AN IMPROVED INDUCTIVE DEFINITION
OF TWO RESTRICTED CLASSES
OF TRIANGULATIONS OF THE PLANE

VLADIMIR BATAGELJ

Department of Mathematics, University Edward Kardelj of Ljubljana
Ljubljana, Yugoslavia

The improved inductive definitions of (i) the class of all triangulations of the
plane with all vertices of even degree, and (ii) the class of all triangulations of
the plane without vertices of degree 3 are given. The dual inductive definitions
are local and expanding and determine (i) the class of all 3-connected bipartite
planar cubic graphs, and (ii) the class of all 3-connected planar cubic graphs
without triangles.

The inductive class \(\mathcal{I} = Cn(\mathcal{B}; \mathcal{R}) \) is defined by giving the class \(\mathcal{B} \) of initial
objects—the basis of \(\mathcal{I} \), and the class \(\mathcal{R} \) of generating rules. Any such rule
applied to an appropriate sequence of objects, already in \(\mathcal{I} \), produces an object
of \(\mathcal{I} \). The inductive class \(\mathcal{I} \) consists exactly of the objects which can be
constructed from the basis by a finite number of applications of generating
rules.

The inductive definition is local iff basic graphs, and for each rule the part
of the graph on the left side of the rule, are connected, and is expanding iff the
application of each rule increases the size (number of vertices, number of edges,
etc.) of the graph.

The inductive definitions of the class of all triangulations of the plane
without vertices of degree 3, and of the class of all triangulations of the plane
with all vertices of even degree were given already in [2]. In the present paper
improved inductive definitions are presented which give us in their dual form
local and expanding inductive definitions of the class of all 3-connected
bipartite planar cubic graphs and of the class of all 3-connected planar cubic
graphs without triangles.

1980 Mathematics Subject Classification: 05C30, 03D70, 05C10.
This work was supported in part by the Research Council of Slovenia, Yugoslavia.
Inductive definitions of the class of all triangulations with all vertices of degree at least 5 and of the corresponding class of all 3-connected planar cubic graphs without triangles and quadrangles are given in [1].

Inductive definition of the class of all 3-connected bipartite planar cubic graphs is interesting in relation to Barnette's hamiltonicity conjecture: Every 3-connected bipartite planar cubic graph is Hamiltonian. By the use of a similar (but nonlocal) inductive definition Holton, Manvel and McKay [4] proved that Barnette's conjecture holds for \(n < 65\).

In the inductive definitions in this paper the base graphs and rules should be understood as embedded in the plane (sphere). The small triangles attached to the vertices in the description of the rule denote any number (zero or more) of edges; and the halfedges indicate that there must be an edge.

A triangulation is called even if it has all vertices of even degree.

Theorem 1. The inductive class \(Cn(O; P, Q)\) (see Fig. 1) is equal to the class \(T_2\) of all even triangulations of the plane.

Proof. The basic graph \(O\) in Fig. 1 is an even triangulation and the rule \(P\) or \(Q\) produces from a graph belonging to \(T_2\) a new graph also belonging to \(T_2\). Therefore, by inductive generalization, it follows that \(Cn(O; P, Q) \subseteq T_2\).

To prove that also \(T_2 \subseteq Cn(O; P, Q)\) we must show that every even triangulation \(G, G \neq O\), can be reduced by the inverse rules \(P^-\) and \(Q^-\) to a smaller triangulation of the same type.

From Euler's polyhedral formula it follows that in each \(G \in T_2\) there exist at least 6 vertices of degree 4. Let \(x\) be a vertex of degree 4 and let neighbours of \(x\) in cyclic order be \(u, w, v, z\). There are two cases to be considered.

Fig. 1

\(O, P, Q\)
Case A. All vertices v, v, w and z adjacent to x (see Fig. 2) are of degree at least 6. We denote in figures the vertex of degree 4 by a black circle and the vertex of degree at least 6 by a square. Refer to Figs. 2a, 2b for definition of y and t.
If \(yv \notin E \) and \(yz \notin E \) we can apply the inverse rule \(Q^- \) to the quadrangle \(xyuvw \) without producing multiple edges. Otherwise, because of the symmetry, suppose that \(yv \in E \) (see Fig. 2b). Then \(tz \notin E \) and \(tu \notin E \) and we can apply the rule \(Q^- \) to the quadrangle \(xwty \).

Case B. At least one vertex adjacent to \(x \) is of degree 4. Suppose that \(\text{deg}(w) = 4 \). There are two possibilities.

Case B1. One of the common neighbours \(u \) and \(v \) of the vertices \(x \) and \(w \) is also of degree 4 (see Fig. 3). Let this be the vertex \(u \). Because \(G \neq O \) the vertices \(z \) and \(v \) are of degree at least 6 and we can apply the rule \(Q^- \) to the quadrangle \(xuvz \).

Case B2. Both common neighbours \(u \) and \(v \) of the vertices \(x \) and \(w \) are of degree at least 6. Again we have to consider several possibilities.

Case B2.1. The vertices \(x, u \) and \(v \) are the only common neighbours of the vertices \(w \) and \(z \) and each path between \(w \) and \(z \) not passing through \(u \), \(x \) or \(v \) has at least two internal vertices. We can apply the rule \(P^- \) to the quadrangle \(zuvw \).

Case B2.2. \(wz \) is an edge of \(G \) (see Fig. 4). This is impossible because it contradicts the 3-connectedness of \(G \)—the set \(\{z, u\} \) is a cut-set in \(G \).

Case B2.3. Beside the vertices \(x, u \) and \(v \) there is another common neighbour \(r \) of the vertices \(w \) and \(z \) (see Fig. 5). We can apply the rule \(Q^- \) to the quadrangle \(vwtz \).

This completes the proof of Theorem 1.

Even triangulations represented in Fig. 6 demonstrate that the rules \(P \) and \(Q \) are independent. The inverse rule \(Q^- \) cannot be applied to the left triangulation without producing multiple edges; and \(P^- \) cannot be applied to the right triangulation because there is no pair of adjacent vertices both of degree 4.

Theorem 2. The inductive class \(C_n(O; R, S) \) (see Figs. 1 and 7) is equal to the class \(T(> 3) \) of all triangulations of the plane without vertices of degree 3.
The condition 1, 2 in the description of the rule R means that on that side there should be 1 or 2 edges.

Proof. The inclusion $Cn(O; R, S) \subseteq T(> 3)$ follows by inductive generalization. To prove that also $T(> 3) \subseteq Cn(O; R, S)$ we must show that every triangulation $G, G \neq O$, without vertices of degree 3 can be reduced by the inverse rules R^- and S^- to a smaller triangulation of the same type.

From Euler's formula it follows that in every triangulation there exists a vertex of degree less than 6. Let x be one of the vertices of the least degree in G. Then either $\deg(x) = 4$ or $\deg(x) = 5$. Let us analyse both cases separately.

Case A. $\deg(x) = 4$. The neighbourhood of the vertex x is represented in Fig. 8a. There are two possibilities for the degrees of the neighbours of x.

Fig. 8a
Case A1. All four neighbours are of degree at least 5. In this case at least one of the pairs uv and zw is not an edge of G. Suppose, because of symmetry, that this is the pair uv. Then we can apply the inverse rule R^- to the quadrangle $zxwv$ without producing multiple edges. The reduced graph is again a triangulation without vertices of degree 3.

Case A2. At least one neighbour, say w, is of degree 4 (see Fig. 8b). If the vertices u and v are both of degree at least 5 we can apply the rule R^- to the quadrangle $xuvw$. Otherwise, one of the vertices u and v, say u, is of degree 4 (see Fig. 9a). If the vertices v, z and y are all of degree at least 6 we can apply the rule S^-. No one among these vertices can be of degree 4 because this would imply that G is only 2-connected. Therefore, in the remaining case at least one vertex, say v, is of degree 5 (see Fig. 9b). We can apply the rule R^- to the quadrangle $zvvt$.

Case B. $\deg(x) = 5$. The neighbourhood of the vertex x is represented in Fig. 10.

Let us first show that for at least one among the vertices u, w, v, y and z all the edges of the induced subgraph are represented in the figure. Suppose the
contrary. Then the pair vu or the pair vw is an edge of G. Let us assume that vu is an edge. But then neither zw nor zv can be an edge of G — a contradiction.

So, because of symmetry, we can assume that vu and vw are not edges of G and therefore we can apply the rule R^- to the quadrangle $zxvy$.

This completes the proof of Theorem 2.

In the dual form we can express Theorems 1 and 2 as follows (see Fig. 11).

Theorem 1'. The inductive class $Cn(o; p, q)$ is equal to the class $CBP3$ of all 3-connected bipartite planar cubic graphs.

Theorem 2'. The inductive class $Cn(o; r1, r2, s)$ is equal to the class $CP3(> 3)$ of all 3-connected planar cubic graphs without triangles.

References

Presented to the Semester
Combinatorics and Graph Theory
September 14 — December 17, 1987