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§ 0. Introduction

Vlasov's equation in three dimensions is the continuous equivalent of the n-
body problem of celestial mechanics. The question if the initial value
problem always has a global solution (for “nice” initial data) is still open.

There are certain quantities, which are connected with a solution, and
global existence is equivalent to a priori estimates for them. The investigation
of these matters is the subject of the present paper.

The most interesting new result is the fact that a local solution that
breaks down after a finite time cannot have a support that remains in a
bounded subset of position space (cf. (2.3,vii)). Hitherto only the apalogous
result for velocity space was known. ((2.3,vi} is a sharp version of this [act.)
At least in the case of a gravitational force (y = —1) it is easy to conceive
that the system will always be kept together by mutual attraction.

§ 1. Definitions and basic facts

We use the same notation as in [7] (which is quite standard anyway).
Therefore we only repeat some definitions and hope that the rest is evident.

L,(R™, RY (CK(R™, RY, Lip(RM, R")) denotes the space of functions
f: RM — R such that |f|? is Lebesgue integrable (f and its derivatives of
order < k are bounded, f is Lipschitz continuous). If L =1, we omit the
second argument RX. C*(R™, RY) consists of the functions in C{(RM, RY) that
have a compact support. lip(f) is the smallest Lipschitz constant for
feLip(R™, R"). Everything is calculated with respect to the Euclidean norm
on R™ and R". {f(z)dz always means an integral over the full space. If
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pe[l, o[, then p’ denotes the adjoint index from Hélder’s inequality with
P l+p =1

(1.1) DeriniTioN of the initial value problem. If xeR®, we write x
= (x,, x,) with x,, x,e R* (space and velocity components). Assume ye{—1,
+1}, €20 and let for ze R?

w(z):=yE*+e)~ V2,
€(z):= —gradu*(2) = y(z2+¢) ¥ 2.

Assume that o€ C! (R®), ¢ > 0 and I < [0, oo[ is an interval with Oe I. We say
that @*: I x R® — R is a (strong) solution of the (initial value) problem P* on I if
1) #°(0, ) = o.
() (y—e(x,—y)P(t, y))e L, (R*) for all tel, x.eR>.
(iii) If E*(t, x) := [&*(x,— y) ®*(t, y)dy, then E° is continuous on I x R®
and E°(t, ) is Lipschitz continuous on R*, uniformly for all ¢ in compact

subsets of I, i.e. there exists a nondecreasing function g*: I — [0, oo[ such
that

|E£(t5 xs)_Ea(t) ys)l < gc(t) Ixs__ysl
for all tel, x,, y,e R*.

(iv) @° is an integral of the “characteristic” system of ordinary differen-
tial equations

(1) X, =X, X =E(X),
ie. every solution X: I — R® of (1) satisfies ,
(1, X (1) = (0, X(0) = ¢ (X (0))

for all tel. We call ¢° a global solution if I =[0, oo[, otherwise a local
solution.

We denote by C “world constants”, by K constants that may depend on
¢. These constants will never depend on ¢ dependence on ¢ is always
explicitly denoted. (That K does not depend on ¢ may have been proved just
at that instant or it may be an assumption at that particular point of the
argument.) The same letter C or K may denote different constants, even on
two sides of an inequality.

By abuse of notation we write @ (t) for the function &*(t, '): R® — R,
Ef(t) for E®(t, ), etc.

Remarks. (1) What we are really interested in is the initial value problem
P°. The “mollified” problems P%, ¢ > 0, are mainly a convenient instrument
for finding solutions of P°.

(ii) A strong solution of P is differentiable on I xR® and satisfies



GLOBAL SOLUTIONS OF VLASOV'S EQUATION 145

“Vlasov’s equation”

3 8 N
E‘Ds+xva—xs¢z+E (t, xs)a—xv‘pe =0

(cf. [7]. We will not make use of this fact.

(i) The assumption @ e C!(R®) could easily be weakened along the lines
of [7]. We never use the compact support of ¢ in an essential way. We only
use the fact that ¢ vanishes sufficiently fast at infinity where “sufficiently”
means different things in different theorems. Making minimal assumptions,
we could easily create 144 theorems out of Theorem (2.3).

(iv) Our definition of “strong” solutions is equivalent to that of “classi-
cal” solutions in [7], cf. [9, remark after (1.2)]. In the present paper
“solution” always means “strong solution”.

(v) We only consider the three-dimensional case. In dimensions one and
two there always exist global solutions, cf. [7], in dimensions greater than
three there exist counterexamples, cf. [8].

(1.2) THEOREM. If € > 0, there exists a unique global solution ®° of P*. If ¢
= 0, there exists a unique local solution ®° on a maximal interval [0, T[ with

Te]0, o).

Proof: [7].

Remarks. (i) If a solution ®° of P° exists on I, then we always have @°
=lim®* as ¢ — 0. Cf. [7] for details.

(ii) Tt is known that under additional assumptions on ¢, P° will have a

global solution, e.g. if ¢ has “rotational” symmetry, cf. [8], or if ¢ is “small”,
cf. [2].

(1.3) DeFinition and THeEOREM (properties of strong solutions). Assume
that @ is a solution of P* on 1. For xeRS, t, tel let X°(t, T, x) denote the
solution of

) X = (X5, E°(¢, X2)
with initial condition

3) X1, 1, x) = x.
Then

() X* is continuous on I xI x R°.
(i) X*(¢, 7) is a (Lebesgue) measure-preserving homeomorphism from R®
onto R® for all t, 1€l

(iil) X°(¢, )0 X*(t, 8) = X*(t, ) and thus (X'(t, 'z))—l = X%(t, t) for all
t,t,0el

(iv) @°(t) = o (X*(0, t)) for all tel.

10 — Banach Center t. 19
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Proof: [7].

As usual, existence of solutions is closely connected with a priori
estimates. In the case of P? it is convenient to formulate them in terms of the
solutions of P g > 0. Before we state these estimates we have to define the
quantities we are interested in.

(1.4) DeFiNiTION. Assume that @° is a solution of P on I. For tel,
x.e R let
() o, x):= [P*(r, x)dx,
(the density in position space R3),
() U, x):= (u*(x,~y) e (¢, y) dy,
(the potential),
(i) (e, x) =[x, @, x)dx,
(the current),
(iv) S50 :=sup [||X:(r, 0, x)| —|x]|; xeR®, 0< 1<t}
(a function that measures how much the size of the velocities has changed).

Remark. Instead of f; slightly different functions were used in [6] and
(71
S0 1= sup {||X5(t, 0, x) —|xJ|; xeR®} in [6],

F@):=sup{|X,(r, 0, x)—x[|; xeR®,0< <t} in [7].

Basically they serve the same purpose. By definition
THURS MURS A G

£ &6

As a matter of fact, fy is just ff “made monotone”, which makes it somewhat
easier to handle, eg. we do not have to worry about measurability. We
preferred /v to f° in view of equation (7) below and its consequences. Its only
disadvantage is an aesthetic one: It is not Galilei invariant.

(1.5) PrOPOSITION. Assume that &° is a solution of P* on I. Then
(i) #*()e CE (R L, (R%) for all tel.
(i) o*()e CL(RHYNL,(RY) for all tel and

le* (Ml < K (1+ £
(iii) #()e C2(R®, R~ L,(R*, R®) for all tel and
I (Ol < K (14 £,0)"
(iv) Ue CL(I xR® and for all tel, x e R®
Ef(t, x) = —grad,,S U (¢, x,),

. i
(4) Ut(t’ xs) = Eus(t’ xs) = _Ies(xs_ys)f(t!v ys)dys’
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IU* ()l o < Clle* @Iz 11 (e)llg ~*
Jor all 1 €£qg<3/2<p<oo with A=(1/g—-2/3)/(1/9—1/p);
IE* (O = < Clle*@)l5 lle* (g~
Jor all 1 £q<3<p< oo with A=(1/9-1/3)/1/9—1/p);
1Tl < CIF @G Ol
Jor all 1 <q <3 <p< oo with A=(1/q—1/3)/(1/q—1/p).
Furthermore, U¢(t)e CZ(R*) and, if ¢ =0,
(5) 4, U°@, x) = —4ny®(t, x,).
Proof. All this can be found in [6] and [7].

Remark. (5) is Poisson’s equation. Therefore some authors call P° the
initial value problem for the Vlasov-Poisson system.

(1.6) LEMMA. Assume 0<a < B, YyeL,(R%, ¥y =0, J:= [|x [y (x)dx
< oo. Let

Wp(x):= [Ix)P ¥ (x)dx,, xR
Then yze L, (R?) with r =(3+a)/(3+ ) and

Wll, < Clwll T
Proof. Analogous to [8, (5.5)].

Remark. The lemma shows that the r-norms of ¢°(t) and j°(f) can be
estimated by large velocities |x,|. This is a typical result.

(1.7) Lemma (Sobolev’s inequality). Let r,ge]l, o[, 1[0, M[, r"!
—q '+AM =1, fi(z)=I|zl"* for zeR™, ocL,(RM). Then we have
o fie L,(R™) and

llo * fillg < Cliell,.
(* denotes convolution.)
Proof: [12, p. 31, Example 3].
(1.8) LEMMA. Assume that ceL_(R?, 6 =0, ac]3, 6] and

J:=[lz*0(2)dz < .

Let Be 13, af such that 28 <3+a and let y:= (3+a—p)/p > 1. Then we have
for all weR?

o(z)
w—2z|

dz < Ciw|™ " |la||} e JVE.

f
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Proof. We note that B’a/ﬁ <3 and f'(2+a/p) > 3. Thus
a/f
j'w z|2 j | I Ialﬂ IZ[ U(Z)dz

d 118"
s (j |w— zlzﬂz' Izlﬂ'a/ﬂ) (f |2* (e (Z))ﬁl dz)l“ﬂ

= Ciwl *(flz* (0 (2)) dz)"” < Clwl ™ [loll %y 110 J 172,

§ 2. Global existence and a priori estimates

We start with a collection of estimates that do not depend on e.

(2.1) THEOREM. Assume that @ is a solution of P* on I. Then we have for
all tel

@ 2Ol =llell, f1<p<
(i) lle* @y = lle* (O, = lloll, -
(i) flxJ P (t, )dx< K if0<a<2
(iv) [Ix]*®*(t, )dx < K(1+1)' if 0<a<
W) @, <K if 1<p<5/s.
v IO, <K if 1<p<5/4
(vit) |IE*(0)Il, < K if 3/2 <p < 15/4.
(viii) U, <K if 3 <p<g .
(ix) 10, <K if 3/2<p<15/T.
Proof. (i) is obvious since P*(t) = ¢ 0 X*(0, r) and X*(0, t) is measure-
preserving.
(1) follows from (1).
(iii} is proved fora =2 in [8,(5.8)] and fora =0 in(il). For 0 <a < 2 it
follows from Hdlder’s inequality.
(iv) for a = O follows from (ii). We will show it for a = 2, for general « it
then follows from Hdolder’s inequality. We use this opportunity to present an
important method of proof with more detail. In order to compute the

derivative of jlxslzd?‘ (¢, x)dx we use Theorem (1.3,ii-iv) and the differential
equation (2):

d 2 - i 2 £
Ejlxsl & (t, x)dx = i [IEX o (X*(0, t, x))dx

= %leﬁ(t, 0, x)|* p(x)dx = [2X:(z, 0, x) X:(t, 0, x) @ (x)dx

= [2x, x, ®°(t, x)dx.
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We will take this kind of computation for granted from now on. A rigorous

justification of the differentiation under the integral sign can be found in [8].
Thus we have

%(flxslzdf(z, x)dx)"? = {x, x, @ (2, x)dx/(fIx)> 8 (t, x)dx)""*

< (fIx )2 (¢, x)dx)* <K
by Cauchy-Schwarz and (iit) and thus
[lxJ? @ (¢, x)dx < K(1+1)%.

(v) and (vi) follow from (i1), (1ii) and Lemma (1.6).
(vii), (viti) for p < oo and (ix) follow from (v), equation (4) and Sobolev’s
inequality. (viii} for p = oo [ollows from (v) and (1.5,iv).

We have mentioned in § 1 why we need estimates for high velocities.
The obvious estimate is the following:

IX2(t, 0, x)| —|x.|| < |X%(2, 0, X)—x,|
1 t
=|[E*(r, X,(r, 0, x))dr| < JIIE*(D)ll 0 d1.
0 0

Less obvious but very helpful is the next resuit:

(2.2) LEMMA. Assume that ge L, (R), g =0, I < R is an interval and that
f: I — R is twice continuously differentiable with

I/ < g(f @)

Jor almost all tel. Then we have for all t,, t;ecl

1 ()= £ ()] < 2 |glli".
Proof: [8, (6.9)].
We are now ready for our main theorem, which gives necessary and
sufficient conditions for the existence of a solution of P° on an interval I. We

formulate everything for compact intervals I. If I, is not compact, a solution
exists on I, if and only if it exists on every compact subinterval.

(2.3) THEOREM. Assume that I is the interval [0, T] with some T > 0.
Then the following statements are equivalent:
(0) There exists a solution of P° on 1.
(i) supfy(t) < oo.
(1) sup||E*(t)]| o < 00.
(1) sup ||[E*(t)l|e < co.
(iv) supllg* (o < o0.
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(v) suplig*()llz < 0.
(vi) sup [|x,]> *(t, x}dx < 0.
(vii) sup [|x|*P*(t, x)dx < © for some a > 3.
(viii) sup||f* (Dl < 0.
(ix) sup|lj*(Dll3/2 < .
(x) supjU* (1)l < 0.
(xi) suplip E*(t) < oo.
(xii) suplip ¢®(t) < oo.
Each supremum is to be taken over all tel, ¢ > 0.

Remark. It is possible to reformulate the theorem in a way that makes
no use of the solutions & with ¢ > 0: Assume that ®° is a solution of P° on
[0, T[. Then a solution exists on [0, T] (and, as we can then solve the initial
value problem at the time T, on some larger interval) if and only if one (and
then each) of the quantities above with ¢ = 0 remains bounded on [0, TT.
The proof would use exactly the same estimates, but we prefer to make use
of the functions &°, which are defined for all ¢+ > 0. Moreover, the functions
@ may be helpful for the numerical solution of P°.

Proof of (2.3). (0) =>(i1) «=>(1v) 1s proved in [7].
(i) = (3):
S5 (r) = sup {IX¢(t, 0, x)|—|x,]

; xeR%,0< <1}
i

< JIE (@)l  dt.
0

(i) = (o) 1s proved in [6].

(i) = (ini): IE*()lle < HECONZ2NE (0I5 In combination with (2.1,vii)
this proves the result.
(iii) = (vi):

L 5l 96, x)dx = (3105, B, x) 806, )dx
< 3JIE(r, x () 1x.)? (1, x)dx,)dx,
< 3NEOlle ([ (f1x.12 1, x)dx,)”* dx,)™

< K(fIx? o (t, x)dx)™

by Lemma (1.6). The result now follows from Gronwall's lemma (cf. {7, (2.7)]).
(vi) =(v) follows from Lemma (1.6).
(v)=(1): From Proposition (1.5,iv) we know that

IE* (Il < Clle" (N7 lle* I < K (1+ £3(2)).



GLOBAL SOLUTIONS OF VLASOV'S EQUATION 151

Thus we get

L0 < JIE@lodr < K [(1+ fE())dr
0 0

and with the help of Gronwall’s lemma we find a bound for f.
(1) = (vii): We first note that supj'lx,,r'(b‘(t, x)dx < ao. This follows
from

j—‘ﬂxvl“ﬂ(t, x)dx = fa|x|*”2x, E*(t, x)) € (t, x)dx

Sl E (Ol fIxJ €52, X)dx < K (fIx ) @2(, x)dx)' "

and Gronwall's lemma. And thus
& e (¢, 0dx = falxl~2xx, (0, )dx < Jabol x #(t, x)dx

S K(flxf @ (t, x)dx)' ™"

and again by Gronwall’'s lemma the result follows.
(vi)) = (i): We have two estimates for |E®(t, x,)|.
First estimate (which makes no use of (vii)):

IE (O] o < Nl OISt N < K (1+ (@)

as follows from (1.5, 1i, iv) and (2.1, V).
Second estimate: W.lo.g. we assume a < 6. (If « > 6, then (vii) is also
satisfied for & = 6.) Take fe]3, af such that

(6) 78 < 15+ 2a.
This implies 28 < 3+a and therefore we get from Lemma (1.8)
E*(t, x)| < K x| e @Il Y < K x| 7 (1+ £ (0)> ™™

with y =(3+a—pB)/B.
Now take any fixed ¢ >0 and let F:=£/(T)=sup {ff(t); 0<t < T}
Then our estimates imply

|E* (2, x)| < g(Ix])

with g (r):= Kmin {1+ F)*3, |r|7"(1+F)*~%#}, reR.
For fixed xe R® and fixed ie |1, 2, 3} we let f () : = X:(¢, 0, x). Then we get

£ (01 = |E; (¢, X2t 0, )| < g(1XE(e, 0, X)) < g{f (1)
Lemma (2.2) now implies

@O —f O = X2, (£, 0, »—x,| < Cliglli’?
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and therefore
F < Cligll{* = K(1+F)*

with k:= (3+4a+p)/(18+6a—68) < 1 (because of (6)). This shows that there
exists a bound for F that does not depend on &.

(1) == (viii) follows from (1.5, iii).
(viii)) = (ix) follows from (2.1, vi) and Hd&lder’s inequality.
(ix) = (1): Using (1.5, iii, iv) and (2.1, vi, viii) we get for all tel

NU* (M. < CINFONREIE O
<

K|FOIL < K1+ £@)
and

U (0l < K.
Furthermore, it is easily shown by differentiation that for all tel, xe R®
) 1X(, 0, x)i*~|x,?

[}
= 2(U*(0, x)=U*(t, X:(t, 0, x))+ [ U*(x, X:(z, O, x))dx).
0
This shows that

fe()? = sup {|X2(z, 0, x)| —Ix[*; xeR®, 0< <1}

< sup {[IX%(r, 0, x)|2~|x/?*|; xeR%, 0< 1 <1}
!

<K(1+[(1+ @) dr).
0

With Gronwall's lemma we now get a bound for fy(t) that does not depend
on ¢&.
(viii) = (x) follows from (1.5, iv) and (2.1, vi).
" (x) = (1) can be shown by an argument similar to, but easier than, the
implication (ix) = (i): The right-hand side of (7) is bounded uniformly in e&.
(0) = (xi) is shown in [7].
(xi) = (ii) follows from [9, (2.2)] and (2.1, ).
(if) = (xi1) is shown in [7].
(xii) = (iv): It is easy to show that every oeLip(RM)nL,(R,) is
bounded. In fact |lo]|, < Cllo||i™* V(lipo)/™* V. Therefore (2.1, ii) and
(xii) yield (iv).

Concluding remark. Let us assume that there exists a function ¢ C! (R®)
such that the initial value problem P° has no global solution. Then we have
a local solution #° on an interval [0, T[ that cannot be continued to a
(strong) solution on [0, T]. What can we say about this elusive object &%
Its support is unbounded in velocity space (cf. (2.3, vi)) and position space (cf.
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(2.3, vii)), but there are not too many high positions and velocities (cf. (2.1, iii,

iv)).

It cannot have rotational symmetry (cf. [8]). It cannot be too small (cf.

[2]). It can be continued to a weak solution on [0, T7] (cf. [9], note that the
unique strong solution on [0, T[ and the not necessarily unique weak
solution constructed in [9] coincide). The potential U* remains bounded (cf.
(2.1, viii)), but its derivatives —E* and U*® do not (cf. (2.3, ii, x)).
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