (47) valid in the whole of I and from the fact that at points
(36) belonging to I formulae (44) are satisfied. Finally, let us notice that
1° at the n+2 points ag,a;,as,...,6,,; we have, by (36)-(39),
E(a0) —yal@y) = en, &(ag)—yalay) = ('_l)kfn for k=1,2,...,n+1,
whence y, is optimal for the function ¢ in class )4, in the interval I with
deviation e,;
2° at the n-+43 points
o 289 Fay a6y +2a;

@
3 3
we have, by (40)-(43),

E((’!;l’)’)— ¢n+1(a't,)') = €ni1y

20} + 0] 20 + ]
£ T — ¥at1 T = —lny1y

ay’ - 2a; ay + 2a,
3 3 — Ynt1 _3— = €p41y

E(ar) — ynia(ag) = (—Denyy (A =1,2,...,0),
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whence p,,; i8 optimal for ¢ in class W), ,, in the interval I, with de-
viation e, ,.

Thus theorem 8.3 is completely proved.
Theorems 8.1-8.3 enable us to formulate the following

COROLLARY. Suppose we are given the polynomials ype W), and yn ,
eWp 11 —W,, numbers e, and e,,.,, and the interval I = (a,b). Then
there exists a continuous function & for which v, and y,,, are optimal po-
lynomials in I, in the classes W, and W), , respectively, and with devia-
1i0n8 en(£) = eny enys(§) = enyr, if, and only if, the equation pu(t) =y (t)
has n-+1 different real roots wu; < uy <... < U,,, and the following condsi-
tions are satisfied: 0 < e,,; < e,,

(48) en+ €ny1 = ”Wn— 1/’"+1”('“1,“n-{-l)’
(49) bp— by < m.in“"I'n— '/'n+l“<ui,"i+l)’
I<in

Cmin("-n+en+1) L < {nn(n—Cnir)y Cmax'fn—€nt1) < b < Cpaxlent lni1)-

 As above, (k) and £, (k) denote for k> 0 the smallest and the
greatest root of the equation [y,(t) —ynia(t)] = h.

9, Corollaries. From the corollary given above we obtain the follow-
ing theorem on the relative position of the alternants of the optimal
polynomials y, and yy,,,.

THEOREM 9.1. Let the polynomials y, and y,., be optz'énal for the

function & in the classes W), and W,,, respectively. If vg, V1, ..., Vs
(Vg <1y < ... < Vyyq) are alternately (+4) and (—) points of the poly-
nomial vy, and Wy, Wy, ..., Wy, s (We < Wy < ... < Wp,,) are alternately

(+) points and (—) poinis of va,,, then the inequalities

(1) Wo < gy Vpy1 < Wpyg

cannot be satisfied simultaneously.

Proof. We shall use the facts established in proving theorem 8.3;
we retain the notation used there. We know that v,el, for k =0,1, ...,
n+1, in particular from (8.29) it follows that w,e<a, @y, vy,
€ty 1, b). If inequalities (1) are satisfied, then w, < v, < 4y < o] and
woe{a, ay). Similarly w, o > V4,1 = apyy > 6, and wy,,.€e<a,’, b). Since
I, = (a, ay'), then from (8.31) and (8.33) or from (8.32) and (8.34) it
follows that vye A} and wye A7, or vye A5 and woe A}, whence v, and w,
are (e) points of different kind.
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The points v,,, and w,,, are also of different kind. Indeed, let =
be cven, for example. Then in the case of (8.31) and (8.33)

Ay nI={ay,ad>v...v <a1’w+l1b>, Afnl= (ag 3 7 ... By, b).

From the inclusions proved for v,,, and w, , it follows that v,,,e4,,
Wnys€Aft,,. In the case of (8.32) and (8.34) we have, however,
Vnp1€ A}, wa, e Ag, ;. This property of the points vn,;, ws,, i8 in con-
tradiction with the alternating behaviour of the (e) points in the se-
quences Vg, Uy, ...y Upyy and Wy, Wy, ..., Wuyqt if v, and w, are (e) points
of different kind, then v,,, and w,,,, whose indices differ by 1, must
be (e) points of the same kind. Hence at least one of inequalities (1)
is not satisfied. : ,

From theorem 9.1 it follows in particular that the alternants cannot
separate themselves mutually in the strict sense; we mean there by that
Wy <V < W <V <ot <Wpyy < Vpyy < Wyyse

We now give two theorems on the Tchebyshev polynomials 7,
= cos(narccost). Let us notice first that by their definition 1° [|Tp[(_, 1,
=1, 2° at the points p, = —coskn/n we have
(2) To(pz) = (_1)n-k (k=0,1,...,n),
3° —cosn/2n and cosz/2n are respectively the smallest and the greatest
root of the » th Tchebyshev polynomial.

Among the many properties of the Tchebyshev polynomials the
following is also known ([4], p. 78): for every ¢eW),, not identically null
and for every ¢ such that || > 1 we have |p(t)]/lpl¢—1,1y < |Tal(t)]. This
means that among the polynomials whose absolute value has the maxi-
mum in {(—1, 1> equal to 1 the Tchebyshev polynomial tends to oo the
most rapidly outside this interval.

Theorem 9.2 is a modification of this theorem enabling us to esti-
mate from above the rapidity of growth of the polynomial in a wider
set than the half-lines (—oo, —1> and (1, 4oc), the class of polyno-
mials being at the same time restricted.

THEOREM 9.2. If the polynomial ¢ satisfies the condition dege =
=n = 2 and has real roots the smallest of which is equal to — cosn/2n
and the greatest to cosn[2n, then |t| = cosn[2n implies

lp ()]
lpllp

14 T
< |Tp(t)]  where B=<—cos%,cos2—n .

(3)

Proof. It is sufficient to prove the theorem for the polynomials ¢ sa-
tisfying |¢|/llgllz # |Ty|. We may suppose without loss of generality that

(4) p(t) >0 ,for > cos — .
2n
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Let us set & = |lp/|lpTy— ¢; thus 6 £ 0.
We shall show that 6 has » roots in the interval B, whence 1t follows

that it has precisely = roots. Let us consider the pomts D1y P2y -ovs Pn1
defined above, If

(5) (—1)"*o(px) = lolz,

then by (2): d(py) = 0. Also T,(pi) = 0. Since p,eIntB, the definition
of the norm |j7|lp implies ¢'(p;) = 0. Hence &'(p;) = 0, and the point py
satisfying (5) is a double root of 6.

If, for a given 4

(6) (=1 (p) < lpllz, (—1)" " p(pis1) < llpllz,
then, by (2),
(7) sign 6(p;) = signTy(p;) = (—1)"F,

8ignd(piyq) = signTp(psy.) = —signd(ps),

and there exists a point te(r:, piy1) at which 6(1) = 0. Hence, it (5)
is satisfied for exactly ! values of the index k, then for 2/ < n—2 among
the n—2 intervals (py, Ds), (P2y Ps)s ---y (Pn_sz, Pny) there eoxist at
least n—2—2[ intervals satisfying (6). Since

4 7T T T
0 —cos% =dcos% =0, —cos%<p1<pn_l<cos%,
we have proved the existence of 2l+(n 2—2l)4+2 = n real roots of d

(this is also true if 21 > n—2).

Let us notice also that (5) is not satisfied for ¥ =1 and & = n—1.
Indeed, in the contrary case there would exist more than n— 2 — 2] inter-
vals (p;, pi;1) Satisfying (6), and 4, having n-+1 roots, would be identi-
cally null.

Thus we haye proved that all the roots of 4, except —cosn/2n and
cosn/2n, lie in the open interval (p;, p,_;). At the point p,_; we have
Tp(pa_y) = —1, whence by (7) for + = n—1 it follows that é(p,_;) <O,
and for t > cosa/2n the opposite inequality holds: é(¢) > 0. By (4) for
those ¢t we have |p|lgTh(t) > ¢(t) > 0, whence (3) follows. If t <— cosz/2n,
we prove this 1nequa11ty using the Tact that signe(t) = mgnT,,(t) in this
case.

The following theorem does not present such analogies with the well-
-known properties for the Tchebyshev polynomials. It enables us, the class
of polynomials being further restricted, to give estimations from below
for the rapidity od growth of those polynoxmals, whenece it supplements
theorem 9.2,
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THEOREM 9.3. Let the polynomial ¢ satisfy the condition dege =n
> 2 and let it have n real roots uy, Uy, ..., U, Such that

T T
—COR— = Uy < Uy < oo < Upy_y < Uy = COS —
o 1 2 n-1 7 an

then, for |t| > cosm/2n,
le (0l

) _ . > |Ta(t)l.
m}lcn (2P

Proof. The theorem is satisfied by the polynomial ¢ = T, for
iR [l = 1
where u,, %y, ..., u, are the roots of 7T,. Hence let us assume that
71 /im0 # 1T
let us retain condition (4), and let us set

f = min el
6 =¢p—fT,. Thus é§ #0. .
We define (uniquely) the numbers v, v,,...,v,_; by the relations

Vi €(Upy Upy), |@(Vk)] = H@”(uk,uk_,_l)a where k =1,2,...,n—1. Hence
(9) ool =f (k=1,2,...,n—-1),
(10) P'(vy) =0 (k=1,2,...,n—1).

We shall prove that in the interval (v, v,_,) there are n—2 roots
of 6. If ‘

(11) @ (V%) = fTn(v%)

is satisfied, then it follows by (9) that f|T,(vz)| = 1. Since ||Tpll(—y1 =1,
we obtain |T,(v;)] = 1, Tp(vy) =0 and by (10) é(v) = 0. From the
last equality and from (11) it follows that if (11) holds, then v is a double
root of 4. On the other hand, if »;, v;,, are such that

(12) l?’r('vi) 7# [Tp(vg), P (Vig1) F [T o(v;),
then, by (9),
(13) I Tav)] < <le@)l, flTa(vepa)] < l@p(viga)l.
By hypothesis (12) the sign = can appear in inequalities (13) only
i @(v;) = —[fTa(vs), @(vig1) = —fTa(v5;,) respectively. Taking into

account that, by hypothesis, ¢(v;)@(v;y,) <0, we infer that sign 6(v;)
Rozprawy Matemat vezne XTIV 4
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= signe(»;), signd(vyy,) = sign(v;,,) = —signé(v;) and in (v;,v;,,) there
18 a root of 4. As in the foregoing theorem, it follows that this polynomial
has n real roots, which, except — cosz/2n and cos=z/2n, lie in (v,, v,_;).

At the point v,_, we have, by (4), ¢(v,_,) < 0, and from the first"
of inequalities (13), valid also when ¢ = n—1, it follows that é(v,_;) < 0.
Thus ¢ > cosx/2n implies &(f) > 0, which together with (4) leads to in-
equality (8), which was to be proved. Analogously one can verify its va-
lidity for ¢t < — cosn/2n. : :

It is easy to construct an example showing that the hypothesis that ¢
has n distinct real roots is essential to maintain theorem 9.3.

Let us denotes by %) (k) and ™) (k) for h > 0 respectively the
smallest and the greatest of the roots of the equation |T,(¢)| = k.

THEOREM 9.4. A mnecessary condition for the existence of a conlinuous
function & for which the polynomials v, and y,.,, such that degy, < m,
degyy,1 = n+1, are optimal in I = {a, b) and in the classes W, and W, .,
respectively, with deviations e,(£) = €y, £n,1(&) = €n,1, 18 that the following
inequalities be satisfied:

e,+ e 20— (uy;+u 7 e,— €
Tg:;]) ( n n+l) < ( 1 n+l) COS < Tgf;l)( n n+l)’
/ Upi1— Uy 2(n+1)

g
many En—ni1 2b— (uy+ Un 1) L @+ ent eni1
A < CcOoS8S %X Tipax ’
7 Vo1 — Uy 2(n+1) f
where
= min lyn — ¥aralleugug., )
g= H}cax“'f'n_'/'n+1”(uk-"‘k+l) = ll¥a— Ynsllewyum 10

-,
and the Points y, U,y ...y Upyy (U < Uy < ... < Upyy) are rools of the

equation yu(t) = ynuia(?).
To begin with, let us notice that assuming the existence of n-+1
different real roots of the above equation we have made use.of theorem 8.1.
Proof. We shall restrict ourselves to the case A

(14) Uy = — COS —— Upyq = COS z
‘ YT ST 2my MY T T 2(atl)

It is to be proved that"

e,+e €— €ni1)
Tgi.:ll)(n 'n+l)<a<1(n+1)(n 'n+),

(15) ! D
Tl(::xl) (t’n_gf’n+1) < b < ng;])'(enﬁ}qnfl)'.
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In other possible cases the theorem is proved by the transformation
of the interval (u,, w,.,> into {—cosn/2(n+1), cosn/2(n+1)).
By theorem 8.2 .

Cmin(ente€np) < @ Contn(€n— €nt1)

<
(16)
{maxlen— en+l)< <Cma.x(?n+en+l)7

where (_.,.(h) and (.. (k) denote respectively the smallest and the
greatest root of the equation |y,(f) — yn41(f)] = h. From this definition
it follows by (14) that for every h > 0

1 7
(17) {min(P) < —cosz—(n—_}_]—), Cmax(P) > co8 m

Applying to the polynomial ¢ = y,—y,,, theorem 9.2 with n re-
placed by =-+1, which satisfies the hypotheses of 9.2, and introducing
the quantity g, we obtain

Yol = Pusa®] < ITan(]  for 1] > 08 g,

By (17) we are enabled to put into this inequality (e

n— €n+1)
and {p..(e,—e,,.,) instead of ¢{, whence

€n— €n+1 < gl Tn+1 (gmm(?n— e’n+1))l’

€n " Cny1 < gITn+1 (Cmax(en_ Pnj-l))]

and
—e, —e '
Tn+1 (rﬁﬁl’ +l ) ' BRI ITﬂ+l (Cmin(e'n._ €n+l))|7
(18) -
‘n en
Tn+1 (Tg:;,_xl) 1 ) 1 +l ITn+1(Cmax(en—en+1))|-

Since the function |T,,,| decreases (from -+ oo to 0) on the half-line
(—o0, —cosm/2(n+1)) and increases (from 0 to +oo) on the half-line
(cosm/2(n+1), +o0), it follows by (17) and (18) that

e
gltifll) (—gM-—l) = cmin(f’n_ en-i-l)’
(19)

— @€
1 n+1
Tg::x ) ( g ) < Cmax( ef‘t-+ l)
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Analogously, we apply theorem 9.3 to the polynomial ¢ = y,— v,
and infer for |¢| > cosz/2(n+41) that [yn(t)—yn1(?)] = fiTusa(t)|l. Re-
placing t by {ppn(en+€ny1) and {pap(en-€ny1), We obtain

eﬂ-+ €ni1 > f|Tn+l(Cmin(en+ en'+l))| ’ (’n+ ni1 = f|Tn+l(Cmax(Pn+ (’n-l-l))l ’

whence

Tn-l-l (Tgi-;l) (_ﬁn—_l'f(’gil)) = %Pﬂ“ = l Tn+l(ijn((’n+ (’n+1))[ ’

n 2T €n n n

41 ("n+f’n+1
min f

(n+1) €n+ P'n-{-l
max f

and the theorem is proved by (16), (19) and (20).
" Let us also notice that in virtue of the definitions of f and g and
by (8.48) and (8.49)

T ) < Ll Pnt €nyr),
(20)

T ) > é-ma.y:(eﬂﬂ_ Pn+l)7

€n+€n+l /1’ (’n—‘ﬂn+l < ]’
I g
which means that inequalities (15) are satisfied if we set a = —1, b = 1.

10. Necessary and sufficient conditions in approximation with
nodes. Now we shall investigate pairs of optimal polynomials in the
case of approximation with the system of nodes T = [tl, gy eeny im} under
the hypotheses T C I and % > m (conditions (1.1)).

THEOREM 10.1. Let the polynomials «w,eW,(&;T), wpyr1€Why1(€; T)
be optimal for the function & in the interval I = (a,b) and in the classes
W(&5 T)y Waya(E; T) respectively. If degey,, = n+1, then 1° the equa-
tion
(1) On(t) = @p (1)

has in I precisely n—+1 real roots of multiplicity at most 2, 2° all double
roots are nodes, 3° a and b are rools of this equation if, and only if, they
are nodes, 4° a, b can only be single roots of (1), 5° in each of the intervals

(2) (@, 21), (21,22)5 ...y (2g-1) %¢) (2¢, ),

where 2, < 2y < ... < 24 denote all the different roots of (1) which are not
at the same time nodes and single roots, there exists an (e) point of wy,.



Systemn of optimal polynomials 53-

Proof. Let us write 6, = wp,— &, 0,1 = Wy, — & From condition
(I1) of § 2 it follows that there exist (¢) points py, Psy ..., Pp_myz Of @,
such that, retaining the notation (2.1), we have signd.(s;) = (—1)¢
for j=1,2,...,n4+2 where ¢’s are all either non-negative or non-
-positive. Moreover, if s;¢T, then ¢;= 0 and if ¢ is an (e) point, then
¢; # 0 (the nodes cannot be (e) points for which |3,(t)| = &;(&; T') because
of £,(&;T) > 0).

Since degew,,, = n+1, it follows that (& T) = [[8,lf > 185 44llx
= rpy1'§; T)y whence for those ¢ which are (e) points

(3) Sign (wu(si)_ wn+1(3j)) = Sigl](én(s;p‘)_én+l('9j)) = Sign‘sn(s:i) = (___1)1'(,:,.

We join the (e) points p;, p3, ..., Pn_myiz 0f @, into maximal groups
not separated by nodes; let these groups hayve &k, k,, ..., k, elements
(whenece k,+k,+...+ k. = n—m-+2). Thus among the (e) points

Pry P2y -9 Prpy

Pryvty Phyrzs oovs Pryvley)

Pry+ .. 4k y+1r Pryy 429 o0oy Pyt rkp=n-—mi2)
‘1 r--1 1 r 1- 1

only the points pr and pr i1, Pryjr, NA Priryi1y ooy Dhysoik,_, 20d
Pky+...+k,_ 41 are separated by nodes. '

We join the nodes t,t,,..., 1, into maximal groups not separated
by (e) points, with 7,,7,, ..., 1, elements respectively (whence L, +1,+
+...4+1, =m). One of the mutually exclusive inequalities r = r'+1,
r =+, #' =r+1 holds. ‘

In the first case the (e¢) points and the nodes have th: following
order (we write the number of elements of a group in the place of the
group itself): ki, l,, kay ..., kpy by, kpyr; in the second case the order
ll; kl; 127 (AR ,r; k‘r or
(4) Fyy by Bay oony Kpy by

in the third 7, ky, 7y, .00y 1y Koy gy

We shall prove 1°-4° only in case (4); all other cases may be treated
similarly. From (3) it follows that between consecutive (e) points not
separated by a node, 4.e. consecutive in the system s,,8,,...,8,,,,
there is at least one root of the difference «, — w,,; which, by deflmtxon,
is not a node. The number of these roots is not less than

() k=14 (ky—1)4...+(ky—1) = n—m+2—7.

On the other hand, between two consecutive (e) points p;, p;n,
which are separated by I nodes there are not less than I+1 roots (counted
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with their multiplicity). For, if only the nodes were the roots and singular
ones at that, then the difference w, — w,,; would change the sign exaectly !
times between p; and p;.,. This, however, contradicts formula (3) implying
Sign (wn(Pis1) — @ny1(Pis1) = (—1)"sign(wa(p;) — wnya(ps)). Since, accord-
ing to (4), to the right of the last (e) point p,_,,, there are I, nodes,
we have shown that there exist at least

(6) W+ + G+ +. + () +H b = mtr—1

roots disregarded in formula (5). From (5) and (6) it follows that the
polynomial «,—w,,, has in I not less than (n—m+2—7)4+(m+r—1)
= n+1 roots, and since deg(w,—w,,;) = n-+1, it has exactly n4{1
real roots. It follows that at all those places in the proof where we have
said ‘“‘at least” we may say ‘‘exactly’. Thus all the roots of (1) are of
multiplicity not greater than 2 (part 1° of the thesis), double roots may
be only the nodes (2°) lying between (e) points, whence, in particular,
they cannot be the bounds of I (4°). The points e and b are roots if, and
only if, they are nodes (3°).

We shall now prove part 5° of the thesis. We have shown that the
roots of equation (1) lying outside (p,, Pn_m,:) are nodes and single roots
of that equation. Since, by definition, the points 2z, and 2z, are devoid of
at least one of these properties, they must lie in (p;, Pn_m,2), Whence
2,164, %), Pn_myiz€(2q, b). It follows that the remaining intervals (2)

are all included in the interval (p;, pn_my2), Which is the union of the
intervals

(1) (Pry Pry) s (Prepgrs Pryaky)s o9 (Pryse.tkp_y 415 Phys.ovkpmn—mz2)y

of the intervals
(8) (Prys Prys1)s (Physkys Pryskys1)s ooy (Physoakp_ys Phygo kg 41)

and of the points p,, ..., Pr_m;1- AS we have already remarked (p. 53),
all the nodes lie in the intervals (8). No consecutive (e) points can lie in
one of the intervals (8), for it would mean that in such an interval, besides
the single roots at the nodes, there are two more roots of equation of (1),
but as we have already shown there is only one. Thus only the following
cagses are possible:

I. The points z;, 2;,; are in different intervals of (8); II. z; is in one
of the intervals of (7), 2;,, is in one of the intervals of (8), or vice versa;
IIL. 2; and z;,, are in different intervals of (7); IV. z; and 2;,; belong
to the same interval of (7).

From the definition of cases I-III it follows in each case that in
(%4, #¢41) there is an (e) point of w,. The same holds in case IV, since, as we
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have proved, between two consecutive (e) points not separated by a node
there is at most one root of (1). This completes the proof of theorem 10.1.

Subsequently & will stand for the class of the intervals (z,, 2,),
(%24 23)y -y (24_1y 2¢q) Where, as before z,,2,,...,2, are all the different
roots of (1) which are not simultaneously single roots and nodes. We shall
show that class £ is non-empty, <. e. that ¢ > 2. Indeed, ¢ = 0 would
imply that (1) has m single roots which are nodes and has no multiple
roots. If ¢ = 1, then either precisely one node is a double root or there
exists exactly one root of (1) different from the nodes and all the roots
are single. Hence for ¢ << 1 equation (1) has at most m+1 < n-+1 roots
(cf. the hypotheses of this §), which contradicts theorem 10.1.

As in § 8, { (k) and {..(k) for h > 0 will denote the smallest and
the greatest root of the equation |w,(t) —w, ((f)] = k. For h = 0 we use
simpler symbols: £p,,.(0) = Upiny {pax(0) = Upax, denoting the smallest
and the greatest of roots of the equation (1) respectively. Since z,, z,, ...,
z, are different roots of this equation and q > 2, v, < Up...

THEOREM 10.2. Let the polynomials w,eW,(&;T), Wni1 € Whpa(é; T)
be optimal for the function & in the interval I = (a,b) and in the classes
Wo(&; T)y Wa (&5 T) respectively. If degw, = n+1, then the following
conditions are satisfied:

(9) &€ T)+ (65 T) = llon—anpillu

'min» ¥max?’

(10) en( &3 T)—Fn+1(5 T) < mlnHwn_wn-{-l”J’
JeZ
tf &y = Upyg, then

(11) Cmin(fn(é'; T+ eapn(£5T) <a < ijn(*'n(f; T)—enya(&; T));
if 21 > Uynn, then (11) holds or
(12)  Cpulea(E D) —enn(6T)) < @ < Uy, and

el &3 T)—ep1(&5 T) < [l — (’»'n-ylu(-umm.zlﬁ
tf 2y = Upaxy then

(13) Cmax(en(€5 T) = en1(&5 T)) < b < Lmaxlen(&5 T) + £01a(5 T));
if 2y < Uy, then (13) holds or
(14)  Uper < b < lnalen(§5 T)—apa(€; 7)) and

&€ T)—en (&5 T) < llwn— (‘-’n+1“<zq,umu>'

Proof. From the hypothesis |lw,— & = 405 T), llwp— iz
= eq,1(&; T') there follows

(15) | ”wn_wn-HHI <Fn(55 T)+Fn+1(§i T).
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By theorem 10.1 all the roots of (1) lie in I, 4. e. {w 4, Vpae> CI,
which gives
(16) a6 < Vyyny  Ugay <b.

By the above inclusion and by (15) we obtain (9).

From part 5° of theorem 10.1 it follows that in each interval of class &
there exists an (e) point p of the polynomial «,. At that point |e,(p)—
—&(p)l = enl&; 1)y |@pia(p) —E(P)| < €n4a(€; T), whence

(17) la'n(p)—wﬂ-}-l(p)l = Fn(s; T)_%-H(é; T).

Therefore if J is one of the intervals of class Z, then |ja,— w, iy
= (€3 T)— ey 1(&; T), 4. 6. (10) is satisfied.

The polynomial w,— w,; has only real roots, whence it is monotone
on the half-lines (—oo, uy )y (Upay, +00). The function |w,— w, .|
decreases on the half-line (—oo, u_ ;) and increases on the half-line
(Upaxs +00). Therefore, except the interval

Conlal€5 T+ ena(€5 1))y Conax (€al &5 T)+ ngal &5 1))

according to the definition of its bounds, we have [w(t)—w,,(t)]
> e,(&; T+ &441(&; T), whence by (15) there follows

(18)  Caua(el&; T+ €0yl 1)) < @) b < Cnpaxlenl &5 TN+ enga(€; T)).

From the definition of 2, and w.;, it follows that z; > ugy . If
?y = Upn, then by part 5° of theorem 10.1 there exists in the interval
(@, uy,) an (e) point of the polynomial w,, ¢. e. a point p > a satisfying
(17). We have remarked that the function |w,—w,.,! decreases on the
half-line (—oo, u;,). Hence, by the definition of 'Cmm(h), a <p
< Coninltal €5 T)— €042 &5 T)), which, with (18), gives (11) in the case
where z; = U, ;

On the other hand, in z; > ug,, the conditions to be proved may
be formulated as follows: either inequality (11) holds and one of the
mutually exclusive inequalities

(19) enl & T)— fn+1(55 T) < ||e,,— wn+1”(um[n,zl>y
eal€; T)—enya(§5 1) > |lop— wﬂ+l”(um_m,21>

is satisfied, or (11) is not satisfied but (12) holds. If we join case (12)

with the case where (11) and (19) are satisfied, we must prove that either
the inequalities

(20) en(&; T)—enpal&; T) < |lwp— wn-{—l”(umju,zl);

(21) Loin(6a(65 T+ enp1(65 1)) < 0 <ty
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are satisfied, or
(22) _ en( &5 T)—En+1(§§ T) > ”wn_wn+1”<umm,zl)a
(23) Contnlea( €3 T)F enia( &5 T)) < @ < Epnlenl €5 T)— £ (&5 T))

hold. By (16) and (18), (21) is satisfied independently of (20). Now let

us suppose (22) to be satisfied. It follows from theorem 10.1 that in the
interval

(24) {a, 2> = <@, Uy v <umin’ :.l>

there is an (e) point p of w, satisfying (17). Therefore |lw,— wyiillcaz;y
> en(&; T)—e440(8; T), whence by (22) and (24) it follows that
”a’n_wn-j-hl(aumm) = e(§; T)—ena(§5 T). Since the function |w,— Wy y1
decreases in (@, Up;>, |wn(@)— @y (6)] = e,(E; T)—e,1(&; T) and by
the definition of (. we have a < lg(rn(&;T)—enya(&; 1)), which,
together with (18), leads to (23).

Thus we have proved (11) and (12). An analogous argument in the
case zg = Uy, OF 2, < Up.. gives (13) and (14).

THEOREM 10.3. Let the polynomicls w,eW,,, w,, €W, 1, the numbers
€ny bny1 and the interval I = (a,b) satisfy the following conditions: 1°
degwy,, = n-+1, 2° the equaticn
(25) wn’.t) = a‘n+1(t)

has only real roots with multiplicity not greater than 2, 3° all nodes a}c roots
of (25), 4° the double rools of (25) are modes, and, retaining the notation used
above, we have, 0 < e,,, <e,

(26) ’ bnt lry1 = ||wp— wn+l”(umm,umx)$
(27) €p— Cpy < min {|w, — wn+l”J7
JeZ

if 2, = v y,, then
(28) Cm]n(en+er’u+l) <6< 4-x:nl.n(‘an—‘,ﬂ+1)7

if 2y > gy, then (28) holds or

(29) ijn{Pn n+1) <o < Y min and = fnt1 < “wn —'.wﬂ-i-l”(umjn.”l)’

if 2; = Upay, then

(30) Cma.x(eﬂ. ﬂ+1) b & cma.x(e +€n+ 1)
tf 2, < Uipex, then (30) holds or

(31) umax b < Cmax( : fn-l-l) and en_€»+1 "a’ “"'l”(’q'“mu)'
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Under these hypotheses there exists a continuous function & for which
the polynomials w,, w,,, are optimal in I and in the classes W,(&; T),
Wria(€; T) respectively; moreover e,(£;T) = e,, 651(&;T) = €5y, .

Proof. For the proof we construct the function ¢ with the desired
properties; the construction does not differ essentially from the one
used in the proof of theorem 8.3. In the case we dre considering now &
must satisfy the additional condition

(32) £(t) = oplty) = wpalty) (1 =1,2,...,m),
necessary in ordexr that wéé%’n(s; T) and wy 6 Wy 1(&; T).

As in the proof of theorem 8.3, we introduce the sets
(33) A = Bloa(t)— onsald)+eal <enia}y

(34) Ag = E[[an(t)— wn+l(t)_ e, < f’n+ll ’
(35) 4, = A;al: VAL = E{(’" eny1 < |op(t)— wu-{-l(t)l < en+en+l}-

Since w,— w, ., i a polynomial, the sets 4,~I and I— A4, are closed
and consist ot a finite number of closed intervals. Let us therefore write

Ayl = U Cag, ;)

where ¢ <a; <0, <a;<a; <...<ay < a,, <b Each of the inter-
vals {a;, a; > is included either in A* or in A, , for by (33) and (34) we have

wn(t) — wpp1(t) < €py—e, <0 for te A7,

(36)
wp(t) —wp1(t) = e,—e,, 1 >0 for ted,.

Let wuyy, = uy <y <.oo < U, =Upyy be all the different roots
of (25); they do not lie in A,~I, for ¢,—e,, , >0 and, by hypothesis,
they are in I. Thase roots separate each pair of intervals

’ !
(37) (a;, a£’>1 <a’£+11 ai;1>-

Indeed, if one of these intervals belongs to A; and the other to 4.,
then by (36) there exists a root of (25) lying between them. If both inter-
vals (37) belong to the same set among (33), (34), then in each of the
intervals (a;, a;'), (@;'y @iy1)y (@541, 67,,) thereis an extremum of w,— wpy,.
This polynomla,l has only real roots not lying in the intervals (37 )s whence
in (a¢', @;,,) it has a root.

Moreover, if @ < a7, 4. 6. aeA,, then a root of (25) lies in (a, a;).
Indeed, by (29) we have in this case e,—e, ; < ”w“—“’"H”(“m o

and by the definition of 4, we have ale(um, 2,), whence a < Uy, < ;.
Similarly, if a, < b, i. e. bed,, then in (ay, b) there exists a root of (25).
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Therefore let ,
a gul < se s < ukl < al,

e ’ . ’
G < Uy < Upgpn <ooo < Uy < By (r=1,2,...,2'-1),
a:;l: <ukﬂ'+l <o-o <’ll,.<b,

where k,+1 <k,y...,kp_1+1 < k,.. We introduce the first and the
third of these definitions only in the case when a < a;, @,. < b respecti-
vely; in the contrary case k;, =0, k,. = r.

Let us set

wy(t)+e, for tedl I,
w,(t)—e, for ted,~1I,

@y, 1 1(?) for te(a,,ukl) v (uk1+1’“k2) V.
N Ty
© (U, 4158k 2 (Ui, 11 b’),

€, 1181gN 1) — wy(t
mit) - IO 20 o
uki+1_ai *

’ .
te(“t'yuki+l) (i=2,..., n‘)a

€y 11 Sign(wn+l(t) - wn(t)) (
a; —uki

“’n-{-l(t) +

—u,) for

(38) &) = ;- |

Wn () + 2(n+3) (=1 enia 51gn('f:)n+1(t)— @y(t)) y

| Uiy 41— G
oy 2j+1 i +1_a;' ’” LUk +1—a;’
x(a1+ T ln+3 —t) for te(a +']_1nT3_"
r . ukl+1—a{' .
a1+(?+1)—n—+3—> G=0,1,...,n+1),
(n+3)(—1)"*?e, . sign(w, . 1(t) — wp(t)

Wy 11(t)+ u,::_a;( n 41 n ) (uer_t)

u"1+l-a;'

for te <“k,+1'—

)

) We adopt this definition for {€ (a, u"1> and te <“kn,+l' b> only in the case

when @ < a; and a ) < b respectively,
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As in theorem 8.3, onc can prove that the function £ is defined in a
consistent manner in the whole interval I = <{a, b)>, that it is continuous
in this interval and that [[£— o, = ¢, and [é—piilly = €y We
shall remark only that between consecutive roots ‘of (25) the function
sign (wn,1{t) — wa(t)) is continuous and that from (38) it follows dircctly
that (32) is satisfied.

It is also obvious that the polynomial w,, is optimal for & in class
Wy a(§5; T) with the deviation e,,,. Indeed, frem the last but one de-
finition of £ it follows that '

" . ukl"'l_a/;-, | "oy /u"|+1— (‘1
a -] — — e —
*f(l‘l] nt3 ) ‘Un+1(al 4 n 3 )+

‘|"(_1)f"n+13ign(wn+l a;’)_wn(al )) (J=10,1,...,n+2),

thus w,,, is optimzal for £ in class U}, ,, whence a fortiori, in each subclass
of W,,, to which o, , belongs.

It is to be proved that the polynomial , is optimal for £ in class
Vo (&; T).

From (26) and (27) it follows that in each interval of class Z there
exist points of A4,; points of 4, are also in (a,z,). Indeed, if 7, = wu;,
this follows from (28) and from the definition of {_;,; if 2, > w,;, and

(39) Cn— €ni1 < oy, — LTI lu(umm, 7))

then by (35) and the first of inequalities (29) there cxist in the interval
{Upiny 21) C <@, 2;) points of A,. If 2, > uy;, and (39) is not satisfied,
then (28) holds and according to (32) in the interval <{a, u_ ;) C {a, z;)
there exist points of 4, (for example, aed,). Similarly, by aid of (30)
and (31) we may show that (24, b) contains points of A4,,.

. Since & is defined in A4, ~ I so that in each interval composing this
set there exists an (e) point of «, at which |&(t)— w,(t)| = e,, we infer
that (e) points of w, exist in each of the intervals {a, z;), (21, 75}, ...,
(2g-15 %)y (?¢; b>. The number of these intervals is equal to n—m+ 2,
whence it is possible to select the (e) points

(40) P1s P2y -++3 Promy2
lying exactly one in each interval. Indeed equation (25) has » different
roots, and, their multiplicity being counted, n+1 roots; all the n41—r
double roots are nodes. Consequently, (25) has m—(n+1—7r) =m—n—
—14-r different roots, which are simultaneously nodes and single roots,
and’'q = r—(m—n—1-47r) = n—m--1 roots which do not satisfy this hy-
pothesus, which is what we wished to prove.

Now we shall prove that if consecutive points in (40) are of the same
kind, then there is an odd number of nodes between them, and if those
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points are of different kind, the number of nodes between them is even.
By condition (III) of § 2 this implies that «, is optimal for £ in ,(&; T).

We shall use the equality sign(&(t)— wa(t)) = sign(wn,1(t)— calt))
valid at the points (40), for at those points |&(f)— w,(t)l = ¢, and
E(t) — wpya(t)] < epyy < €q. EBach pair pg,piyy 6=1,2,...,n—m+1)
is separated by a point z; which is not simultaneously a node and a single
root of (25). Another roots of this equation, contained in the interval
(Piy Pis1), are single roots and nodes. Hence the number of the roots
of (25) in (p;, Piy1), counted with their multiplicity, exceeds by an odd
quantity the number of nodes lying there. Thus, if that number is even,
then «,,)— w, changes the sign in (p;, p¢41) an odd number of times,
and p;, ps4 are (e) points of different kind; if the number of nodes in
(psy Pisa) is odd, then e«,,,—cw, changes the sign in this interval an
even number of times and p;, p¢yy are (e) points of the same kind.

Hence theorem 10.3 is proved.

Theorems 10.1-10.3 enable us to state the following corellary (the
former notation being retained):

COROLLARY. Suppose we are given polynomials w,eW, and wq,, such
that degawpyy = n+1, numbers e, and e,y and an interval I = (a, b).
A continuous function & for which the polynomials w, and wy., are optimal
in I and in the classes W,(&; T) and W, ((&; T) respectively with deviations
en(&;T) = epy enp1(&;T) = epyy exists if and only if 1° the equation

(41) wn(t) = Wpyia(t)

has only real roots of multiplicity not greater than 2, 2° all nodes are roots
of (41), 3° double roots of (41) are nodes, and if the following inequalities
are satisfied: 0 < e,,y < €,

ént+ €at1 = ”wn_wn+1“<um €p— Chy1 < m-in”a’n—wn+1”.l;

Je&Z&

in- ¥max>’
if 2y = Uy, then

(42) Cmin(lnt€np1) < < {ppmlen—en1);
if 21 > Upg, then (42) holds or

Cmin(bn—Cn41) < O S Uy and ep—epyy < [lon— Oppillu,  ayi
if 2q = Upaxy then
(43) Cmax(€n— €ny1) < b < Cnaxlentenyr);
if 2g < Upay, then (43) holds or

Umax <O < Cpax(Pn—Cny1) and  ep,—e,, < |lwp— wn+1”<zq,umu)-
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