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Introduction

The reasons underlying the dominant role played by Sobolev spaces
in the general theory of partial differential equations are not hard to find:
these spaces provide a natural setting for the formulation of many of the
problems which arise, and the variety of embedding theorems which relate
appropriate pairs of Sobolev spaces offen malkes it possible to establish
in a simple way results of great usefulness about the particular equation
under §tudy. Of especial importance among such embedding theorems
are those which, like the celebrated theorem of Rellich, assert that a
certain Sobolev space is compactly embedded in another such space.
Indeed, as is well known, Rellich’s theorem enabl®s the Riesz—Schauder
theory of compact linear operators in a Banach space to be applied to
the Dirichlet problem for linear, uniformly elliptic equations in a bounded
domain. It is therefore not surprising that considerable attention has
been paid, over the years, to the problem of classifying, by some useful

,means, these compact embedding maps. The literature on this topic is

quite extensive, ranging from the early work on the situations when
these maps are of Hilbert—Schmidt or nuclear type (see, for example,
[6] and [12]) to the later and more detailed results contained in [1],
[14]-[21]. ‘

The object of this paper is to investigate the Fourier approximation
of functions in Sobolev spaces in a way which throws fresh light on the
embeddings mentioned above. To explain the results, let m be a positive
integer, let 1 < p < o0, and let 2 be a bounded open subset of B™ (n > 1).
Define W™?(2) to be the Sobolev space of functions 2eL?(2) such that
DueL?(Q) for all a with |a| < m (standard notation being used), endowed
with the norm

lhnpa = ) 1D°lZ,q)",
lal<m

where (o], , = ([ l-v(;z:)|”dw)”1’. The space W™®(R) is defined by the
2

natural adaptation of this definition, and for 1< p < oo, WPP(Q) is
taken to be the closure in W"™?(Q) of the set of all infinitely differentiable
functions with compact support in Q.



6 fourier approximatlion and cmbeddings of Sobolev spaces

m 1 1
Now let 1<p<< oo, 18 o9, m>1,7>5 - and suppose

the boundary of £ is minimally smooth in the sense of Stein. Under these
conditions it is known ([7], p. 107) that W™¥(Q) is compactly embedded
in L*( Q). Our main result is that any » in W™?(2) can be approximated
by a sum S,% of not more than r terms of Fourier type in such a way that
as 7->00,

(A) "'ZG ha Sru”s,a = ”u”m,p,ﬂo (T_TH-S)

n
elements of Wi+?(£) with no hypotheses on the boundary of £.

We also need to discuss Orlicz spaces. Given a non-negative convex
function ¢ on [0, oo) such that ¢(0) = 0 and Lim?™'p(¢) = oo, let L?(RQ)

t—00

denote the Banach space of all measurable functions % on £ such tha

1
for all e> 0, where & = il —max(—z—)— Y 0). The same holds for

[ (A ju(@))dz < oo
Q
for some A > 0, with norm
el a = illf{l > 0: f‘/’(l_ll'u(w)l)d:v < 1}|
2

We study the partieular Orlicz space L®(£2), where ¢, (1) = exp (') —1
for all t > 0, and » > 1. It is known from the work of Trudinger [11] that

if Q1is of class C', 1<m<n and 1<r < ﬂ’l , then Wv(z;in/m(g)

is compactly embedded in L 2). We are able to show that if 1<<»
<

o then for all ueWg™™(2) we Lave as r— oo,

n 1

1
”’lt - Sru”w,,,.ﬁ = ”’u‘”m,ﬂ/m,ﬂ 0 {(108") " ¥ }

As a consequence of these results we can give a fairly complete analysis
of compact embeddings of Sobolev spaces, using the notion of the type
of a map due to Pietsch. To explain this let X and ¥ be Banach spaces,
let T: XY be bounded and linear, and define the »-th approximation
number «.(T) of T to be inf||T —F|, where the infimum is taken over
all linear maps #: X—Y with range at most r-dimensional. The mayp
T is said to be of type 17 (where 0 < ¢ < oo), or to belong to I7(X, Y), if

Z(GT(T))Q< 00}
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it is of type ¢, if
limea,(T) = 0.

00

Every map of type 17 or ¢, is compact, while if X and ¥ are Hilbert spaces,
MX, Y) and (X, Y) coincide with the spaces of nuclear and Hilbert—
Schmidt maps respectively.

The approximation results given earlier now immediately show that
. 1 1 m
H1<p<< o0, 18K oo, m;l,; H?<7;’ nz1, ¢> 0, then the
7-th approximation number of the embedding map I: Wig?(2)—~>L°(2)
(that is, W™P(Q) or WiP(Q)) satisfies, as r— oo,

(B) a,(I) < constyt+e

for all ¢ > 0, and accordingly I is of typel? if% > i —|—m&x(—% - l, 0),
q s

Tnzl 1< m<n,l<y<n/(n—m), we also have that the embedding
map W Z’;;”””(Q)»L“(Q) is of type ¢, which tells us nothing more than
that the map is compact. We thus simply recover Trudinger’s result,
but under the better conditions on » which are indicated by work of
Edmunds and Evans [2]. Estimates of the form of (B) have been known
for a number of years, and appear to be due to Birman and Solomjak
[14], [15], who used completely different methods and dealt with the
case in which £2 was a cube and p < co. They were able to establish the
even stronger inequality

a,(I) < constr™™®,

and for certain special cases managed to obtain similar lower bounds
for a,.(I). Other results in the same direction as (B) are to be found in
[16]-[21], although it should be remarked that the extreme cases p = 1
and p = oo are not always dealt with, and that often the discussion is
carried out not in terms of approximation numbers but by means of the
related notions of the Kolmogorov diameter or the entropy of a set. So
far as we are aware there has been no previous work of this kind on the
embeddings in Orlicz spaces. Apart from this matter of Orlicz spaces,
the essentially new contribution of this paper is thus not given by the
results about the types of the various embeddings, but is rather provided
by our estimate of the closeness of Fourier approximations contained in
(A), together with our treatment of the extreme cases p =1 and p = 0.
At this point it is convenient to remark that it is our use of Fourier
approximations rather than any other kind of approximation which is
responsible for the appearance of the & in (A) and (B): while for certain
values of the various parameters ¢ can be set equal to zero, its presence
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in general is essential and is related to factors involving logr which turn
up in the detailed calculations.

In a forthcoming paper [4] we shall show how the notion of ap-
proximation numbers may be applied to obtain the asymptotic distri-
bution of the eigenvalues of elliptic operators.

It is a pleasure to record our thanks to L. E. Fraenkel for numerous
stimulating conversations, and above all for supplying the crucial estimates
of Section 7.

1. Preliminaries

e denote by R™ the n-dimensional, real Fuclidean space with general
point & = (%, ..., 2,). By £ we denote, once and for all, a bounded open
set in R™ and by CF ( £2) the linear space of infinitely differentiable, complex-
valued functions on R" whose support is contained in 2. Let a= (a,, ..., a,)
and & = (ky, ..., k,) be multi-indices, i.e. vectors in R" with integral
components, the components of a always being non-negative. We set

n 7n n
lal = Yoy k= D lkly B =[]y, B = (7
i=1 i=1 i=1

this convention for multi-indices being maintained throughout the paper,
and for ueCy(£2) we also set

o'y

Du= .
92t ... Ol

Given the special importance that we shall attach to open sets with
minimally smooth boundary in the sense of Stein ([107], pp. 181 and 189),
we record here their definition.

An open set D < R" is called a special Lipschitz domain if there
exists a function ¢: R"'->R' satisfying the Lipschitz condition

n—1

(1) lo(y) —o(y)l < M{Z (yj—ybz}”z for all 4,9’ eR*,

i=1

such that D is a rotation of the set
{weR": o = (y,2), yeR", 2R, 2> o(y)}.

The smallest M for which (1) holds is called the bound of the special
Lipschitz domain D.

Now let .D be an open set in RB" and let 9D be its boundary. We say
that 0D is minimally smooth if there exists an &> 0, an integer N, an
I >0, and a sequence (U;) of open sets so that:
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(i) If 0D, then the ball B(z, ) of centre # and radius e is contained
in some U;.
(ii) No point of B" is contained in more than N of the U;'s.
(iii) For each % there exists a special Lipschitz domain D;, whose
bound does not exceed I, so that

tfi ('\.D = U'i m'D‘J' .

Examples of open sets with minimally simooth boundary are exhibited
in R® by any bounded open set which iy either convex or whose boundary
is C*-embedded in R™, and in R' by any finite collection of disjoint open
intervals.

Returning to our bounded open subset 2 of &™, we shall consider
the following Sobolev spaces supported by it.

(i) W™?(82): This is the subspace of L¥(2) of all complex-valued
functions % with generalized derivatives np to the order m in L?(R),
under the norm
(2) il pa = ( 3 [ 1D°u?da)"™

lajsm
for 1< p < oo, and

(3) ls,0,0 = ) sup | D*u(a)],

laj<m re
for p = oo, “sup” denoting the essential supremum. The space W™P(R")
is defined similarly.

(ii) H™?(0): Denote by C*(8Q) the space of all infinitely differentia-
ble, complex-valued functions on £ whose derivatives of all orders have
continuous extensions to £. Then H™?(Q) is defined as the completion
of 0*(L) for the norm (2) if 1 < p < oo and for the norm (3) if p = oo.

(iii) Wm™P(Q) and Hj"?(Q): These spaces are the closures of C3°(R2)
in W™P(Q) and H™?(LQ) respectively, endowed with the induced norms.

A few remarks on the comparison of these spaces are in order.

(a) Wgb?(R2) = H?(R) for 1< p < oo and any L.

(b) W™2(Q) o H™P(Q), but if 1< p < o and 02 is minimally
smooth, then W™?(Q2) = H™?(Q).

(c) H™>*(R) = 0™(8) is always a proper subspace of W™(Q).

When m = 0 then clearly W™?(Q) = L?(R2) and we simply write
llull, o instead of |lull, , o for weL”(L).

Finally, for 1 < p < oo let p’ be the complementary Lebesgue exponent
of p defined by 1/p+1/p’ = 1. Tf ueL"(Q) and veL?(Q) we set

(u,v) = fu(fc)fu—(g)dm,
2

where v(z) stands for the complex conjugate of v(x).
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In this paper we investigate the Fourier approximation in L*(£2) of
functions e W™?(2), where 1 < p < 00, 1 < § K oo, In view of the above
remarks the results obtained will hold, a fortiori, also for functions in
WP (2) or Hig?(R).

2. Embedding W™?(Q2) into L*(Q) (n>1)

Let 2 be a bounded open subset of B" whose boundary is minimally
smooth in the sense of the previous section. Without loss of generality
we may assume that £ is contained in the n-dimensional open cube
@ = (—=, ©)". Then any function ue1V"™?(2) can be extended to afunction
wWeW™?(Q) which is periodic in each coordinate, the extension operator
w7 being an isoworphism of W™ (2) onto a closed subspace of W™2(()
with norm independent of p. Moreover, for 1 < p << oo the range of the
extension operator is contained in W2?(Q). In fact, if u<W™?(Q2), then
by [10], Theorem 5, p. 181, % can be extended to a function veW"™?(R")
such that

(4) ”7"”111,1;,1?,” < € ”'u”m.zw;ﬂa

where ¢, depends only on m,n and £. Let eCy?(R") with suppe < @
and ¢(r) =1 for all 2. Then % = veW™?(Q) for 1< p < oo and
weW™?(Q) for p = oo, but in any case % can be continued periodically
outside @. Moreover, since %(z) = u(z) for £¢Q2, we have from (4)

(5) Ih‘tllm,p,n < |[ﬂ”m,p,q < (] "v”m,p,R"' \< ¢ "“"m,p,z)!

with ¢ independent of p.
Let now &k = (%, ..., k,;) be a vector in R" with integral components
and consider the trigonometric system {¢,L} restricted to @, where

e(®) = (2.”_-)-n12 gk

and k-2 denotes the inner product of % and z in B*. It is well known that
this system is contained in L°(Q), is a basis in L°(Q) for 1 < ¢ < oo and
its linear span iy dense in L'(Q). We restrict our attention to Fourier
approximation by “square” partial sums; our estimates will then auto-
matically hold also for “spherical” partial sums and it will be clear how
to interpret our results in the case of general partial sums. In order to
construct such square partial sums we proceed as follows.

It will be convenient to introduce the following notation: if f(w)
and ¢(r) are two real-valued functions, we write

fl@) ~g(®) as x—o0
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to mean that there exist two positive constants ¢; and e, sueh that

e f(x) < g(%) < oof(x)  for large enough .

Throughout this paper we denote by » a large positive integer. If,
for every positive integer j, N (j) is the number of functions g, with k| < 4,
then N(j) ~ j" and hence, if we require that N(j) <7, we must take
j~ ", Now let k(r) be a multi-index whose components k;(r) are all
positive and such that

(6) k(r) ~ k()] & (L<i<n).

For weL’(Q) we consider the partial sum of order %(r) of the Fourier
series of wu,

(7) Tt = D () s

Vegl<ky(r)

1Lin
and set, for every ueW™?(Q) (here we assume m,p and s such that
WP () « L%(9Q))

(8) Sru' = xﬂTk(r)ﬁi

where yx, is the characteristic function of 2 and % is the extension of
% to @ constructed above and satisfying (5). Moreover, % is always assumed
continued periodically outside @ whenever necessary. Since « = y,o%,
we clearly have for the Fourier remainder map I—8,,

(9) ”’M—-S,.’l.b”a‘g g “Tb_Tk(r)ﬁ”s,Q'
Under the condition £ < @ we shall obtain estimates of the form

I~ 8,ll,0 < €D, () [l (weTV™2(R),

where f(r) = r~*(logr)? and % is given by (19) below. The case of general
2 can be reduced to the above as follows. Let & be any real number
such that

diam (Q) < d < 2diam (£2)

(the second inequality is just to fix the ideas, since any d > diam({2)
and independent of 7, p, s, m and n will do). Choose an open cube @, of
side d and with sides parallel to the coordinate axes such that 2 c @,.
Denoting by v the obvious diffeoinorphism of @ onto @4, weset 2y = ¢~1(2);
then §Q2, = y-1(0Q2) is minimally smooth and £2, < . If now 1 eTW™?(£),
then u o pye W™?(2,) since p e C*(Q, @,), and we have, with ¢, ¢, independent

of », p and s,
[ (8,(wop))op=ls0 < o1 lluop — 8, (w0 B)ly,q,

<
< 0:6(p, 8)F (1) 140 Ylhn, g, 2 < €102¢(25 ) F(7) W]l 0,2 -
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After these introductory remarks, we come to far more important
matters in the form of a fundamental interpolation lemma for Sobolev
spaces, of which we shall make extensive use. Quite possibly this lemma
is already known, but we are unable to provide a satisfactory reference.

LEMMA L. Fori = 1,21letp;, s; be suchthatl < p; < coand 1 < 8; < co.
Let D be any open set in R* and let T be a linear operator mapping W™Pi(D)
into L% (D) such thal

(10) 1Tl p < ©; bl ;0

for all ueW™Pi(D) (i =1,2). For 0 <t <1 set

1 i 1-—1¢ 1 1 1-1¢
(11) Sl ey
8 81 8o b Dy Pe
Then T maps Wi?(D) into L*(D) and there exists a positive constant c,
independent of t, such that

1—~¢
(12) ”Tu"s,D < Octl (32 ”u‘”m,p,l)

for all weTV? (D).

Moreover, if 0D is minimally smooth, then T also maps W™?(D) into
L (D) so that (12) holds for every ueW™?(D).

Proof. TFor the moment let 1 < p < oo. Following Stein ([10], Ch.
V, § 3) we denote by £ (R") the potential spaces corresponding to the
Bessel potential #,, and note that, by [10], Theorem 3, p. 135, %% (R")
is isomorphic to W"™?(R"). Now let y, be the characteristic function of
D and sef

Rv=yxpv for wveZ%(R").

Then RvelV™?(D) and the restriction operator R is bounded from 25 (RE")
to W™?(D), since

(13) R0, < [0l 120 < 7 10l

From (13) and (10) we have, for ve Z2i{(R") and ¢ = 1, 2,

(]-L) ”TR'D”si,D S ¢; ”Rv”m.,pt,D g. yf’ici“ﬂllzg;f(R“) = yﬂici ”f,,;l?)”pi'Rn )

Since £, is an isometry of LP(R™ onto £%5(R") for 1< p < oo,
(14) shows that the operator 4 = TR#,, is bounded from LP*(R") to
L%(D) (i =1,2). Thus by the Riesz—Thorin Interpolation theorem
([13], Vol. II, Theorem (1.11), p. 95) A is also bounded from L?(R™) to
L#(D) with p and s given by (11), and we have

t -_
Hdwlls, b < (7, 0)" (¥, 2) " l0llp, mm
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for all weL?(R"), ie.,
(15) ITEDe,p < (¥5,01)" (¥5,02) ~* [l

2b (")
for all ve Z2 (R").
Let now ueWg»?(D); extending % by 0 outside D we obtain a function
we L5 (R™) such that

(16) llﬁllygl(ﬂn) < 6p [llm,p,p-
Since Ru = u, (1) and (16) give

(17) 1Tulle,p = ITREl,,p < 65(¥p, al)t(?pzcﬂ)I—‘“’“”m,p,p,
which yields (12) with ¢ = sup ¢,y} 1),11,;:_
0<i<l

The proof of the second assertion is similar. If 0.D is minimally smooth
and p and s are given by (11), then by [10], Theorem 5, p. 181, a function
weW™P(D) can be extended to a function weW™?(R") = #Z (R") satisty-
ing (16), from which (17), whence (12), follows.

Remark 1. If D is minimally smooth, then W*™#(D) (1< p < oo)
is isomorphic to the space R[.#% (R")] of restrictions to .D of elements
of #F(R") under the quotient norm. Hence, giving W™?(D) the norm
of R[Z2(R")] and Wi»?(D) the induced norm, we see that in this case
(12) holds with ¢ = 1.

Armed with Lemma 1 we come now to our basic result which we
state in & rather coarse form, finer estimates being given in the course
of the proof.

THEOREM 1. Let Q be a bounded open subset of R" with minimally
smooth boundary. Suppose that 1< p< o0, 1 <8 oo and that m 18 @
positive integer such that -%——-i— < % < 1. Then for every ueW™?(L)

we have, as r— o0,

(18) e — Sy tblly 0 = 4l , 00 (r~2+%)  for every &> 0,
where
1 1
(19) h = n —max (~— ——, 0).
n P s

Proof. In order to establish (18) and (19) we divide the proof of
the theorem in several steps. In each of these steps we shall obtain order
estimates of the form

-k
s — 8, tully o = lbllyn, g, 00 {r~"(log7)},
l.e.,
—h .
Il — 8, ull, 0 < bl 5,07 (l0gTY’,
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where A is giwgen by (19), ¢ is an appropriate function of m, n, p and s,
and the constant ¢ can be taken to be independent of p and s except
when stated. To help the reader follow the proof, we have drawn the en-
closed Fig. 1 showing the values of the function f = *(log#)? in the
various regions in which the set

11 1 1
(20) s={(_,—):1<p<oo,1.gs<oo,____<ﬁ}
» s P 8 1

(for which the embeddings considered exist and are compact) is decomposed

1
y=s
1
\/\\
. Y
T og " %
_m \y,"
-7 r’” &
D
»'\\0%
\’/\
e’x‘!
P
g
b
2
—_n all-%) _myl_1
r "logr) ' &y ot
q)\
©.°
o
\,@
&
h
»\\04" '
3
83
ol
B
I b,
0 n ] -
n g x=?}—

Fig. 1. Values of the function f(», p, s, m, n) estimating the norm of the remainder
map of the Fourier series for m < =

in the course of the proof. To fix the ideas, we have assumed 2m < #
in Fig. 1.

(i) p = ¢ = 2. The system {g,} is orthonormal and complete in L*(Q),
and hence for every «eL*(Q) we have

(21) w = > (s @) P

k
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the series being convergent for the norm of I*(Q). Now for weW™?(Q)
and for every % with |k| > m there exists an a(k) = (al(k), ey un(k)),
with |a(k)] = m, such that

(22) (0, ga) = (=) k=0 (DW g, ).
and (22) we have, for u<Wj*(Q),

(23) ||u—T,,.(,)ullz,a=H %’(%,%)%— 2 (“,%)?’kﬂz.o

kgl <<y ()
1<i<<n
<{ D (DBu, gpr-rmn
Ik|>k0(f)
g{ Z I(Du(k)u’%)lz}m{ sup k—za(k)}llz
k1> kg(r) 1l >Rg(r)
={ 2 X 10, gt} 0 {ko(r) ™}
laj<m I
={ ) 1D°ull o] 0 ™) = 1l 0,60 (=)
lal<m
Taking now u<W™2(Q), (9), (23) and (b) yield
(24) lle — 8By tlly, o = Ilttlln,,0 O (r~™").

(i) 1<s<2<Kp< . Since the embeddings W™?(Q)—-W™*(R2)
and L*(Q)—L°(2) are bounded, we have from (24)

(25) 16— 8pttlly, o = [ Ull,p, 0 O (r~™")  (ueW™P(RQ)).

ili) (1/p,1/s) in the open triangle with vertices (1/2,1/2), (m[n,0)
and (1,1 —m|n). Let p, s be given in the specified region and, with reference
to the figure, let (z,, ¥,) be the intersection of the straight liney = z —m/n
with the line passing through the points (1/2,1/2) and (1/p,1/s). We set

1 . — 1

Do = 2y o= g
By [7], Théordme 3.6, p. 72, W™ (2) c L°(Q), the embedding W (2)
L (Q) being bounded. This implies the existence of a constant ¢;(p,)
such that |lullg, 0 < e1{Po) %], pp0 and it is k_nown tham 6, (Pg)—>o0 as
Po—>n[m. Since 1 < 8y < oo, the maps Tyy,: L®(Q)—L™(Q) given by (7)
are uniformly bounded, whence so are the operators S, of (8). 1t follows that

(26) llee — Sy tillg,, 0 < 62(P0) 1thlln, g, 0

where also ¢,(p,)—o00 as py—>n/m.
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Applying Lemma 1 to the operator I-—S8,, with D = @, p, =2,
8 =2, p, = p, and 8, = 8y, wo have from (24) and (26),

e, R
e — S, ulls, 0 < €5 (po)' b %/, 2, 2

for all ueW™?(Q), where 0 <?< 1 and

1_t+l—t 1_-t+l—t
p 2 P s 2 So
Hence, substituting for i,
L.
(27) e —8pulls,o < c(py 8)r ™ % *ltll,p,0

where ¢(p, s)—>oc as the point (1/p,1/s) approaches any point on the
open segment with end-points (m/», 0) and (1/2,1/2).

(iv) p = 8 = oo. Let ueW™*(Q), u periodic. We have ([13], Vol.
II, p. 302):

(T ) () = = [ @tDyy(e— 1) u(2),
Q

where Dy, (2) is the Dirichlet kernel given by

Dy (@) = ” Dy (23)
i1

with
o e SO i
(see [13], Vol. I, D 49). @
We can now write
(29) U(w) = (T te) () ='£_2nl (B;u) (2)

where
(30) (Byu) () = u(zyy ..., 2,)— 7" f dtlpkl(r)(wl_tl)u(tli Bay ooey Bp)

and, for 2 <7< n,

(31) (Byu) (@) = n~*+ fdtl'Dkl(r)(ml_tl) fdtd—IDki_l(r)(wi—l_ti—l)x

ki
X{u(tu oy by By, T) — ) f At Dy iy (@ — 1) U (Byy ooy By By ---swn)}'
-1
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Since ueW”“"(Q) for any given i (1 << a) and for a fixed (n—1)-
tuple (2, ..., 2, 20,, ..., 2 u)), the 1est110t10n of % to the line segment
@, = ‘1’( ) ey Wy = wg—)u Tyl = mg-l)-li crey Ty = mn » 12 <75}

belongs to TV™®(J), where J = (—mn,xn), for almost all (n—1)-tuples
(@, ..., 20, 20, ..., 2¥) corresponding to points in @. Since every
function in /W™ (J) is continuouns on J, we have, by [13], Vol. I, Theorem
(13.6), p. 115 and Rlemark (e), p. 120,

(32) sup u(tl; tety t’z‘—l’ Liyooey a"n)—

lzgd<w

—n ! f A D,y (25— G) 0 By ooy by By ey By)
-7

m
< ¢ ly (1) log loy (r) SUD | —— U(byy oovy Bigy gy o ony &) |
lzgl<n | O
Hence, for ¢ =1,
0™ o™ u /
)/ ~™log e, (7 ~min] )
(33) IRy ullos,@ < C1lon(#) " loghy(7) 07 ||oo — I 32T owO(r ogr)
Moreover, since for every integer j > 1,
kid
(34) J a&1D;(&)] = 0(logj)

(ef. [137, Vol. I, p. 67), we have from (32) and (34), for 2 <i < n,

(85)  [Ritlln,@ < 1 sup f dty [ Dy iy (8] f at;_y | Dy, (-1)] X

TeQ _p

X "“'(tl'l'wly ey b F gy By ey L) —
™
! f dti-Dki(r)(ti_wi)u(tl'l'ml) vy iy F @y by By ey By)
-7

0™ u

< e Ty ()™ log By (7) pyo

o f Aty | Dy, ry (24)] f dt;y | Dy, ) (li-1)]

o™ u - ] ™ u / .
=M e (1) — P (oo Yo} .
PP m,QO{ki(l') QIOQkJ(’)I H PR m'QO{’“ (log7)’}
Thus from (29), (33) and (35) we obtain
am
4= Ty 0 < V’ 1Bl g < 2 _ 0t logr)
1—1
= (|2l 0,0 O ™™ ( gr)”},
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whence by (7) and (5), if ueW™™(LQ),
(36) e 8, llo,0 = [1elhg,co, 2 O {~ ™ (log7)"}.

(v) 8 = 00, m/n < p < oo. Assume first that (m—1)fn <1/p < m[n
and let 4 = m—n/p; then W*?(Q) = 0¥ (@) by [7], Théordme 3.8, p. 72,
0™ (@) denoting the space of Hélder continuous functions on @ of order u.
We can now use [13], Theorem (13.6), p. 116 and Remark (e), p. 120,

and a proof similar to that of (36) to obtain
m 1

.——+-
e — 8, Ulle, 0 = [1tlloo, 0 O~ (1087)"} < [tlhn, 5,00 " *(logr)™},

for all ueW™?(Q). (Here the O symbol hides a dependence of the constant
on p as p—n/m; however it is not really necessary to make this dependence
explicit, since the fact that for uweW™?(Q), |uln,o explodes as p—n/m
is well expressed by the logarithmic factor.)

Suppose now that m > 1 and let 0 <1/p <1/n, 4 =1 —n/p. Then
for every a with |a| = m—1, D*ucWy?(Q) for ueWi»*(Q). Thus, again
by [7], Théoréme 3.8, p. 72, D*ueC*(Q) and hence, combining once
more [13], loe. cit., with the proof of (36) we arrive at the following esti-
mate for weW™?(Q):

_ml_k
(37) o~ 8 ullg,0 = Willmoy,c0,aQ{r ™ ™(logr)"}
m 1

-_——
< [llm,p,20fr ™ ?(logr)"}.

Finally, the reader can easily satisfy himself that the above estimates
also hold for 1/n < 1/p < (m—1)/n by interpolating, according to Lemma 1,
hetween (p;, oo) and (p,, o) with 0 <1/p, <1l/n and (m—1)/n <1[p,
< m/n. Thus, for all p with n/m < p < oo, we have

m 1

(38)  l—Shlle,0 = [l 00 ™ P(logr)"}  (weW™?(2)).

(vi) 2<p =8< o. Chpose & such that 0 < 6 < 1/n and define

8, by 1/s, = 1/2+ 6. With reference to Fig. 1, the straight line through
(1/2,1[ss) and (1/p, 1/p) intersects the # axis in the point (1/ps, 0). Let
t be such that 1/p = t/s;; then naturally 1/p = t/24 (1 —1t)/ps. Using
(26) and (38), interpolation between (2, s,) and (p;, o) (Lemma 1) gives
m

i
(39) e — 8y ullp, 0 = ttlln,p,00 {r ™"

for every weW™? (). Now note that as d—0, p,—~co and ¢ = t(8)—2/p;
hence, choosing § so that

m 1
—(1-t)—+——
n ' Dy ([Og")‘)"'(l_t)},

1%
Ps

< (logr +2nloglogr)™?,
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we can write (39) as follows:
(40) e — 8, llp, 0 = il 5,00 {r=™'" (log )02},

(vi) 2 <s<p< oo. Since the embedding W™?(Q)->W™*(Q) is
bounded, it follows from (40) that

(41) ”'u’ - Sru”a,.ﬂ = ”u”m,p_ﬂo {1"_1","' (logr)"(l—ﬂh)}

for all weW™?(9).

(viil) (1/p,1/s) in the open triangle with wvertices (0,0), (1/2,1/2)
and (m[n, 0). With reference to the figure, for p and s given in the above
region, consider the open segment o whose end points are

m
)
n

Each point (@, y)eo lies inside the region in (iii) so that (27) holds with
p =1/ and s = 1/y whenever u<W™Y*(Q). Let (,,%,) be the inter-
section of the general straight line through (1/p, 1/s),

m

(_]_‘_ _1_) and (%—l—e,s), where 0<s<min{ po

27’9

1 1
(42) y_'s—=)~(w_;)!
with the line
(1—28)z—m|n
~ 1—2m[n—2s

to which o belongs. It is easily found that

m A 1\ /2m im 1 A
G Al ¥ Rl A Moo=
b p sl\m y n s P
1= 2 ’ J1 9 .
1—[—A(Tm —1+2s)—2£ -i—m+(1—zs) (1—A)

Moreover, for the intersection (@,, y,) of (42) with the line ¥ = 0 we obtain

1
Lyg = — —— y2=0-

2 = 7 s
We impose the natural conditions
0<y;, £1)2, 0<a,<mn.
Now let ¢ be such that
(43) 1/s =ty,, 1/p =iz, +(1—-1)w,.
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Then using Lemma 1 with D = @, p, =1/, 8, = 1/y;, Py = 1/, and
8, = 1/y, we obtain from (43), (27) and (38),

—i(— —=1+Tll)*(1'4) (% - xz)

(‘-’L‘i') "u"' Sr'u’”_q,ﬂ g c(w]_, :'/1) ”u"m_'.n‘g'i (log,r)?l(l—i)

w 1 1

= ¢(@y, Y1) [l par * * ° (logr)n(l-t)

for all ueW™P(Q2), where, as in (27), ¢(xy, ¥;)—>o0 as ¢—0. Since

2 7 1 2en {1 1
1—-—+—=2)—+—|———
s m \p s

1—(1—25) 222
m

we see that 1 —t¢ is an increasing function of z, (or 1). Set

1—-2¢ n 7 1 23 L
1— +— —2]=|=, —_=
g — n mp m 8 5 = _.’}.'b \P 8
B m ! m
- —(L—2e)m, (1 —20)3

Then since

n(1—1) _n[l—%;—-y(-%—z) ]+a+a

choosing z, (i.e., A) so that 0< (loglog#)™*, (44) becomes

togn - (341

-+
s

m 1
"ty

(45) ”'"’ - Sru"s,.ﬂ QZ 0(6) ”u”m,p,ﬂf

with ¢(d)—o0 as §—0.
(ix) p = s = 1. For |£| < 27 denote by (&) the Dirac measure concen-
trated at 0 and set, for any positive integer j (ct. (28)),

(+£6) B;(&) = D;(&) —=md(§).
Then for #e¢Cy(Q), (30) and (31) can be written

kid

() (B (@) = ~= [ @ty By (01— 1) u(ty, @y, ..., 7,),
-7

T T
(48) (Byu) (@) = —n~* f Aty Dy iy (81— 1) - f‘Zt«;—v1Dki_1(r)(-’”¢—1—ti—1)X

1>
N

T
X f BBy (@ —t)ulty, oyt By oy @) (2 <<E< ).
—1
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Note that each (R;u) (z) (1<t n) is well defined, since ueC*(Q)
and the expressions
i-1
Byn(r—1t) and Bki(r)(m-i_ti)n Dy —1)  E<i<<n)
i=1
generate measures, whence. distributions, on @ [9].
Setting £ = 27 and 2§41 =1, (46) becomes

By (&) = $4;(m)  (Inl < m),

where the right- ]m,nd side is defined according to (93) of Section 7, Appen-
dix A. Thus by Pmposmlon 1 of the same section, B;(£) has an antideri-
.vative of order m (in the sense of distributions) B{™ (&) such that

(49) lB;m)('f)l — 21)1.—1 IAs'm)(n)]
1 1 1
< cl—m+l{ }
Tt 1l | 14U

with ¢ a positive constant depending only on . Hence, performing m
integrations by parts with respect to the variable #; (1 <i< n) in the
right-hand sides of (47) and (48), we obtain

T

(0)  (Ryw)(a) = =" [ @B, (e —t) -

m
U(tyy Loy ooy By),

. at?n
(61) (Bu)(z) = f Aty Dy (1 — 1) ... f dt;_y Dy, (") (@1 —1_1) X
(mn " .
f at; Bty (2 — 1) = o W(lyy ooy by Bypry ooy ) (2T S0,

where for each B} (2;—1;) an estimate of the type of (49) holds, with
l and 7 in the right-hand side being replaced by I;(r) = 2k;(r)+1 and
Y; = (2;—1t;)/2 respectively. Now (49) yields

on

(52) [ ag|Bm (&) = 2m f dy | 4™ (n)] = 0 (1™ logl),

—2in

and hence it follows from (51), in virtue of the estimates (34) and (52), that

g i—1 'n:
am m I
o (t)‘ fdw,IBS,i&.)(mi—tml l fdwlekj(r)(wi_tj)l

j=1 —m

IRyt < = f at
Q

|

am u
a1
o}

O logh(n ” logk; (

J=1
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o™ u
m
3:17;

=

O {r—™mlogr)’} (2<<ign).
1,Q

Similarly, from (60),

™ u —min
By wll,g = - Ofr logr).
! 3031 1,Q
Thus from (29) we have
n
(63) 4 — Thpn e < 2 IR ulh,g = tlln,,00 {r~™"™ (logr)™}
i=

for 4<0°(Q), whence for %Wy (Q).
If now ueW™'(Q), (7), (b) and (53) give

(b4) e~ 8, ulh,0 = lellm,1,00 {r~™" (logr)"}.

() s =1, 1<p<2 Let ¢ be such that 0 <e<1—1/p and set
P = 1/(1 —e). For ueW (), (b4) gives

(B5) e — Sy tlly,o = ey, p, 00 {r~™™(logr)"}.

1WDg)
Hence interpolating between (9,, 1) and (2, 1) according to Lemma 1 and
using (25) and (66) we have
(56) I — 8, ulh0 = [l 5,00 fr~™" (logr)},
where
1—1¢ . 14¢

2 2

weW™2(2) and i = -1- -+ et.
VA

Finally, choosing
e < (2ntloglogr)~!,
(56) becomes
(67)  l—8u)lha = llm,p,0 O fr ™" (logr)" =1} (ueW™?(Q)).
(xi) L<p =8< 2. Let ¢ be such that 0 < ¢ < m/2n and set

1 1 1 1
T?Tl = E -|- g, 3—1 = E — E.
The straight line through the points (1/p,, 1/s,) and (1/p, 1/p) intersects
the line ¥ =1 in (1/p,, 1). Define ¢ so that
1

P

(7 1—¢ 1
— =— +1—1.
Y23 4 81
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Since (1/py, 1/s,) and (1/ps, 1) belong to the regions in (iii) and (x)
respectively, from (27), (67) and Lemma 1 we have

.ﬁ_I..L_t__ _)ﬂ _2__ —{
(88) v — S ullp,0 < 6(P1y 81) [Ullppor ™ P12 " (log‘i')%(j’2 1)(1 )

mn 2
— — +2la n{—~1) —né(e)
< 6(P1.81) Wl p0r ™ (logr) (p )

for every ueW™?((), where

%8 2t \[2
o) =% (1+ 1-t)(§ “1)‘

Now as ¢—0 the point (1/p,, 1/s,) tends to (1/2, 1/2) and not to a peint
of the open segment with end-points (m/n, 0) and (1/2, 1/2); thus (cf. (iii))
¢(py, 8,) remains bounded as e—»0. Hence, since t < 1 and d(¢) > 0, choosing
e < (2logr)™!, (64) yields

(59)  llu—S,ulpo = 1%]lypa0F ™ (logr)lr-D)  (4eW™P(Q)).
(xil) 1 < s < p < 2. By (59), it ueW™?(Q),

lw — Spulls, a0 < Il — 8ptully g = lt]ly,p,00 {r~ ™" (logr) -1},

(xiii) (1/p, 1/s) in the open triangle with vertices (1/2,1/2), (1,1) and
(1, 1—m/n). Interpolate (Lemma 1) between a point as in (xi) and one
just inside the region in (iii) to obtain, for weTV™?(L2),

0 _%low deo +(2"‘%)%'1]}.

1

4= 8,1l = Il 0O * 2

(xiv) (1/p, 1/s) on one of the two open segments with end points (1/2,1/2),

(1,1—m/n) and (1/2,1/2), (m[n, 0) respectively. Let o, be the open seg-

ment with end-points (1/2, 1/2), (1, 1 —m/n) and let o, be the open segment

with end points (1/2,1/2), (m/n, 0).

t (1/p,1/s)ecy, select two points (1/py, 1/s,) and (1/p,, 1/ss)

arbitrarily close to (1/p, 1/s) and Dbelonging to the regions in (iii) and (xiii)
respectively, to obtain, by interpolation

_m.,
lw — 8yl = Iilly,p, 0O ™

o=

'ﬁ‘p—t

) (weW™2(2)).

Suppose now that (1/p, 1/s)ec, and let e> 0, > 0and 0 <t <1 be
such that e = (1 —1)%. Set
1 1 1

.——=—.—.8,

b, P P2
There exist ¢,(4) and e,(%n), with

lime, (8) = o0, limey(n) = oo,
=0 10
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such that (40) holds with p, ¢(d) replaced by py, ¢, () and (27) with p, ¢(p, ¢)
replaced by p,, ¢y(n). Hence it welV™?(Q), interpolating between (p,, s)
and (p,, s),

o ~ ~m 11 w4 2 -ty
(60) [l —S,ul o< e {0) s () lelhp,per ™ ¥ °(logr) ™

We can now choose ¢, # and § so as to eliminate, in the right-hand side
of (60), the dependence on either é or #, but not both. Consequently,

n

1 1
[ — Sr'”’”s,ﬂ & 6(6) H‘u”m,p,!)?' nor oS

(log7)? (ueTW™?(2)),
where ¢(d)—co as d—0. This shows that (45) also holds for (1/p, 1/¢)ea,.

(xV)p=o00,2<s<@orp=1,1—m/n<1l/s<1. We have left
these two cases for last since Lemma 1 does not apply to them and hence
a device is needed o get around this difficulty. Matters are taken care
by the following well-knowndemma whose proef is entirely routine.

LEMMA 2. Let D be any open set in R™ and suppose that 1 s, <s
< 8, < 0. If ueLl’Y(D)NL*(D), then ueL*(D) and
8, 8,—8

1—y N -
lulle,p < l5,p 1lley,, — where  yp =-—- :
“ 8 32 _— Sl

Now suppose first that p = co and 2 < ¢ < oo. From (25), (36) and
Lemma 2 with D = 2, 5; = 2; 8, = co we have for uW™*(Q),

It — 8wl < o= 8, ull gl — 8, w5 = [l 00 {r= (logr)" -2

Finally,let p =1,1—m/n < 1]/s < 1 and define s, by 1/s, = 1 —m/n.
By [7], Théoréme 3.6, p. 72 there exists a positive constant ¢, such that

llgy,0 < €211l 1,0
for every weW™!(Q), and from this it follows that
(61) Il — 8 ullg, 0 < Clltllp,1,0,

since the operators §,: TW™!(Q)—-L™(2) ave uniformly bouunded. Hence,
again appealing to Lemma 2 (with D = 2 and s, = 1), we have from
(54) and (61),

(62) 1w — 8y wlls,0 < M1 — Spuellf o e — Syl
_ﬂ.pl_i ﬂ(l_ﬂ NS JL_)
— ”””m.l.ﬂo{r n s (log ,,.) m ms |y

for all uweW™(Q).
The theorem is now completely proved.
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Remark 2. In the course of the proof of Theorem 1 we have construe-
ted, for m < n, a function f = f(r, p, s, m, ) which estimates {the norm
of the Fourier remainder map I —8,: TW™?(Q)-L*(Q) and whose values
are given in Fig. 1 for fixed m and n. This function is defined in the region

1 1 m

00, — — — <L —

p 8 alf’

N

S (1,2 1€<p<< 00,1
= - —]: - 00 8
1 p ] P ~ p ~x H ~
is continnous everywhere in § with the exception of the segments

11 .
01={(— —-)eS: s=m,l<p< wl

p’s n J’

11 1 2m
o==[(—,—— ef:2<s< 00, — == l—i)i-i-ﬂl

W\p's P nls a

and exhibits in 8\g; a remarkable synunefry with respect to the line
1/p+1js = 1.

The lack of continuity of f on o,U e, is characteristic of the many-
dimensional case and is equivalent to the fact that W™ (Q) ¢ L=(Q)
(see Section 4 for the critical case p = n/m).

We shall now remove the restriction s < u from Theorem 1 and show
that (18) still holds. Precisely we have

THEOREM 2. Let p, s and 2 be as in Theorem 1 and let m be a positive
integer such that 1/p—1[s < m/n. Then for every ueW™?(R) we have,
as r— 00,

(63) e — S,ully o = ltbllp, 00 (%% for every £> 0,
where I is given by (18).

Proof. In view of Theorem 1 we cal assume i > n and refer to
Tig. 2.

(i) p =1, s = co. We introduce the functions

0 for &<, -
(&) = H(z)= h(z;)
MO =1 40 >0 (2) ﬂ (),

and for every positive integer j we let D{" (&) be that anti-derivative of
D;(£) such that (cf. (46))

B{)(&) = D (&) —=h(§),
where B{"(£) satisties (49). It follows then from (49) that

(64) IDP (&) < |BP(&)I+mh(E) =0(1) (16 <2m).
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y=1
1
r-%(log Py
—m,1_1 "
% r ':Il% J(]ogr)ﬂ(%‘ll‘“”
_n _2
r "(logr)n“ E)]
_m,.1_ _I_1
L P

0

(1) 5

—>-
_1
! ]

Tig. 2. Values of the function f(r, », 5, m, n) estimating the norm of the remainder
map of the Fourier series for m > o

Let now ueCy(Q); we have
(Trpy ) () — 2 (2 )

- —”fd ‘M [Dsq)(,)(w, fdt 0" g He0

_‘ . d”‘
_Z k- lfd at Hh — 1) H‘D"*"’ t;) BR )y (5 —1))
= {=j41
n
™ (1)
- _n+j—1 f di nh & —t
’21 0)3, 16tj -n+1 Otj-l-l at 1 Z

X l I Dgcli)(r)(wi_ti)Bgn(—)n-H)(mi—tj)'

=41
Hence by (49), (64) and (6),

1Ty e — thlloo,g = ”%Ilm,l,QO(r‘m/n-l-l)
for ueWi!(Q), since 0°(Q) is dense in Wi'(Q).
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Finally, if weW™!(Q), (5) and (9) give
(65) bt — 8, tlls,p = [l 1,00 (r™41),

i) 1<p<2, 1/p4+1/s =1, Since the case p =s =2 iy the same
as in Theorem 1 (i), by Lemma 1 we have from (24) and (65)

1

_m, L
(66) e — Spully,o = [Wlnp,aO(r ™ 2
for all ueW™?(R2).

(iii) 8§ = 00, 1<p<< oo. The case p =8 = oo is as in Theorem

1
8

)

1
1(iv). Now let ¢ be given, with 0 < ¢ < min(1/2, 1/n). Since ",Vm'l——c-(g)
c W™(Q), (65) yields
m 1 1

-_— + y
(61)  I—Saulwo =l 1 00 * ) (ueW 7 (Q),

Jl_"

where the constant in the “0” symbol is independent of e. Also, as in
Theorem 1(v), we have (37) with 1/p = ¢, ie.

11!«
Ly

1
(68)  u—Stloa = Il » OF ™ (logn™}  (weW " (),

where again the constant in the “O” symbol is independent of . Hence

1
interpolating between ( ,oo) and (—, oo) according to Lemma 1,
€

1l—¢
we obtain from (67) and (68),

(69)  lw— 8, ulle,0
L. __m g2
= [l p 0O ™ 7" e (3-1)+- ’] (log) w(1-5) - 1o (3 1)}’

for all ueW™?(Q), where ¢ is such that
1

— = (1—g)t+(1—")e.
P.
Therefore, choosing ¢ so that

1 2
- —t| < (logr)™!
8[1—-23 (p 1)+1 t] (log7)

it follows from (69) that

la

1
- _— 1
”u_Sr’u'”co,D = "u“m,p,ﬂo{r " ]9 (log'r) ( 1’)}
for all ueW™?(Q).
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1 1 1
(iv) 1<p< oo 0 " < min (?, 1— F) Interpolate (Lemma 1)

between a point as in (ii) and one as in (iii) to obtain, for every « ¢ W™?(Q),

—-%l--l-?p—— u(—-—- —)
“'u' _Sr‘u”m,n = ”u'"m,p,l)o{' 1007
(v) p =1, 1<s< oo. The case p = ¢§ =1 being as in Theorem
1 (ix), by Lemma 2 we have from (54) and (65),

. 11
e~ 8,1l = el O{r ™ *(logr)*}
for every uelV™?(Q),
(vi) L<p<?2,1-1/p<1/s<<1/p. The case p = s can be treated
exactly as in Theorem 1 (xi) to yield again (59). We can then apply Lemma
1 and interpolate between a point with p = & and a point as in (ii) to obtain

m 1 1

1
= Syl = Tl O 7 1oy 577,

for all ueW™2(L).

The proof of the theorem is completed by the observation that the
remaining cases can be dealt with exactly as in Theorem 1.

From Theorem 2 hy induction we obtain-

COROLLARY 1. Let 2 be a bownded open set in R with minimally smooth
boundary. Let 1 ={p << oo, 1L s oo and let I, m be integers such thal

1 1 m— Z
0l<m and — —— < ——, Then for every weW"™?(Q) we have,
, p 8 n
as 1-—>00,
(70) ”‘ZL—S,-TL”;.S.Q = ”'?.‘Hm,p,ﬂo(r_h'l-c) f()?' every &> 0’
where

m—1 (1 1 )
h — —max (-— ——, 0).
" P 8

It is almost unnecessary to note that also in this more general case
finer estimates than (70) hold, these being of the same type as the estimates
obtained in the proofs of Theorems 1 and 2, but with (m —1)/n instead
of m/n.

3. The case n =1

In this case the estimates of the previous section can be sharpened
as follows:

TuroriM 3. Let 2 be a bounded open subsel of R' with minimally
smooth boundary, let m be a positive integer and let 1 < p < o0, 1 < 8 < o0,
Then for every ueW™?(Q) we have, as 7->oo,
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(a) lfe— 8, ullg,q = tlyp,e0(r~ ™) for every £> 0, if §<p;
1 1

(0) a8 ull0 = Ntlhp, 0O P %) if 8> p.

Proof. Assume @ contained in the open interval J = (—=, =),

(b) With j equal to the integer part of (»r—1)/2 and u WP (J) we
have (cf. 46))

™

(71) w(@)—(Tyw) (#) = —==* [ dtu(t) B;(e—1).

) 1 1 1 )
Let q be defined by 5— -|—§ ~1 = ’E Since ¢ > 1, (49) gives for
the anti-derivative of order m, B{™, of B,,
IBf™lgr < 01(g—1)72j1 ™1 a5 oo,

Hence, integrating by parts the right-hand side of (71) m times and applying
Young’s inequality (ef. [13], Vol. 1, Theorem (1.15), p. 37),

1 1 1
m 31 Tmt )

1
" 1 1\?
IB™ [y < Gz(_ - H) r 7/
.7 ?

da™

lu— Tyl <7’

$

from which it follows that

(72) “u - Sru”s,r) <¢ (% - '1;') r ”u"m.p,ﬂ
for all weW™?(£2), whence (b).
(a) The proof proceeds as in Theorem 2, yielding the estimates obtained
there, with # = 1.
COROLLARY 2. Let p, s and 2 be as in Theorem 3 and let m, | be integers
such that 0 <1< m. Then for every ueW™?(£2) we have, as r— oo,

(a) llu— 8 ulls0 = Ilullm.p,ao(T‘"‘”*‘)lfOTIeve?'y >0, if s<p;
—-mtlt ——=
(b) llw—8,ulle0 = ”“”m,p,no("' 2 f)Yif s> p.

4. Embedding w™?(Q) into L7(Q)

In this section we consider the embedding of W™7(L2) into some
Orlicz spaces Lf(2). The definition of an Orlicz space is as follows.

Let @(t) be a non-negative convex funection defined for ¢z 0 and
such that
(73) (0) =0 and limt~le(l) = oo.

{00
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Denote by L?(£2) the linear space of all measurable functions » on £ for
which there exists a 2> 0 such that

f(p(l‘l | ()])do < 0.

a2

Then L?(2) becomes a Banach space when endowed with the norm
(74) Il g0 = inf{l: [ o ju(@)])de < 1],
o

Notice that L*(2) c L?(2) c L*(2). In fact, if ueL®(2), the conti-
nuity of ¢ implies

[ p(1u(@)) ds < m(2)@([llw,0)
fol

where m(Q) denotes the measure of Q. On the other hand, if ueL?(R),
then by the second condition in (73), there exists a ¢, > 0 such that ¢ () > ¢
for i > #,; hence, setting

2, = foc0: 122

. s Yo
[llpe )

we have

40l 4, [ Iulollg,

f ju ()| o — Pa
4 g0 a %ll, o avh, l[lp, o

< tom(82,) + f (p(lu(m)l)dw< 0o
ava, [l%H, 0
With regard to the embeddings W™?(Q)—-L%(L2) it is now clear
from Theorems 1 and 2 (see also Fig. 1) that we need only consider the
case 1< n/m< p < oo for, otherwise, W™?(Q) can only be embedded
into those Orlicz spaces which are not too different, in a certain sense,
from appropriate Lebesgue spaces. We also point out that the results

1 :
established in Theorem 1 algo hold for r ——%— = -:;i, with the exception

of p = n/m, 8 = oo due to the fact that W™"™(Q) & L*(2). This moti-
vates the special attention which we shall pay to the limit case m < #,
D = nfm.

Following Trudinger [11] we consider embeddings into the Orlicz
spaces L% (R2) associated with convex functions of the form

(76) 9 () =exp(¥)—1 (1=0,v>1).

‘THEOREM 4. Let n>1, I<m<n, 1 <v<n/(n—m) and let Q be a
bounded open set in R™ with boundary of class C*. Then for every u e W™™™(Q)
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we have, a8 r—oo,

m 1

(76) It — 8,4l 0 = [l im0 O{(logr) » "}

Proof. To fix the ideas we assume m/n < 1/2 and refer to Fig. 1,
but the proof will also hold for the case 1/2 < m/n < 1 with trivial modifi-
cations.

Let r be fixed and large. With reference to (74) we set
J (A, w) ftp,(ﬂ.“ (@) — 8, (1, )|) do.

Then expanding the exponential in (75) we obtain, for ueW™™™(Q),

a1 T4, u) = Z = z-’kfm —(8,u) (2)[*dw = 8,+8,,

k=l
where,
1—#:
Sl = Z ! ﬂc,.ﬂ)
1<rvkSn/m
l—vk
(78) So= D) T lu—8,ullf 0
vk>njm '

In the course of this proof ¢y, ¢,, ... will denote constants possibly
depending on m, n, » and 2 only.
From (25), (40) and (41) we obtain for §,,

Z—vk ' —Vk

(19) 8= D T fu—Bulh

1< 2 <vk<nlm

\ 2 2';17'_mln “u”m,n/m,n)ﬂc"{'

1<vk<z

vl

el

1 o
+ 2 o (eg A7ty min Ilullm,,,,m,a)""(logo')"(" 2
2<rle<nim c:

1

_ _ k

<E D) O l,
1<vk<n/m

if r is large enough.
We now come to S,. Note first that (45) gives, for p = n/m,

(3-)2+
(80) e — Spully, o < (0 )Huumn,m_gfr O (logr)'™
80 that s—oo forces 6—>0 and hence ¢(d)—oo. Thus from ( 8) and (80)

n_ 1 v
8, < ™ (logr) nlm-2) v — {c(8 371 (1087 1l pm, 01

vk>n/m
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where 6—0 and ¢(d)—oco as k—o0. Control on the constants ¢(é8) for large
E can De gained by using a simple device together with the following
result of Edmunds and Evans [2]:

(81) I "‘”s, 0K G §'” i fhe ”m.,n/m, n (u’ € ﬁ',rm.nlm ( 'Q) )

with ¢, independent of s. This will lead to an inequality weaker than (80),
thongh with no harm to the final result (76).
1 I wm

Let then s Dbe given, with ?< 5 and let e be such that

0 <e<1/s. By (81) we have

in—1
”'”"s—l,a < C3 sm/ﬂ “’“’”m,n/‘m,ﬂ!
so that

(82) llee — Sr'u'”a"'l,n = 04 gnin-t "u”m,nlm,n .

By Lemma 2 with §; = #/m and s, = ¢! we have from (40) and (82)

(l—r)(—’;l—l) —71% ny
(83) “'“' - Sr’“’”s,ﬂ < g “u“m.n/m,.ﬂe r (IOgT‘)
with
€n
n 1-—es n {1 ms
y=—————=——]— —¢
ms EN m\y s &n
m T m
Since
(84) n {1 << N
—— — — 8 - —
m \s Y= s ?

we see that y—0 as s—co. Hence, choosing for example ¢ = 1/2s (hut
any ¢ = 0fs with 0 < 0 <1 would do), (83) and (84) give

m 1 ( n n

(85) o — 8, ulls, 0 << Cellttlmmpm, @8 ™ * (logr)'™ "%,

Finally, replacing (80) by (85) we obtain for S§,,

1 n_
) S< D ﬁ(cqz:luu|1,n,ﬂ.,m,g)""r-l(1ogr)”(m ey

n 2n
LA A
o n—om

\ | 1 - T we(1— 2 1/ n(Z 2
+ 2/ ﬂ(ﬂ"‘llr l"“”mm/m,!J)”’t("k) ( ")"' llh(log") (m )~
T
> o

If now r is large enough, it follows from (77), (79) and (86), that

k]
J (4., u) gr‘“"(logr)ﬂ ("‘ 2)8
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where
_ . 1 my _ 1 if o= -L-,
”—mm(z’ n )’ 4 —{0 it u=mn,
and
(-}
- 1 wie|1—- 2
s = L o™ o
k=1
Letting
m
(87) a=y (1'— _n')y r = (ca,ul—m/nz;l ”u"m,n[m,a)’s
we see that

00
kuk
§ = 8(@, a) = Z‘T‘”k
k=l
and hence if a < 1, i.e., v < n/(n —m), (106) of Section 7, Appendix B, gives

1

B ]

8 < coexp{(2e) Tz " }.

Recalling (74), the condition J(4,, #) <1 will then be satisfied if

1 1

perghen on(2-7)
coexp{(2e) & "} < r*(logr) )

ie., by (87), if
_ﬁ'_+1_%
) " ”u”m.nlm,!)'

m

L op(200) (#10g'n+ pn (2 - %) loglogr —loge,

Therefore,

m 1

(88)  llu—8,ully, o< o(logr) * 7 llmnma (weW™ (L)),

which implies (76) for » < n/(n—m).
Finally, if » = n/(n —m), then ¢ =1 in (87) and (107) gives

e
1—ew

8<e,

From thig it follows that
Il — Sru”w,,a < 0|6l n, njm, 2 (uewm.n/m( 2)),

which is (88) for » = n/(n—m). Thus (76) holds also for v = n/(n—m)
and the proof of the theorem is complete.

3 — Dissertationes Mathematicae 145
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It is also of interest to consider the case m = n =1, W' (Q)—>L%(Q),
for although W™ (Q) = L®(£) (Theorem 2 (i)), the norms of the remainder
maps I —8,, regarded as operators from W*'(Q)—L%®(Q2), do not converge
t0 0 as #—oo (cf. (65) for m = n). We find that Theorem 4 still holds in
this case, as we have

TEEOREM 5. Let n > 1, 1 < v < oo and let 2 be a bounded open subset
of R™ with boundary of class C1. Then for every ueV™'(Q2) we have, as r—> oo,
(89) e~ Sy ullg,,0 = [[Ulla,1,0 0 {(logr) '}

Proof. As in (77) we write, for u<W™'(Q),

(90) TRy ) = B+ 8,

where

§i = & [ 1u(o) — (8,u) @)'day 8, =2
02

rk>1

—vk

”u - Sru”:;:,ﬂ!

and §, exists only if » = 1. By Theorem 2 (v) or Theorem 3 (b), for » large
enough,

(91) 8y < (logr)™ (61 A7 1telln,1,0)"
Y 1 .
(92) 82< 1 (10g1)" D — (0427 Itlh,1,)",
vk>1

where f =1 if n>1and f=0if o =1.
Then (90), (91) and (92) yield
1
T (s 0) < 772 (l0gr)" Y = (60" ] 1,0)™

k=1
= r7"(logr)"(exp {(ca 4" [tly,1,0)"} —1),
and hence J(4,, u) <1 if

Ao 3 g [llp,1, olog {r (logr) =" +1}) 7,

from which (89) follows.

Finally, for n/m < p < co the techniques used in the course of the
proofs of Theorems 4 and 5 can be applied to show that the embedding
W™?(Q)—>L%(Q) behaves slightly better than the embedding W™?*(Q)
—L®(£2). Precisely, we have

TEEOREM 6. Let n>1, m>=1, nfm<p<K oo, 1<v< co and let
Q be a bounded open set in R™ with boundary of olass C*. Then for every
ueW™?(Q) we have, as r— oo,

+£
= 8y ttllgy,0 = [l 5,00 *5).
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5. Embedding W?(2) into L°(Q) and L°(9Q)

Let Q be any bounded open subset of B" (with no restriction on the

boundary). We can find a bounded open set 2, = R" such that
(i) @ < 2,

(ii) 082, is smooth,

(ifi) diam(Q) < diam(R,) < 2diam(£2).

If ueWyh?(Q), extending % by 0 in £,\Q we obtain a function
ZeW™P(£,) such that ||, 2, = lttllm,p,2- Thus the map «—% is an iso-
metry of ;P (£2) onto a closed subspace of W™?(Q,), and from the results
of Sections 2, 3 and 4 we obtain

THEOREM 7. For Q an arbitrary bounded open set in R"™ (n = 1), The-
orems 1-6 and Corollaries 1, 2 hold with W™?(Q) and W*(Q) replaced by
Wme(Q) and WhE(Q).

6. Applications to the type of the embedding

The results of the previous sections can be applied to investigate
the type of the embedding map of W™?(R) into L*({2). The notion of
type referred to here is due to Pietsch (cf. [8]) and is defined as follows.

Let X and Y be two Banach. spaces and let 7' be a bounded linear
map of X into Y. Denote by #(X, ¥) the space of all bounded linear
maps of X into ¥ endowed with the operator norm, and by #,(X, ¥),
with » a non-negative integer, the subspace of #(X, Y) consisting of
all maps whose range is at most r-dimensional. The number

a (T) = nf{|T —F||: FeF}
is called the r-th approximation number of T. Clearly, we always have
1T = ao(T) 2 e, (T) > ... 2 0.

Let g be a positive real number; then the map T is said to be of
type 19 if

(]

D) w(T)R< oo,

r=0

The subspace of Z(X, Y) of all maps of type I? is denoted by (X, X).
By similarity, we are led to say that T is of type ¢, and write
Tecy(X, Y), if
limea,(T) = 0.
-0

Evidently, a map of type 1% is also of type vy, and a map of type ¢, is
compact but not conversely, in virtue of IEnflo’s celebrated result [5]
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on the existence of a Banach space without the approximation property.
We also recall that every map of type ' is nuclear, and that if X and ¥ are
Hilbert spaces, then the maps of type I' and I* coincide with the nuclear
and Hilbert—Schmidt mappings respectively.

A somewhat finer classification of the compact maps is possible if,
following the lines of Triebel [20], we write I**(X, Y) for the family of
all linear maps 7 from X to X such that

sup?aq,(T) < oo.
r
Evidently (X, ¥) c (X, X) for every q¢> p.

Coming back to the Sobolev spaces, the results obtained enable us
to make more precise the “measure of compactness’” of the embedding
map in terms of the notion of type introduced above.

In the next theorem @ is assumed to be, as usual, a bounded open
subset of B" with minimally smooth boundary. From Corollaries 1 and
2 we have:

THEOREM 8. Let 1 < p < 00, L < 8 < 00, ¢ > 0 and let 1, m, n be integers
such that n=1, 0l<m and % —% < m%—l
map W™P(Q)-TW"(Q) is in

ﬂ Zl/(h-—s),ooc n ll’

Then the embedding

0<a<h t{>1/h
where
m—1 1 1
pomsl (11
€n P 3

This result is not best possible, for because of the work of Birman
and Solomjak [14], [15] mentioned in the Introduction it can bhe seen
that the embedding map of Theorem 8 is in fact in ¥, which is contained
in (M) Mt=%* From the point of view of the type of the embedding map

O<e<h
our work naturally gives the same result as that of Birman and Solomjak.
With regard to embeddings into Orlicz spaces, Theorems 4-6 give,
under the assumption that 2 is a bounded open subset of R™ with boundary
of class (C*:

THEOREM 9. Let n =1, 1<m<n and 1 <v < nf(n—m). Then the
embedding map W™™M™(Q)>L%(Q) is of type c,.

THEOREM 10. Lei n>=1, m=1, afm<p< oo, v21 and ¢q> 0.
Then the embedding map W™P(Q)—L%(82) is of type 19 if

m 1 1
—>— 4+ —.
n q P
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Finally, for the spaces Wg*?(£2) we have

THEOREM 11. For Q an arbitrary bounded open set in R™ (n>=1),
Theorems 8-10 hold with W™?(Q) and W"*(Q) replaced by Wi?(RQ) and
W5 (9).

7. Unfortunate technicalities

Appendix A. Estimate for the anti-derivative of order m of the kernel

sinnt
sint

(93) A,(1) = —2m4(2t) (n=1, tj<m).

LeyMA 3. Define, for 0 <t < oo and m a non-negative integer,

. t -] 00
Fot) ==, Fyl) = — [ Fols)ds, Fnp(t) = — [ Fu()ds:
1 ]
Then
(94) P (8)] < 0 f(1+2).

Proof. Repeated integration by parts yields

(95) f:—:ds =Qui(tV+ B (1) (121, k=1,2,...; 1=k,
where i

Qra(t) = %{t""-l- gk ]"+1) gR-2 +(lec;£%))i!q:‘_{"—t—l}
and
| By, 1 (1) = (kl_!l)! il_l,‘ = -{e“t-’-1+(z+1) I e""s"‘zds} < (ki! i 2t~ -1,

(a) Proof of (94) for t > 1. With Il = m in (95), we have

(1) = Im{le +R1 m(t)}
o
= ImT R P S P e A V)
’
where ¢, ; (2<<j<m) and the constant implied by the O-symbol depend
only on m. Similarly in what follows. Hence, by (95) again, but with
!l =m —1forthet-1, ..., t™™ termsin I,(1), and I = m for the ™™ term:



38 Fourier approximation and embeddings of Sobolev spaces

Fy(t) = I 3 ([0 s+ By s (01 01 Qom0+ Baos (0] +
+ s +01,m—1 [Qm—],m—l(t) + -Rm—l,m—l(t)]} + 0 (t—m)

it
= Im ‘iT {1+ 02,2t_2 + +02,m—1t—m+l} +0@™™).

Similarly,

et't .
Fn(t) — IIIIF {t_l-i-(}n.zt"‘-i- +cﬂ,m—n+1 t—m+n—1} "l‘ O(t—m+n—2)’

fort>1 and 1< n m.

(b) Proof of (94) for 0< 1< 1. Since |2 's 1, we have
1.,
(0] = { - [== ds+F1<1)!<1+|F1<1)|-
Similarly t
:
Bo0)] = | — [ Fy(s)ds+Fu(1)| < 1+ 1B, (1) + B2 1)
and so omn. t

Lenvma 4. With F,(t) as in Lemma 3, we have
Fpa(0) =0 (n =1,2,..).

Proof. We use the Laplace transform
o
£ (p) =pf e Pf(t)at (Rep > some constant)
0

and abbreviate this to f(1)<2sf(p). We also note that

3 an—1
%_ +(—1)“L+... for |p|<1.

96) cot~lp = — —
(96) p=- »+ Y=

An elementary calculation yields

a

By (p) =cot™ p— gi (Rep > 0).

Then
¢

fFl(s)ds L% (cot"lp — g-)_> -1

0

as p—>0, by (96), giving [ F,(s)ds = —1.
0
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Hence
oa H
Fy(t) = —{Gf Fl(s)ds—ofFl(s)ds}

» 1( -1 TC) l( _ T
=1 — | cot —_—— = — 1 1y - .
5 (et p—5) = S {eot™'2 2+p)

P

Then
¢

1
flf"z(s) ds <5 —E(cot‘lp - % +p)—>

0

[~}
as p—0, by (96), which implies [F,(s)ds = 0. Since
§

Fo(0) = — [ Fy(s)ds,

this proves the result for # = 1. We now proceed by induction and assume
that, for some fixed »n = 1,

@ 1 [ . pzn—
(97) . (1) — —— P 10013 p——- +p— +(—1)"~ o1l
Then
: K4 1 T pnn -1 l
Q Z - 1
Jan(s)db—*?;{OOt IP—E-HJ— +(=1)"" o 11—»0
as p—0, by (96).
It follows that
(98) f Fo,(s)ds =0
0
and hence
2n+1(t {f an ds—f an dS}
2 1 - k3 _ et 19211.-1
+0+p2n {cot - 2 +p +(—1) 241—1}’
t
1 T pzn—l
F,, ds Lo _—__ Y P — ... _1yn-1
éf an-+1(8) S .>p2n+l {cot D 5 + 2 +(-1) 2%-—-1}
(-

—_ e ——
2n 41
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as p—0, by (96). This implies

et (_l)n-!-l
[ Funnlras = 5=,
0

2n+1
and so
Fonsa(®) = —{[ Finsa(9)ds— f Frnia(5)d8}
0
1 e p2n+1
K4 — "

This confirms (97), and it follows from (98) that
Fp1(0) = — [ Fop(s)ds = 0.
¢

LemMa 5. Define for all teR and n =0,1, ...

Go() = o), Gl = [ Gy 0)ds.

-0

Then
G, () < 6, [(L+H) (feBy, n=1,2,..)),

with ¢, depending only on n. /
Proof. For i< 0,

i,
sin s
Gl(t)=f — s = ~Fy(—).

~x

For t> 0,

Gy (t) = f s":s ds—f ““;” ds—m = Fy(l).
5

Hence, for t < 0,

Ga(t) = — flm ~s)ds = Fy(—1).

Also, G4 is an odd function and integrable on R o that f G, (s)ds =0
and for >0,

Go(1) = [ Guls)ds— [ Gy(s)ds = Fy(1).
—00 11
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Proceeding by induction, assume that, for some fixed » > 1,
(99) G (t) = T, ([1]) for all teR.
Then for i < 0,

i
Gy (t) = szn(_s)ds = —Fopii(—1)

and (since f F,,(—s)ds = 0 by Lemma 4) for >0,

-0

{ oo 0
Ganpa(t) = sz,,,(s)ds =f qu(s)ds——f Fop(8)ds = Fyppa(2).
0 0 i

Next, for 1 < 0,
t
Gonya(t) = — fF2n+1 —s)ds = Fy, ,(—1),

and since @G,,,, is odd and integrable on R we have j Gypnyr = 0. Hence
for 1= 0,

o

Gzn+2(t) = f G2n+1(s)ds""f Gzn-u(s)ds = By, 1a(?).
—00 ‘

Thus we have confirmed (99) and also shown that

Gong1(t) = Fapiy (1) (12 0),  Gpupa(t) = —Fypp(—1) (2 <0).

The estimate for |G,(?)| now follows from Lemma 3.

ProposSITION 1. The kernel A,, defined by (93), has an anti-derivative

of order m, A™, such that

1 1 1
A(m) —m+1 ’ }

(f<m;m=1,2,...),
where ¢, depends only on m.
Proof. We write

(m) - Z A(m

jem1
where
L
t—s)™t 1 1 1 1
Am) =f(—,- {_____ }ds Pyt
n,1 (1) J Ty sinns | — -~ T (e RO,
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! t t—s’” =1 sinns
A = [ e p,
t
(t—s)™"! sinns

ATY(E) = Py(1),

! ~1)! =w+s

f

(t—g)™ ! (sinns

AM(t) = —92m8(28)ds +P, (1),
P (m—1)!

and where ae[ —=, n] and each P;(¢) (j =1,2, 3, 4) is a polynomial of
degree m —1 to be chosen.

Setting
(t—s)™ ! { 1 1 1 1 }
98 =" DT \stns 5 w—s | el
we have
( ins ins
m — —_ _—
Aty = Tl [gtt, 05 =Dty o+

1118
(in)"

Consider the expression in square brackets. At s =17 all terms vanish
except that with D™ 'g, which is O(n~™) uniformly; the contribution
of 8 =@ is cancelled by choosing P, suitably. The integral is O(n™™)
uniformly. Thus

m—1 pm—1 i m m
AP (s (=D f DRyt s)

ds}+P (t).

(101) 4SO < epan™™

For A", putting n(r—s) = £> 0, we obtain

g —omr IS e S e
i
Integrating by parts,
agn = o (ap ERE T gy
= _(:iﬁ_;; LA AT —1)"*-119’,,,(5)]:::: +Py (1)

= (=1 " P, (n(n—1))
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upon suitable choice of the polynomial P, to cancel the terms with
¢ = n(m—a). Whence, by Lemma 3,

¢ O~
(102) AMp < —22
= 14+n(rm—1)
Similarly
(103) IA(m)(t)l < (,'mﬂ.—1n+1
WS T fa(m+1)

For A{Y, we set § = ofn and note that, for any constant ¢ > 0 and
sek, ¢d(cs) = 6(s). Aceordingly,

nt _ .
Aﬁl"i(t) = g+l f (nt—o)™" (sing
' (m—1)!

na

- —né(a)}da'-I-P,,(t),

and, integrating by parts,

(o —mt)™t (o —nt)™2

(m—1)! (o) — (m —2)!

Ag;n,lz(t) — ,n—m+1( _1)1)!-1[ Gz(d)'l' +

a=nl
+(—1)”‘”‘Gm(0)] + Py(t) = n7"HG, (nt)
o=na
upon suitable choice of P, to cancel the terms with ¢ = na. Applying
Lemma 5, we obtain

C‘m '"’-m +1

104 AM() < 2—rn
(104) lAna ()] < T+l

and, by (101), (102), (103) and (104), (100} follows.
Appendix B, Estimate for the sum of the series

*® i.ak
(105) 8(@, a) =Z ;ﬂl F (0<a<l, z>0).
k=1

PropPoSITION 2. (a) If 0 < a <1 the series S(w, a), defined by (105),
converges for every x> 0 and there exists an absolute constant ¢, such that

a 1

(106) S(x, a) < egexp{(2e)' ™ x'™ ).

(b) If @ =1, then S(x, a) converges for every x with 0 < & < 1[e and
there ewists an absolute constant c, such that

e
(107) §(z, 1) < ¢
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Proof. (a) (106} is trivial for a = 0; hence let 0 < a < 1. Stirling’s
formula
k! o~ Vork e F 14+ 0(FY)}  (B—>+ 00)
implies that there exist positive constants ¢, and ¢, such that

k!

Hence in (105),

s \E e \F 1 I(ak+1) 1 I'ak+1)
‘kkak____i) kuk,\’(i_)_ )
¢ (a“ (ak)™ < a®] ¢ (ak+1)V2e=ck ¢ 4 (ake +1)2’
where
xe
(108) Y = —
a

(Note that o = ¢ °-51 as a—0.) Accordingly,

> 1 y I'(ak+1)
¢y

( < _—
(109) Sta, “)\_4 (ak-F1)1* k!

1 - 1 i - ;
I\ S i S
¢ 2 (ak41)2 k!of ¢
00
ot thnk it = _{f =tV gy
k=1 0

Define f(t) =t—yt* so that f'(t) = 1 —yat®'. Define ¢, by f'({,) = %;
then

(110) to = (2ya)i-a

and also 3 < f'(1) <1 for ¢>1,. Thus

[» =] ©a a
JetPa<e [ e 1 —yarhat = 907
to 4
Also
)
f 6—t+7la dt < 0”0 .
[t}
Hence

1 a
8(z, @) < — " (1426),

1

which, for ¢ and {, given by (108) and (110), yields (106) with ¢, = 2/¢,.
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(b) If @ = 1, then the last integral in (109) converges for y < 1, giving

1 v
S(z,1) < — —1—
() )<01 1—}”

which proves the second assertion of the proposition, since now y = ex
by (108).
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