Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Global solutions of the relativistic Vlasov-Maxwell system of plasma physics

Autorzy

Seria

Rozprawy Matematyczne tom/nr w serii: 292 wydano: 1990

Zawartość

Warianty tytułu

Abstrakty

EN

CONTENTS
Introduction.....................................................................................................................................................5
Notation........................................................................................................................................................10
Prologue. Partial differential equations of first order. Maxwell's equations....................................................11
§1. Partial differential equations of first order...............................................................................................11
§2. Maxwell's equations................................................................................................................................14
Chapter I. Small solutions of the relativistic Vlasov-Maxwell system..............................................................20
§3. Definition of the problem.........................................................................................................................21
§4. A representation theorem for Q..............................................................................................................26
§5. Representation of the derivatives of QK.................................................................................................32
§6. The existence and uniqueness theorem for small solutions....................................................................36
Chapter II. Global solutions of the modified relativistic and nonrelativistic Vlasov-Maxwell system................41
§7. An existence and uniqueness theorem...................................................................................................41
§8. The initial-value problem for the modified relativistic (and nonrelativistic) Vlasov-Maxwell system..........47
Appendix A...................................................................................................................................................56
Appendix B...................................................................................................................................................57
References...................................................................................................................................................59

Słowa kluczowe

Tematy

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 292

Liczba stron

63

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCXCII

Daty

wydano
1990

Twórcy

autor
  • Gesamthochschule Paderborn, Fachbereich 17, Warburger Str. 100, 4790 Paderborn, Germany

Bibliografia

  • Adams, R. A. 1975: Sabolev Spaces, New York etc. 1975.
  • Akhieser, A. I. et al. 1975: Plasma electrodynamics, 2 vols., Oxford 1975.
  • Arsen'ev A. A. 1975a: Global existence of a weak solution of Vlasov's system of equations, U.S.S.R. Comput. Math, and Math. Phys. 15 (1) (1975), 131-141.
  • Arsen'ev A. A. 1975b: Existence and uniqueness of the classical solution of Vlasov's system of equations. U.S.S.R. Comput. Math, and Math. Phys. 15 (5) (1975), 252-258.
  • Asano, K. 1984: On local solutions of the initial value problem for the Vlasov-Maxwell equation, preprint 1984.
  • Asano, K. and Ukai, S. 1985: On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, preprint 1985.
  • Bardos, C. 1983: A priori estimates and existence results for the Vlasov equation, in: Contribution to nonlinear partial differential equations, ed. by C. Bardos et al., Boston etc. 1983.
  • Bardos, C. and Degond, P. 1984: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, preprint 1984.
  • Bardos, C. and Degond, P. 1985: Existence globale des solutions des équations de Vlasov-Poisson, Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Volume VII, al. by H. Brezis and J. L. Lions, Boston etc. 1985.
  • Bardos, C., Ha Tien Ngoan and Degond, P. 1985: Existence globale des solutions des équations de Vlasov-Poisson relativistes en dimension 3, C. R. Acad. Sci. Paris Sér. I 301 (6) (1985).
  • Batt, J. 1963: Ein Existenzbieweis für die Vlasov Gleichung der Stellardynamik bei gemittelter Dichte. Arch. Rational Mech. Anal. 13 (1963), 296-308.
  • Batt, J. 1977: Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations 25 (1977), 324-364.
  • Batt, J. 1980: Recent developments in the mathematical investigation of the initial value problem of stellar dynamics and plasma physics. Ann. Nuclear Energy 7 (1980), 213-217.
  • Batt, J. 1983: The nonlinear Vlasov-Poisson system of partial differential equations in stellar dynamics. Publications de C.N.E.R. Mathématiques Pures et Appliquées, Année 83, 5 (2) 1-30 (Lille 1983).
  • Batt, J. 1984: The present state of the existence theory of the VLASOV-POISSON- and VLASOV-MAXWELL-system of partial differential equations in plasma physics, Applications of Mathematics in Technology, ed. by V. Boffi and H. Neunzert, Stuttgart 1984.
  • Batt, J. 1985: Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞ , preprint 1985.
  • Batt, J., Faltenbacher, W. and Horst, E. 1986: Stationary spherically symmetric models in stellar dynamics, to appear in Arch. Rational Mech. Anal.
  • Beesack, P. R. 1975: Gronwall Inequalities, Carleton Mathematical Lecture Notes No. 11 (1975).
  • Braun, W. and Hepp, K. 1977: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Comm. Math. Phys. 56 (1977), 101-113.
  • Cooper, J. and Klimas, A. 1980: Boundary value problems for the Vlasov-Maxwell equation in one dimension, J. Math. Anal. Appl. 75 (1980), 306-329.
  • Cooper, J. and Klimas, A. 1981: Addendum. J. Math. Anal. Appl.. 84 (1981), 644-650.
  • Courant, R. and Hilbert, D. 1962: Methods of Mathematical Physics, Vol. II, New York and London 1962.
  • Degond, P. 1984: Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, preprint 1984.
  • Degond, P. 1985: Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions, preprint 1985.
  • Dieudonné, J. 1970; Treatise on Analysis, vol. II, New York 1970.
  • Dobrushin, R. L, 1979: Vlasov's equation, Functional Anal. Appl. 13 (1979), 115-123.
  • Duniec, J. 1973: On an initial value problem for a nonlinear system of Vlasov-Maxwell equations, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 21 (3) (1973), 97-102.
  • Eder, G. 1967: Elektrodynamik, Mannheim 1967.
  • Fraenkel, Th. 1974: Maxwell's Equations, Amer. Math. Monthly 81 (1974), 343-349.
  • Fridman, A. M. and Potyachenko V. L. 1984: Physics of Gravitating Systems, 2 vols., New York etc. 1984.
  • Glassey, R. T. and Schaeffer, J. 1985: On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys. 101 (1985), 459-473.
  • Glassey, R. T. and Strauss, W. A. 1984: Remarks on collisionless plasmas, Contemp. Math. 28 (1984), 269-279.
  • Glassey, R. T. and Strauss, W. A. 1985: Singularity formation in a collisionless plasma could occur only at high velocities, preprint 1985.
  • Hartman, P. 1964: Ordinary Differential Equations, New York 1964.
  • Holm, D. D. et al. 1985: Nonlinear stability of fluid and plasma equilibria, to appear in Phys. Rep.
  • Horst, E. 1981: On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation. I General Theory, Math. Methods Appl. Sci. 3 (1981), 229-248.
  • Horst, E. 1982: On the classical solutions of the Initial value problem for the unmodified non-linear Vlasov equation. II Special Cases, Math. Methods Appl. Sci. 4 (1982), 19-32.
  • Horst, E. 1987: Global strong solutions of Vlasov's equation - necessary and sufficient conditions for their existence, Banach Center Publications 19, PWN-Polish Scientific Publishers, Warszawa 1987, 143-153.
  • Horst, E. and Hunze, R. 1984: Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation, Math. Methods Appl. Sci. 6 (1984), 262-279.
  • Illner, R. and Neunzert, H. 1979: An existence theorem for the unmodified Vlasov equation, Math. Methods Appl. Sci. 1 (1979), 530-554.
  • Iordanskiĭ, S. V. 1964: The Cauchy problem for the kinetic equation of plasma, Amer. Math. Soc. Transl. 2(35) (1964), 351-363.
  • Jackson, J. D. 1962: Classical Electrodynamics, New York etc. 1962.
  • Kato, T. 1975: The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181-205.
  • Klainermann, S. 1985: Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38 (1985), 631-641.
  • Kurth, R. 1952: Das Anfangswertproblem der Stellardynamik, Z. Astrophys. 30 (1952), 213-229.
  • Kurth, R. 1957: Introduction to the Mechanics of Stellar Systems, London 1957
  • Kurth, R. 1978: A global particular solution to the initial-value problem of stellar dynamics, Quart. Appl. Math. 36 (1978) 325-329.
  • Leis, R. 1984: Lectures on Initial-Boundary Value Problems in Mathematical Physics, Vorlesungsreihe SFB 72, vol. 18 and vol. 22, Bonn 1984.
  • Marchioro, C. and Pulvirenti, M. 1985: A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, preprint 1985.
  • Marsden, J. E. 1982: A group theoretic approach to the equations of plasma physics, Canad. Math. Bull. 25 (2) (1982), 129-142.
  • Marsden, J. E. and Weinstein, A. 1982: The Hamiltonian structure of the Maxwell-Vlasov equations, Physica 4D (1982), 394-406.
  • Marsden, J. E. et al. 1982: Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proceedings of the IUTAM symposium on modern developments in analytical mechanics, Torino, Italy, June 7-11, 1982.
  • Neunzert, H. 1965: Über ein Anfangswertproblem für die stationäre Boltzmann-Vlasov-Gleichung, Berichte der Kernforschungsanlage Jülich Jül-297-MA, 1965.
  • Neunzert, H. 1975: Neuere qualitative und numerische Methoden in der Plasmaphysik, Vorlesungsmanuskript, Paderborn 1975.
  • Neunzert, H. 1978: Mathematical investigations on particle-in-cell methods Fluid Dynamics Transactions, vol. 9, Proc. of XIIIth Symp. on Advanced Problems and Methods in Fluid Mechanics, Warszawa 1978. 229-254.
  • Neunzert, H. 1984: An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, ed. by C. Cercignani, LNM 1048, Berlin etc. 1984.
  • Neunzert, H. and Petry, K.-H. 1980: Ein Existenzbeweis für die Vlasov-Gleichung mil selbstkonsistentem Magnetfeld, Math. Methods. Appl. Sci. 2 (1980), 429-444.
  • Neunzert, H., Pulvirenti, M. and Triolo, L. 1984: On the Vlasov-Fokker-Planck equation, ibid. 6 (1984). 527-538.
  • Petry, K.-H. 1980: Zur Existenz von Maßlösungen eines Anfangs-Randwertproblems für die gemittelte Vlasov-Gleichung, Dissertation, Neubiberg 1980.
  • Pfaffelmoser, K. 1985: Beiträge zum Anfangswertproblem der Stellardynamik, Diplomarbeit, München 1985.
  • Schaeffer, J. 1985: The classical limit of the relativistic Vlasov-Maxwell system, preprint 1985.
  • Spohn, H. 1981: On the Vlasov hierachy, Math. Methods Appl. Sci. 3 (1981), 445-455.
  • Ukai, S. and Okabe, T. 1978: On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math. 15 (1978), 245-261.
  • Vladimirov, V. S. 1971: Equations of Mathematical Physics, New York 1971.
  • Vlasov, A. A. 1961: Many-Particle Theory and Its Application to Plasma, New York 1961.
  • Weibel, E. 1967: L'équation de Vlasov dans la théorie spéciale de la relativité. Plasma Phys. 9 (1967). 665-670.
  • Wollman, S. 1977: Classical solutions to the Vlasov-Poisson system of equations, University of New Mexico, Technical Report No. 329.
  • Wollman, S. 1980a: The spherically symmetric Vlasov-Poisson system, J. Differential Equations 35 (1980), 30-35.
  • Wollman, S. 1980b: Global-in-time solutions to the two-dimensional Vlasov-Poisson system, Comm. Pure Appl. Math. 33 (1980), 173-197.
  • Wollman, S. 1982: Existence and uniqueness theory of the Vlasov-Poisson system with application to the problem with cylindrical symmetry, J. Math. Anal. Appl. 90 (1982), 138-170.
  • Wollman, S. 1984: An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math. 37 (1984), 457-462.
  • Wollman, S. 1985: The use of the heat operator in an existence theory problem of the Vlasov equation, preprint 1985.
  • Schaeffer, J. 1986: Global existence for the Poisson-Vlasov system with nearly symmetric data, preprint 1986.

Języki publikacji

EN

Uwagi

Identyfikator YADDA

bwmeta1.element.zamlynska-c79c6366-142e-4a58-b9b8-d2a8e9d852f4

Identyfikatory

ISBN
83-01-09651-9
ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.