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MORE ABOUT THE CLOSURE OF NP
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Recently the Boolean closure of NP has been studied in terms of nondeter-
ministic TM’s with modified acceptance [9]. Here we introduce a refine-
ment of the classes considered there. This refinement 1s motivated by the fact
that apparently the classes known so far are not sufficient for a complexity
classification of many natural problems.

1. Introduction

Recently, the Boolean closure of NP (denoted by BC(NP) has been studied
from several points ol views. Since F. HausdorfT ([4]) the Boolean closure ol
a class of sets closed unter union and intersection is known to be the union

of classes which we call the Hausdorff hierarchy generated by K. In the case
of NP this hierarchy is defined by D, = NP, C, =coNP

D,,,=C,vNP=,4XUY. XeC, A YeNP],
Cory =D, AcONP=4,1XNnY: XeD, nYecoNP).

The inclusion relationships between these classes which are known so far
follow from

C,csC,yynD,yy and C,=coD, (n=1,2..).

In [9] and [10] new acceptance types for nondeterministic Turing machines
(NTM’s) have been introduced in such a way that the polynomial time
complexity classes with respect to these new notions are exactly the classes of
the Hausdorff hierarchy. Characterizations of these classes in terms of
restricted bounded truth-table reducibility are given. In [5] the same hier-
archy is studied from the point of view of bounded truth-table reducibility and
complete sets, and in [8] natural complete problems for the classes of the
Hausdor(T hierarchy are exhibited. In [6] the case of C, has been considered.
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In this paper we give a very brief review of [9] including some new
results and then we mainly consider a quantitative analogon of the accept-
ance types introduced in [9]. This leads to a refinement of the'Boolean closure
of NP. In particular, we shall study the class 1NP of those languages which
are acceptable by polynomial time NTM’s by just one accepting path. This
class has been introduced in [1], and the following inclusions are known for
1t:

cONP —INP Z NP A coNP.

Many problems concerning this refined hierarchy are still open. A more
detailed version will be presented in a forthcoming joint paper with Thomas
Gundermann [3]. I would like to emphasize that the cooperation with him
promoted also this paper a good deal.

2. Qualitative acceptance notions

In this section we briefly review the main notions and results from [9].

We consider NTM’s attached with polynomial clocks. We assume that
every NTM has its distinguished set S of final states and that it reaches on
every path some state from S.

DerinrrioN. 1. (1, S) is an acceptance type if is a strict subset of the
power set of S not containing the empty set.

2. Leafy, (x) = !s: seS A s is reached by M on input x on at least one
path}.

3. M accepts x in the sense (A, S) —df Leaf,, (x)e 2, provided M has set
S of final states.

4. Lys(M)={x: x accepted by M in the sense of (U, S)}.

5. (W, 8)P = Ly (M): M is @ polynomial time NTM| is the polyno-
mial time complexity class corresponding to the acceptance type (2, §). NP
and coNP are special cases. - .

The new acceptance types can be considered to be formalizations of
weak forms of parallelity. Namely, the condition that the final states reached
on a computation should form a set belonging to U requires in a sense that
certain paths have to cooperate in a prescribed way. This is not the case for
‘the usual nondeterministic acceptance, but it is already present in the case of
coNP. The degree of parallelity reachable in this way is not too high because
the (2, S) P are subclasses of 4% (see [9)).

More precisely, we have shown that every (U, S) P is some class C; or D,
of the Hausdorff-hierarchy generated by NP and vice versa. Because of

BC(NP) = |J C,; the classes (U, S) P are exactly the Hausdorff classes within

i=1
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BC(NP). Furthermore, BC(NP) is shown to be equal to

Rtfn(NP) = {X: \/ (X <II:|: Y)}
YeNP

Recall that X is polynomially time bounded truth table reducible to Y
(X <}, Y) if and only if there exists a natural number m and a function f
computable within polynomial time such that

xe A—a(Cy(x,), ..., Cy(x,)) = true,
where a is a Boolean function of arity n < m, a, x, ..., x, are determined by
f(x) = {xy, .... X,, code(a)>

and Cjy is the characteristic function of B. (Here {...) denotes a 1-1-mapping
of N* onto N and code is some fixed encoding of the Boolean functions by
natural numbers.) But

RL(NP)SRE(NP) = (X: \/ X<}Y) = 4L

3. Relativization results

It 1s an open question whether the Hausdorff hierarchy is finite or infinite.
The following proposition is elementary:

ProposITION 1. For every k = 1 the following statements are mutually
equivalent

(1) Ck = Ce+1>

(2) /\ Ck = Cm
nzk

(3) C, = D,.

If P = NP then it collapses to P. So proving that it is a strict hierarchy
(at least up to a certain level) amounts to proving P = NP.(%)

In such cases one usually looks for relativizations. In [2] we prove the
following results

THEOREM 2. There exists a recursive oracle A such that
Clic(ClcCic...cCl... n
THEOREM 3. For every k = O there exists a recursive oracle A such that

A A _ A —
COC"'CCk _Ck+l_"' [ ]

(}) < denotes strict inclusion.
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4. Quantitative acceptance notions

The classes of the Hausdorff hierarchy are too coarse for complexity classific-
ation of many interesting problems. Consider, for instance,

1SAT =4 H: H is a Boolean formula having exactly one satisfying

assignment |
or
12, 5} SAT =, |H: H is a Boolean formula having either 2 or 5 satislying
assignments},
or

(1 v 1)SAT =, {(H,, H,): H,, H, are Boolean formulas such that at
least one of them has exactly one satisfying assignment].

1SAT has been considered in [1]. Since 1SAT is the intersection of
SAT and SAT(<1)=4!H: H is a Boolean formula having no more than
one satisfying assignment} and since

SAT(<1)=FSAT = [H: H is a Boolean formula having no satisfying
assignment |,

it follows that 1SATe NP A coNP = C,. But it is very unlikely that 1 SAT
is <}-complete in C,. By a close inspection of Cook’s proof that SAT is
<?F-complete in NP one gets that 1SAT is <} -complete in INP, where INP
is the class of all those sets which can be accepted by polynomial time
NTM’s, M by exactly one successful path.

{2,5! SAT and (1 v 1)SAT can be found to be complete in similar
classes.

A pgeneral framework for dealing with such classes is provided by the
following acceptance notions. Again we consider clocked NTM’s reaching on
every path some final state.

DerimniTion. 1. 2 is called an acceptance type if there is a natural number
k such that 9 < N*, where N is the set of natural numbers.

2. Let M be an NTM having the set |s;, ..., 5} of final states. Leaf},(x)
= number of paths of M reaching a final configuration with state s;.
Leafy, (x) = (Leaf};(x), ..., Leafy,(x)) is called the leaf number vector of M on
x. Note that we do not ask how often s, is reached.

3. M U-accepts x «>Leafy (x) e provided M has set |so, ..., s of
final states.

4. Ly(M)={x: M W-accepts x}.

5. ANP = {Ly(M): M is an NTM working in polynomial time!.
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We call A a quantitative acceptance type in contrast to (2, S) because

the number of accepting paths i1s here counted. Note however, that formally
speaking every qualitative acceptance type is also a quantitative one.

In this paper we restrict ourselves to studying only those classes defined
by quantitative acceptance notions which are closely connected with INP.

5. The set ring generated by 1INP

In terms of the new acceptance notions, INP is defined to be {1} NP. This
means, x is accepted by an NTM M in the sense of 1NP if and only if M
works in polynomial time, has two distinguished final states s,, s,, and on
input x the state s, is reached on exactly one path. INP is not to be
confused with the class U of languages accepted by unambiguous polynomial
time Turing machines (for relativizations including U see [7]).

Unambiguous Turing machines are such NTM’s having either no or
exactly one accepting path. Every polynomial time NTM accepts some set in
the sense of 1N P (inputs causing more than one accepting paths are rejected),
but as soon as it has for some input more than one accepting path it is not
unambiguous.

ProposITION 4. INP is closed under intersection, i.e. INP A INP = INP.

Proof. Let X, YeINP and let M,, M, be NTM’s accepting X and Y,
resp., in the sense of 1NP. We construct a new machine M working on input
x first like M, and il and when state s, is reached it works like M, on input
x. This combined machine works in polynomial time, and on input x it
reaches state s; on exactly one path if and only if both M, and M, on input
x reach state s, on exactly one path. This means, X" YcINP. »

A similar technique for proving INP v INP = INP is not known. We
have, on the contrary, reasons to believe that INP is not closed under union
(see Theorem 5).

Let H(INP) be the closure of INP under U and n. According to [4]
H(INP)= | Ai,.. .i,» Where

ke N
Bpe--niy

A iy Ao nd

i
itimes
The only known set inclusions are the trivial ones given by
iy © Ajy ., Weither k=t Ady <jp Ao A<y or

k<t a \/ ((Card:nl,...,nk})=k/\il sj"l’\"‘/\iksjnk)'

A
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An appropriate picture of this hierarchy could best be drawn in an infinite
dimensional space. Figure 1 shows the small fragment of those classes having
no more than two indices.

|

A

[

Fig. |

In [3] we prove several relativization results on H(1NP), for instance
THEOREM 5. There exists a recursive oracle A such that

AlcAdc.. . cAflc... =

Another interesting question is how the classes A4, are compared with

the classes of the Hausdorff hierarchy generated by NP.
We know that INP = C, and hence A, = C,,. The next theorem shows

that according to a suitable oracle we cannot do better.
THEOREM 6. There exists a recursive oracle A such that for every k = 1
Ci_ <Al »
The following proposition is evident
ProrposiTioN 7. Every class A; {18 closed under <F-reducibility.

It is very easy to construct problems which are <f-complete in 4, iy

It is sufficient to illustrate this by some examples.
(1 v 1)SAT is complete in A,,

WH,, H;, Gy, G5, Gy, k): H,, ..., Gy are graphs and keN and (at least
one of the graphs H,, H, has a uniquely determined clique of size k) and
(at least one of the graphs G,, G,, Gy has a uniquely determined clique of

size k)) is <F-complete in 4,,.
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6. Finite acceptance types

In this section we consider the sets ANP for finite sets A. We call these
acceptance types finite acceptance types.

ProrposiTioN 8. For every singleton A,

ANP = INP.

Proof. Let A = {i}.

1. =. This inclusion is trivial because every path leading to state s, can
be split up into paths leading to state s,.

2. =. Let M be a machine accepting X e ANP by reaching exactly i
times the state s, for exactly the inputs xe X. We assume for every input x a
linear order of the paths of M. Now we construct a new machine M’
=‘M-n.".n;S-M working as follows on input x. First it works like M on x. On
those a; where s; 1s reached, M is again applied on x, and the computation
path a, of the second application is compared with the computation path a,.
If «; > a, then apply again M on x and so forth. M’ reaches s, on such
paths which correspond to i paths «,, a,, ..., a; satisfying the condition
o, >ay >...>q such that M on each of these paths reaches s,. On all
remaining paths M’ reaches sy. It is evident that M’ reaches s, exactly once
if and only if M reaches s, exactly i times. m

The remaining classes with finite acceptance type are related to the
classes A,:

ProposiTiON 9. If card A = n then ANP < A,,.

Proof. Let A= 1a,,...,a,}. f Xe€ANP then there exists an NTM M
such that X = L,(M). But, evidently, L, (M) = L, (M)v...u L, (M), and

because of Proposition 8 this union belongs to A,.
It is unlikely that ANP = A, for card 4 = n. This is suggested by

THeoREM 10. For every n > 2 and for every A = N\ |0} withcard4 =n
there exists a recursive oracle B such that

ANPP c AP

For sets A having sufficiently many gaps one gets the following result.

Theorem 11. If a = lay, ..., a,} satisfies the condition that there exist
natural numbers b,, ..., b,_¢ A such that a, <b, <...<b,_, <a,, then
there exists a recursive oracle B such that

C8 _, < ANP?. «
By dovetailing we construct a recursive oracle B such that
Cyi<{1,3)NPPc(INP v INPP cClc...cC}c{1,3,5 NPP
'c(INP v INP v INPE ...
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This shows that for suitable relativizations the sets ANP as well as the

A, are cofinal with the sequence of C, in BC(NP). We close with a few
results concerning the classes ANP for card 4 = 2.

THeoOREM 12. For every i and every j, k such that k > j+2 there exists a
recursive oracle B such that
li,i+1)NPBc {j, k) NP®.
ProposiTioN 13. For every i,j, k>0
{L,JJNP < li+k, j+k} NP.

Proof. Every machine M accepting a set in the sense of {i,jl NP
becomes a machine accepting in the sense of |i+k,i+j} NP if k paths
leading to s, are added to M.

ProposiTION 14. For i <j <k,
i, jJNP < i, k} NP,

Proof. Let M be a machine accepting X in the sense of !i, j} NP.
Define M' = M-...- M. The final states of M' are redefined as follows:

jumes

$y8,...8, =5, if every copy of M reaches s, on the same path,
§y8;...8; =5, if there are paths a; <a, <... <a; such that
the vth copy of M reaches s, on path «,,
Xy...Xj=S8g 1n all other cases.

Now M’ is changed into M” by the modification that state s, splits into
k—j states s,. Now, if M reaches s, i’ times where i’ < j, then M’ reaches s, i
times and s, is not reached. If M reaches s, j times, then M’ reaches j times
s, and once s,, and hence M” reaches s, exactly j+k—j =k times. If M
reaches s, more than j times then M" reaches s, more than k times. =

It seems to be difficult to prove inclusions of the form ANP < BNP,
where B contains numbers less then those in 4. The best result of this kind
we know of so far is

ProPoSITION 15. For every k =2 and 1 > k,

{
k, L NP <A1, ( )} NP.
k

Proof. Let M accept a set in the sense of {k,!! NP. Define M’

=M_:...M as in the proof ol Proposition 8.

It is clear: if M reaches s, exactly k times then M’ reaches s; exactly

- !
once. If M reaches s, exactly / times, then M’ reaches s, exactly (k) times. If
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M reaches s, j times where j¢ {k, I}, then M’ reaches s, either not at all (for
j I
j <k) or (i) times which is different from 1 and (k)

The results of the last proposition are summarized in Figure 2. Note
that according to Theorem 10 for suitable relativizations this whole picture is
below INP v INP.

Fig. 2

Conclusion

This paper which is a slightly extended version of the authors lectures given
at the Banach semester does not intend to give a complete and exhaustive
representation of recent results.

Instead we tried to illustrate by some selected sample results the type of
problems which are studied in connection with the new acceptance types.
The reader is referred to the forthcoming papers [2] and [3] which deal with
this topic in greater detail.

References

[1]1 A. Blass, Yu. Gurevich, On the unique satisfiability problem, Inf. & Contr. 55 (1982), 80—

88.

[2] Th. Gundermann, G. Wechsung, Relativizing the Hausdorff hierarchy generated by NP,
To appear.

[3]1 —., —., Nondeterministic Turing machines with modified acceptance, to appear.

[4] F. Hausdorl[l, Grundziige der Mengenlehre, Leipzig 1914,

[5] J. Kébler, U. Schbning, The difference and truth-table hierarchies for NP, Submitted
to RAIRO Inf. théor.



458 G. WECHSUNG

[6] Ch. H. Papadimitriou, M. Yannakakis, The complexity of facets (and some facets of
complexity), 14th STOC (1982), 255-260. See also: JCSS 28 (1984), 244-259.

[7] C. Rackoflf, Relativized questions involving probabilistic algorithms, 10th STOC (1978),
338-342. See also: JACM 29 (1982), 261-268.

[8] K. Wagner, More complicated guestions about Maxima and Minima and some closures of
NP, 10 appear.

[93 G. Wechsung, On the Boolean closure of NP, Proc. FCT'85, LNCS 199, 485-493.

[10] G. Wechsung, K. Wagner, On the Boolean closure of NP, Submitted to JCSS.

Presented to the semester
Mathematical Problems in Computation Theory
September 16—~ December 14, 1985



