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1. Introduction and notation. This paper deals with the asymptotic
distribution of the sums of a random number of independent random
variables. For the first time the limit behaviour of sums with random
indices was investigated by Robbins [4]. Some generalizations of his
results and an estimate of the rapidity of the convergence of sums distri-
bution function to the limit law may be found in [3], [5], [6], p. 154-162,
and [7]. We shall give generalizations and extensions of the results of
the above-mentioned papers.

Let {X, k> 1} be a sequence of independent random variables, F,

n
the distribution function of the X,, and 8, = } X,.
Let us put k=1

00, n
o, =EX, = [adFy(z), @ =0, 4,=)a,

k=0

b = EX: = fwzdpk(w), b =0,

n
2 2 12 2 2 2 _ 2
op =0 Xy =by—ay, o, =0, s, = 2, Ok
k=0

n
B'? =B(X,—EBXM0), B =0, 7= 3.

k=0

Let

(1) fult) = Bexp(itX,) = [ [exp(iw)]dFy(@), fo(t) =1.
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By N we denote a non-negative integer-valued random variable
which is independent of the X,, ¥ =1, 2, ... We assume that the distri-
bution function of N depends on a parameter 4 and is determined by the
values

9, =P[N =n],n=0,1,2,..., 2?1-.:1

n=0
where p, = p,(4).
Put

a =EN = anm N = Z(n—a)"pn,

| ) Snonfis?)

Under these assumptions on N, the distribution function of Sy = X, +
+X;+ ... + X, depends on the parameter A4, and

g(t) = Eexp (@t

(2) ESy = D A,p, = 4,

n=0

028}\7 = anpn—'_ ZAnp — A4 = 0'27

Ne=0
Sy—ESy
O'SN

- S () [n)

Now, let us observe that the sums Z'ak, Zsk and 2 Bit? define the

k=0
new random variables L, M and R, respectlvely For these random

variables we have

(3) ¢(t) = Eexp (fit

N
L = Za'ky P[L = An] = Pn

k=0
(4) EL = ) A,p, =4, L= ZAnpn A? = 42,
Nn=0 n=0
L—EL - A —A
h(t) =E 11 = it —
(%) exp (z Y ) ; PnexXp (zt 1 ),
N

M= Yo, P[M =s]]=p,
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(5) EM = D'sip, =0, oM = D shp,—o* = w2,

n=0 n=0

N

R = Dp**, P[R=9y*"]=p, BER-= Zy“ppn = Wy

k=0 n=0

Moreover, according to (2), (4) and (5), we obtain ESy = EL = A
and o288y = o+ 4 = o2

It is easy to see that, for the independent random variables with
EX, = a;, = a for every k =1,2,..., we have EL = aa, EL?* = a?EN?
and o:L = a%0?N.

2. The asymptotic distribution of sums of a random number
of independent random variables. In what follows we assume that random
variables X, k =1, 2, ..., satisfy Lindeberg’s condition.

THEOREM 1. If

(6) 0?00, (M—EM)/s>>0 (P = in probability)
with A— oo, then
12
(7) lim p(t) = h(td)exp[— —2— (1—(12)],
A—>00
where
1/2
A 2 Anpn
d=—‘;= n=0_ 9 O<d<1.
Z:)snpn"l— Z Anpn
neo -
Proof. Let

> LA, —A t
w(t):anexp(@t = )exp(—%).

n=0

By (3), we have

I

n=0

Hence

o r-sir S [Tafon{ -2 -on|- 2

k=0

.




150 Z. RYCHLIK AND D. SZYNAL

Choosing an arbitrary ¢ > 0 and using (8), we have

M—-EM
O wo-poi<e| [T e+

[ -52)-enl -5

where the maximum is taken over all n such that |8} — p| < eo2
In view of (1), we have, as t—>0,

242

byt
felt) = 1+imt———+o(t);

hence, as ¢2— o0,

Thus

n

n
iagt\ . [t 2\,
(10) gexp(——a-)fk (;) =eXp(—%-2-% O "I—O(l)-
By (6), for every 6 > 0, there is 4, such that
M—-EM 0 0
(11) P —T—l>s <E and |0(1)|<5 for A > 4.

By virtue of (9), (10) and (11), we have

(12) |q’(t)_'fl’(t)| <3—6 -+ max exp(—tz—si) -—exp(_e_tz)
5 202 202

<§é + max exp[——t—z--(sz—g)] _1'<3_5 +8_t2+0(1)

=B ag2 " SETS ’

where the maximum is taken over all » such that |s2 — p| < &2
Now, fix ¢ and 6 > 0. Taking ¢ > 0 (until now arbitrary) such that

(13) 822 < /5 and Jo(l)] < 8/5 for A> A, > A,

we have, according to (12) and (13), |p(t)—w(?)| < é for 2 > A,. Since §
was chosen arbitrary, ¢ () = yv(f) +0(1). In view of

() = hitdyexp| — Fa—an],

the proof of the theorem is complete.
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Remark. It is easy to see that the assumption v = o(¢2) implies

(M—EM)/e>5>0 with A—oo.

Theorem 1 and Remark yield
COROLLARY 1. If o%—>o00 and u = o(o?) with A—oo, then (7) holds.
An extension of Robbins’ theorem [4] gives the following

COROLLARY 2. If {X,,n > 1} 18 a sequence of independent random
variables identically distributed, and

o*>o00, (N—a)o*>0 with A—>o0,

() = aaNt ox t_2 1 a2ag: N
(p —g O'SN p 2 stN ’

where EX, =a, n =1,2,...
Proof. Since in this case we have

then

(M —EM)[o? = 03N —a)a25>0,
where 62 = 02X, k =1,2,..., so (7) is satisfied. And since

N
d* = A%[? = a?c®N[o? and h(id) = g(““— t),
o

the proof of the corollary is complete.
From Theorem 1 one can also deduce

CorOLLARY 3. If EX; =a, =0, k =1,2,..., and if
0200, M/EM£>1 with A— o0,
then
(14) limg(t) = exp(—12/2).

A—>00

Proof. In this case o2 = ¢ and w(f) = exp(—t%/2), whence (14)
holds by Theorem 1.

COROLLARY 4. If (6) is satisfied, and if A® = 0(0?) with A— oo, then S,
obeys (14), i.e. Sy 18 asympiotically normal with parameters A and o.

Proof. It follows from the equality 4% = 0(02) that d = o(1) with
A->oco. Now, putting L, = (L—EL)d/4, we have L,~ 0 as EL, = 0, and
EL? = d*>0 with A-—>oc0. Hence

% A, — A
Eexp(itL,) = anexp [zt( ~ )d] — h(td)>1  with 1—oo.
n=0
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But also

A 12
exp [— 7 (l—d‘*‘)] —>exp(— 5) with A—>o0,
so according to (7) lim ¢(?) = exp(—12/2).
A—>00

COROLLARY 5. If (6) holds, and if L is asymptotically normal (A, A4),
then also Sy is8 asymptotically normal (A, o).

Proof. Under the assumptions of Corollary 5, we have

limh(t) = exp(—72/2)

A—>00
uniformly for 0 < 7<% But 0 <d <1, s0
h(td) = exp(—1t2d?/2)+0(1) with A—oo0.
Hence, according to (7), lim ¢(¢) = exp(—12/2).
A—+00

COROLLARY 6. If (6) 48 satisfied, and if (L— A)/A has a non-normal
limiting distribution fumction G, such that

limh(t) = hy(t) = [ [exp(ita)]dG(x) # exp(—12/2),

A—>00

and if the limit
lim (p/4%) =8 (0<8< )

A->00

does exist, then

im ot = i) o -5 )| = =2 (- 3)
zﬂgq)()_ "Wi+s 2\1+s 2]
Proof. In this case

lim (4/o) = 1/V1+s.

A—>o0

Hence

lim h(td) = hy(t/V1+s),

A—>00

and so we also have

lim ex Qtz) (s
. ———)=exp| —=|—
0 OXP\ T o Pl=g\1s))

the two equalities giving the corollary.
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Remarks. If s = 0 (it holds if o = 0(4%)), then lim ¢(t) = h,(f).
A—+o0

If s = oo (it holds if 4% = 0(g?)), then lim ¢(t) = exp(—12/2) (see
Corollary 4). Ao
We need the following

LEMMA, If oi<e< oo, k =1,2,..., where ¢ is a positive constant,
and if g2—>o0, 0* N = 0(0?) with A - o0, and either a = o0(o?) or a = O(c?)
with A — oo, then

(M —EM)|0*>0  with 1->oo.
Proof. Let us choose ¢ > 0. By Chebyschev’s inequality, we have
P[|IM —EM| > e0?] < c®02 N [e?0t + c?a?[e?0t—>0 with A—+>o0,

when a = o0(0?) with 1—>o0.
In the case a = O(o2), we have

PN —EM > 20t <[ 3 akpn—stal st + [sta— ( 3 sipnf] et
n=0

n=0

where here and in what follows [#] denotes the integer part of the real
number z.

First, we are going to estimate the second term of the last inequality.
We have for it

sta = ( Sstmf| et <5 (5)

as a = O(0¢?) (by the assumption), and

8t — ;ﬂ‘sip,.l/az —o(1)

[sfa— 3 sipa| /0% = 010,

what was proved in [6], p. 154-162.

Now, we infer, taking into account the assumption ¢N = o(0?), that

(N —a)jo?3>0 with i->o00.

Let 6 > 0 be arbitrary. For the first term of the considered inequality
we have

. l Zs:pn—s?a]

n=0

/e2ot,

.
/etat < 2 sip,[etot+ 1 Zs:pn—sf’a]
neB neB

where B = {n: |n—a| > d02}.
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Further,
Zs‘},pn/s2o4 < c? an_p"/eza‘l = ¢? (ENL— anpn) /e2ot
neB neB neB

= ¢2{02N 4 2ad02 — 620% + (a — 002)2P[|N — a| > 80%]}/e20* = o(1).

Now, if

Zszpn—s?a] > 07
neB
then we have

!
D Pty |/e0 < {shuro PIN —al < 60%] —siy} et

ne

<{(sfa+ P) o) A—PIN —al > 80*]) —sty} /s%0* = 0(1)

with A—o0.

If
Zstbpn_s?a] < 0’

neB
then we have

sttty

nel?

/620t < {8t — 8t_s2 P[IN —a] < 8021} /e20* = o(1)

with A— o0, which completes the proof of the lemma.
From Theorem 1 and the lemma, we get the following extension
of the results given in [6]:

THEOREM 2. If oi<ec< oo, k =1,2,..., if 62>00, oN = 0(0?)
with A—oo0, and either a = o(o?) or a = 0(o?) with A—oo, then (7) holds.

From Theorem 2 one can obtain, in a simple way,

CorROLLARY 7. If EX, =a, 0?2 X, <c¢c< o0, k =1,2,..., if 02>
with A—oo0, and either a = o(¢?) or a = 0(o?) with A—oo, then

lim ¢(t) = g(tﬂ)exp{—;—z(l—azazlv)}.

A—>00 g 0'2

3. An estimation of the deviation of the distribution of the sum of
a random number of independent random variables from its limit distri-
bution function. Let F and G be the distribution functions of the random
variables (Sy— A4)/o and (L —EL)/4, respectively.

THEOREM 3. If w,,, < oo (0 < p < 1) and, for every m, y3?[s: < K,
where K 18 a constant, and if (6) holds, then

T @ u  ut w, o
P =0 (G) oo (zg) | <o+ i+ )

(15)
e o o
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where ¢ is a positive constant, @ is a normal distribution function, and %
denotes the convolution operation.

Proof. Let us consider the function

#i(t) = ) paexp (it A”;A)ﬁ[fk(é) eXP(—it%)],

neC j=0

where C = {n: s > 0/2}.
It can be observed that

)= Ymesp (172 A)[ H ill) ~es (- 25)] +

neC
2 2
+2wxp(” ) [ (=5) e (=55
202 202
neC
2
+ anexp(zt A)exp(— ot ),
202

neC

) =l (= 52)
hy(td) = anexp (—it A"G_A),

neC

where

Now, putting

we obtain

(16)  @1(t) — hy(td)exp ( - g_tZ)

202
A, — AT 17 - [t 22
- Sre (A (]3] - - 5]
o o 202
neC k=0
L A4,—4 8212 ot?
+ Zp,,exp(zt . )[exp(— 202) — exp (— 202)]-

neC

It is obvious that
ox 822 ot?
P 202 P 202
|87 — el t?

12
<TQXP{ min(s},, o) ‘)0'2}

(17)
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Moreover, we have

col/? 42 o colo 2\ - o
(18) f texp _ e =2 zexp| — —|dz < —
s 202 es 2 )
and
col/? g2 . ¢ “?J“ 22 .
o ¢
(19) f texp(— 2"02)dt == f zexp(—g) dz < L
0 " o n
where
83. 1/p
C=|—>% —
24 ' pitP
k=0

On the basis of (17), (18) and (19), we have
822 ot?

exp(— 202) —-exp( T 202

And, finally,
nt? t2 A,—A

(20) f an exp| — ) —exp (-2 exp |t == @

202 202 o t]
[tl<cel/2 " n

|87 — ol |87 — ol 2 2u
< Dt D)) p<” D i —ol pa< —
s 0 0 0

neD nek neD

dt< (s —o)o if 8> o,
1 {(e—s2)/s2  if 8% < e.

it <coll?

for D = {n:0/2<8,< ¢}, E ={n:si>0} and > p,ls}—ol < oM =u.

n=qo
Now, by Lemma 1 of [1], we have
2 24D 1412+
n . y 4 y
~ t 82 tg ﬂj |t| 82 tz
21 Y ___n k=0 _°n
for
0_(82)llp
[t < == = co,
24 2+p\1/p
( kg:) it?)

where a positive constant ¢(p) depends only on p.
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Hence
" 2 o
wf 8212 Ve 1, [2\0+o0 - 22
1+p — dt = f 2 —& = e ——|d
af t exp( 402) o P 28,,(831) 2 xp( 2) z
2 1+p/2 /
LITETR e (2)T
DNTAREE al
Thus
oe)/® P 9\142/2
(22) f t'+Pexp (— 2 )dt< 02“’(—2) .
40°
0 n.
Taking into account (21), (22) and the evident inequality ¢ > o'?,
we obtain
%3 f 2 “r o~ (1 N 212\ | dt
(23) 1 pn”fko P\~ 557 ) |7
Rt <cell2 neC k=0
n N
< o(p)2¥+P" ZP”Z BH+P(s2)" 1P < o B ( Zﬂgw) Vil
neC k=0 k=0
where ¢, i3 a positive constant.
According to (16), (20) and (23), we get
2 R tdt
(24) 7)) =k (td)exp| 5 (1—d9 || 7
It|<collz Il
2u N 24D/ 1+Df2
<2 een( Sen.
e k=0

Here we also observe that @' (z/V1—d?) < o/¢'% Let now F, and G,
be distribution functions corresponding to the characteristic functions ¢,
. and h,, respectively. On the basis of (23), (24) and the well-known Esseen
Theorem [1], it follows that

(25)  sup |Fy(2) — Gy (@/@)x D(2/V1—d%)| <2u[0 + ¢,wy, 5[0 TP + ¢50]0,

where ¢, and c¢; are positive constants.
Further, we have

(26) F(2)—Fy(@) < Y P < 4u?0?
neY
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and

(27) G (@) — Gy (x) < D pa < 4u/e?,
nel

where Y = {n:s, < o/2}. ,

Taking into account (25), (26) and (27), we obtain (15).

COROLLARY 8. If the assumptions of Theorem 3 are fulfilled and EX,
=a for k=1,2,..., then

sup |F(¢) — H (/d)* & (z V1 — @]
< 0(“/0‘|‘“2/92+w2+p/91+p12 +1/0""+aoN /g),

where H is the distribution function of the random variable (N —EN)/oN,
and c is a positive constant.
Proof. In this case ¢/p < 1/0'*+ aoN /. This inequality and Theo-
rem 3 give the estimation of Corollary 8. Of course, in this case d = asN /o.
The following corollaries extend the results given in [5]:

COROLLARY 9. If in Corollary 8 EX, =0 for k. =1,2,..., then
sup [P (2) — D(2)] < e(u/o+u?/e* + 1w,/ +1/e"),
x

where ¢ 18 a positive constant.
COROLLARY 10. If the assumptions of Corollary 2 are satisfied and

BFP?P=E|X;,—a’P< oo for k=1,2,..., then
sup |F(z) — H (z/d)* ®(z[V1— @2)]
) < ¢(oN [a+ 02N a2 + p2+P 6P o2 | 5/02%a).
In this case d = aoN Jo.

COROLLARY 11. If the assumptions of Corollary 2 are satisfied and
a =0, 02 =1, and 2 < oo, then

|F (z) — D ()] < ¢ A (1 N ﬂ)

1+kP\Ya o ' a

The proof of Corollary 11 follows by Corollary 2 and by the estima-
tions given in [2] and [5].
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