On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings
Introduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39
[1] R. D. M. Accola, Differentials and extremal length on Riemman surfaces. Proc. Nat. Acad. Sci. USA 46 (1960), pp. 540-543.
[2] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), pp. 359-364.
[3] L. V. Ahlfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York 1973.
[4] L. V. Ahlfors et A. Beurling, Invariants conformes et problèmes extrémaux, C. R. Dixième Congrès des Mathématiciens Scandinaves, Copenhague 1946, pp. 341-351.
[5] L. V. Ahlfors et A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), pp. 101-129.
[6] L. V. Ahlfors and L. Sario, Riemman surfaces, Princeton University Press, Princeton, N. J., 1960.
[7] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Bande, J. Reine Angew. Math. 169 (1933), pp. 1-42, and 172 (1935), pp. 89-128.
[8] R. L. Bishop and S. I. Goldberg, Tensor analysis on manifolds, Macmillan, New York-London 1968.
[9] P. Burcev, De Sitter model for stable particles, Nuovo Cimento 56 (1968), pp. A795-A798.
[10] P. Burcev, Structural models of electron and nucleon in general relativity, Czechoslovak J. Phys. 23 (1973), pp. B1172-B1180.
[11] S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton, N. J., 1967.
[12] S. S. Chern, and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), pp. 219-271.
[13] S. S. Chern, H. I. Levine and L. Nirenberg, Intrinsic norms on a complex manifold, in: Global analysis, Papers in honor of K. Kodaira, ed. by D. C. Spencer and S. Iynaga, University of Tokyo Press and Princeton University Press, Tokyo 1969, pp. 119-139.
[14] P. A. M. Dirac, The motion of an extended particle in the gravitational field, Proc. Internat. Conf. on Relativistic Theories of Gravitation, Warsaw and Jabłonna 1962, ed. by L. Infeld, Pergamon Press, Gauthier-Villars and PWN, Warsaw 1964, pp. 163-175.
[15] J. Eells, Jr., and J. H. Sampson, Variational theory in fibre bundles, Proc. U. S.-Japan Seminar in Differential Geometry, Kyoto 1965, ed. by Y. Matsushima, K. Nomizu and K. Yano, Nippon Hyoronsha, Tokyo 1966, pp. 22-33.
[16] M. Plato, J. Simon and D. Sternheimer, Conformal covariance of field equations, Ann. Physics 61 (1970), pp. 78-97.
[17] P. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), pp. 353-393.
[18] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, N. J., 1965.
[19] L. I. Hedberg, Removable singularities and condenser capacities, Ark. Mat. 12 (1974), pp. 181-201.
[20] M. Hervé, Analytic and plurisubharmonic functions infinite and infinite dimensional spaces, Springer-Verlag, Berlin-Heidelberg-New York 1971.
[21] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-Göttingen-Heidelberg 1963.
[22] С. С. Hsiung, Structures and operators on almost-Hermitian manifolds, Trans. Amer. Math. Soc. 122 (1966), pp. 136-152.
[23] С. С. Hsiung and J. J. Levko III, Complex Laplacians on almost-Hermitian manifolds, J. Differential Geometry 5 (1971), pp. 383-403.
[24] J. Iliopoulos, Gauge theories, Lecture Notes in Physics 50, Springer-Verlag, Berlin-Heidelberg-New York 1976, pp. 4—10.
[25] J. Kalina, A variational characterization of the capacity in 3-space, Bull. Soc. Sci. Lettres, Łódź 24, 2 (1974).
[26] J. Kalina, A variational characterization of condenser capacités in $C^n$ within a class of plurisubharmonic functions, Ann. Polon. Math., to appear.
[27] С. O. Kiselman, Prologement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), pp. 329-356.
[28] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), pp. 460-480.
[29] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker Inc., New York 1970.
[30] S. Kobayashi and K. Nomizu, Foundations of differential geometry I—II, Interscience Publishers, New York-London-Sydney 1963-1969.
[31] K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry 6 (1971), pp. 33-46.
[32] K. Kodaira, and D. C. Spencer, On the variation of almost-complex structure, in: Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton 1957, pp. 139-150.
[33] E. Kühnau, Quasikonforme Abbildungen und Extremalprobleme bei Feldern in inhomogenen Medien, J. Reine Angew. Math. 231 (1968), pp. 101-113.
[34] E. Kühnau, Der Modul von Kurven- und Flächenscharen und räumliche Felder in inhomogenen Medien, ibid. 243 (1970), pp. 184-191.
[35] O. Lehto und К. I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York 1965.
[36] O. Lehto and К. I. Virtanen, Quasiconformal mappings in the plane, 2nd. ed., Springer-Verlag, Berlin-Heidelberg-New York 1973.
[37] P. Lelong, Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942), pp. 398-400.
[38] P. Lelong, Les fonctions plurisousharmoniques, Ann. Sci. École Norm. Sup. (3) 62 (1945), pp. 301-338.
[39] P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soo. Math. France 85 (1957), pp. 239-262.
[40] P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Colloque du С. I. M. E., Varenna, Ed. Cremonese, Roma 1963, reed, in French and English by Gordon and Breach, New York 1968.
[41] P. Lelong, Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans On, J. Analyse Math. 12 (1964), pp. 365-406.
[42] P. Lelong, Fonctions entières de type exponentiel dans $C^n$, Ann. Inst. Fourier (Grenoble) 16 (1966), pp. 269-318.
[43] J. Lelong-Ferrand, Etude d'une classe d'applications liées à des homomorphismes d'algèbres de fonctions, et généralisant les quasi conformes, Duke Math. J. 40 (1973), pp. 163-186.
[44] C. Loewner, On the conformal capacity in space, J. Math. Mech. 8 (1959), pp. 411-414.
[45] J. Ławrynowicz, Eine Variationscharakterisierung der Kapazität des Kondensators, Math. Nachr. 60 (1974), pp. 29-34.
[46] J. Ławrynowicz, Capacities as conformal quasi-invariants on pseudo-riemannian manifolds. Rep. Math. Phys. 5 (1974), pp. 203-217.
[47] J. Ławrynowicz, Condenser capacities and an extension of Schwarz's lemma for hermitian manifolds, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), pp. 839-844.
[48] J. Ławrynowicz, On quasiconformality of projections of biholomorphic mappings, ibid. 23 (1975), pp. 845-851.
[49] J. Ławrynowicz, Electromagnetic field and the theory of conformal and biholomorphic invariants, Complex analysis II, International Atomic Energy Agency, Vienna 1976, pp. 1-23.
[50] J. Ławrynowicz and W. Waliszewski, Conformality and pseudo-riemannian manifolds, Math. Scand. 28 (1971), pp. 45-69.
[51] J. Ławrynowicz and L. Wojtczak, A concept of explaining the properties of elementary particles in terms of manifolds, Z. Naturforsch. 29a (1974), pp. 1407-1417.
[52] O. Martio, On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 425 (1968), 10 pp.
[53] L. Michel, Geometrical aspects of symmetry breaking, Proceedings of the 3rd GIFT Seminar "Broken Symmetries", Madrid, March 1972, pp. 48-131.
[54] R. Narasimhan, Analysis on real and complex manifolds, Masson and North Holland Publishing Co., Amsterdam 1968.
[55] Y. Ogawa, Operators on almost Hermitian manifolds, J. Differential Geometry 4 (1970), pp. 105-119.
[56] M. Ohtsuka, Sur une théorème étoilé de Gross, Nagoya Math. J. 9 (1955), pp. 191-207.
[57] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, Van Nostrand-Reinhold, New York 1970.
[58] L. O'Raifeataigh, Present status of supersymmetry, Gauge theories, Lecture Notes in Physics 50, Springer-Verlag, Berlin-Heidelberg-New York 1976, pp. 11-24.
[59] G. Pick, Über eine Eigenschaft der konformen Abbildung kreisförmigen Bereiche, Math. Ann. 77 (1915), pp. 1-6.
[60] G. Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgeschriebene Werte bewirkt werden, ibid. 77 (1915), pp. 7-23.
[61] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton 1961.
[62] G. de Rham, Variétés differentiables. Formes, courants, formes harmoniques, 2-ème éd., Hermann, Paris 1960.
[63] G. de Rham, On the area of complex manifolds, in: Global analysis, Papers in honor of K. Kodaira, ed. by D. C. Spencer and S. Iynaga, University of Tokyo Press and Princeton University Press, Tokyo 1969, pp. 141-148.
[64] B. Rodin and L. Sario in collaboration with M. Nakai, Principal functions, Van Nostrand, Princeton, N. J.-Toronto-London-Melbourne 1968.
[65] B. V. Sabat, On the hyperbolic quasiconformal mappings (in Russian), in: Certain problems of mathematics and mechanics, On the occasion of the seventieth birthday of M. A. Lavrent'ev, cd. by N. N. Bogoljubov, Izdat. Nauka, Leningrad 1970, pp. 251-256.
[66] A. D. Sakharov, The topological structure of elementary charges and the CPT-symmetry (in Russian), in: Problems of theoretical physics. A memorial volume to I. E. Tamm, Izdat. Nauka, Moscow 1972, pp. 242-247.
[67] L. Sario and K. Oikawa, Capacity functions. Springer-Verlag, Berlin-Heidelberg-New York 1969, 39 pp.
[68] J. Siciak, A generalization of Schwarz's lemma and of Hadamard's three circles theorem, Colloq. Math. 11 (1964), pp. 203-207.
[69] J. Siciak, Holomorphic continuation of harmonic functions, Ann. Polon. Math. 29 (1974), pp. 67-73.
[70] N. E. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, N. J., 1951.
[71] K. Suominen, Quasiconformal maps in manifolds, Ann. Acad. Sci. Fenn. Ser. A I 393 (1966), 39 pp.
[72] R. Thom, Symmetries gained and lost, Proceedings of the 3rd GIFT Seminar "Broken Symmetries", Madrid, March 1972, pp. 1-48.
[73] A. Trautman, Fibre bundles associated with space-time, Rep. Math. Phys. 1 (1970), pp. 29-62.
[74] C. von Westenholz, On a modified classification scheme for elementary particles, Ann. Inst. Henri Poincare, Sec. A (N.S.) 14 (1971), pp. 285-293.
[75] C. von Westenholz, Quantized charge in terms of pure geometry, ibid. 15 (1971), pp. 189-202.
[76] C. von Westenholz, A new approach to interacting fields. Int. J. Theor. Phys, to appear.
[77] C. von Westenholz, A topological description of interacting fields, to appear.
[78] C. von Westenholz, Differential forms and their applications in physics, North Holland Publishing Co., Amsterdam 1975.
[79] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice Hall, Englewood Cliffs, N. J., 1973.
[80] D. A. Wheeler, Superspace, Lecture held at the 5th Conference on Gravitation, Tbilisi 1968.
[81] M. Wojciechowska, Capacity and quasiconformal mappings on Riemannian manifolds, Rev. Roumaine Math. Pures Appl. 21 (1976), pp. 609-623.
[82] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt 1965.
[83] B. Zumino, Yang-Mills theory of weak and electromagnetic interactions. Proceedings of the 3rd GIFT Seminar "Broken Symmetries", Madrid, March 1972, pp. 132-163.