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0. Introduction

Consider an eigenvalue problem of the form
(0.1) Bu = Adwu,

where A, B are linear transformations of a (complex) vector space V
into & vector space W. Assume that there exists a sesquilincar functional
(or pairing) o on ¥V x W which separates the points of W and that 4
and B are symmetric with respect to this pairing:

o(u, Av) = o(v, Au), o(w,Bv) = o(v, Bu).

A and B then define real quadratic forms W(u) = o(v, Au), B(u)
= o(u, Bu) on V. If U is positive definite and B is semi-hounded above
with respect to 9, then we may, in many applications, replace the problem
of finding the eigenvalues in (0.1) by that of finding the stationary values
of the Rayleigh quotient B (u)/%(«). This variational formulation of the
eigenvalue problem allows one to apply variational techniques to find
approximations to the eigenvalues.

In applications the linear transformations 4 and B are often differ-
ential operators, ¥V and W are spaces of smooth functions, and o is the
L? scalar product. Also, A and B are symmetric (formally self-adjoint),
A is elliptic, and the order of B is less than that of 4.

Our aim in what follows is to give a brief introduction to variational
approximation methods for cigenvalues, including a detailed discussion
of convergence of the approximations. Since these methods are detailed
quite thoroughly in the standard reference texts [1], [8], [13], [14], we
include here neither proofs nor extensive references. Exceptions to this
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policy are the convergence theorems of Sections 4 and 5. These theorems
are not found in the standard texts cited, and we include complete proofs
for them.

A precise definition for the variational eigenvalues of B with respect
to % on V is given in Section 1, and the Monotony Theorems are stated.
These theorems are basic to the general variational method of eigenvalue
approximation deseribed in Section 2, In Section 3 a brief description
of the well-known Rayleigh~Ritz approximation method is given. Section 4
containg a description of the Weinstein method; a convergence theorem
for this method is proved. Section 5 is devoted to the Aronszajn method.
Using a construction due to Weinberger, we are able to deduce conver-
gence theorems for Aronszajn’s method from the convergence theorem
of Section 4. Section 6 is entirely taken up by a counterexample using
Aronszajn’s method. The counterexample shows that certain natural
conditions which imply convergence of the approximations in many
special circumstances are not sufficient to insure convergence in all cases,

Section 7 containg a few concluding remarks.

The reader shounld be warned that terminology and notations in this
field are not completely standardized. We use notations and definitions
similar to those of [1] and [13).

1. Variational eigenvalue problems and the Monotony Theorems

We shall consider, for the remainder of this talk, eigenvalue problems
for pairs U, B of real quadratic forms on vector spaces ¥V which satisty
three hypotheses:

Hyrporabsts 1.1. 9 is positive definite on V; i.e. A(u) > 0 for all
weV, u #0.

HyPoTHESIS 1.2. B is semi-bounded above with respect to 9UA; ie.,
there exists a real constant ¢ such that B{u) << eW(u) for all w eV,

The real quadratic forms %A and B uniquely determine associated
symmetric sesquilinear forms, also denoted by U and B respectively.
By Hypothesis 1.1 %A determines a scalar product on V. Let H be the
Hilbert space completion of ¥V with respect to U; then B determines
a sesquilinear form in H with domain V. If B is closable, then its closure
(also denoted by B) is a closed form with domain D(B) = V, and there
exists an associated self-adjoint operator T in H such that

(1.1) B(u,v) =ATu,v) VYV ueD(T), vedD(B).

(See [9], p. 322, Theorem 2.1.) We agsume
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HyrorHESIS 1.3. The symmetric sesquilinear form B with domain V
is closable in H, and D(T) o V.

It follows from (1.1) that
(1.2) Bw,v) =UTu,v) VunveV.

Given U, B, and V satisfying Hypotheses 1.1, 1.2, and 1.3 we define
the (upper) variational eigenvalues {A;} of B with respect to % on V as
follows:

M =sup{§§$; rueV, u #0},

and, for j =1, 2, ...

where the infimum is taken over all subspaces ¥; # (0) of V with dim V;
< j, and where

B (u)
W(u)

The variational eigenvalues form a decreasing sequence. Let o,(1)
be the essential spectrum of T and 1" = supo,(T). Then ¢ 4, > A, > ...
=1" Let J, =sup{j: 4, >1"}. Then {4:j=1,...,J,} is precisely
the upper point speetrum of 7' i.e., the set of isolated eigenvalueg of T
of finite multiplicity which are greater than 1*. (And each such eigen-
value of 7 will be listed as many times as its multiplicity.)

Corresponding to the sequence {4;: j =1,...,J¢} is an orthonormal
sequence {u;: § = 1,..., Jo} of eigenvectors: T u; = 4u;, j =1,...,J,.
It follows from Hypothesis 1.3 and (1.1) that B(uy;, v) = 4,;U(w,, v) for
all j =1,...,J, and all v € V. Thus, in particular, if % and B originate
from an cigenvalue problem of the form (0.1) as described in the infro-
duction, then a variational eigenvalue 4> I* is an eigenvalue of (0.1)
provided that w,eV.

Variational techniques for eigenvalue approximations are based on
the so-called Monotony Theorems. These theorems, easily proved using
the variational definition for eigenvalues given earlier, show how, in
special situations, eigenvalues correspcnding to different variational
problems may be compared. Specifically, let {/‘Lgl)} be the eigenvalues
of B, with respect to %; on V;, and {2} be the eigenvalues of B, with
respect to A, on V,. (Sce [13].)

MonoTONY THEOREM 1.1. Let V, o Vz, and assume W; = A, and
B, =B, on V,. Then =20 Vj=1,2,. e

Ma(Vy) = sup{ rueV, u #£0, uJ_V,}.

3% — Banach Center t, XIT!
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MoxoToNY TEEOREM 1.2. Let V, = V,, and assume B, > B, and
A <Uy on Voo Then 2V =40 Vj =1,2,... such that either AN >0 or
A >0, -

MoNoTONY THEOREM 1.2°. Let V, = V,, and assume B,>B, and
A = A, on Vyo Then P> Vi=1,2,..

2. General outline of variational approximation techniques

Variational approximation techniques are based on the Monotony Theorems
given in the preceding section and are used to approximate the eigen-
values of a variational eigenvalue problem when the problem is not
explicitly solvable. In the following sections we shall discuss specific
variational methods. In this section we give a general, necessarily vague,
outline of the technique, which is common to all of them.

Suppose one wishes, e.g., to find upper bounds for the first J eigen-
values 4, ..., A; of B with respect to % on V. The first step is to replace
this given problem by another problem, the base problem, defined by
forms Ay, B, on a vector space V,, with eigenvalues {A"}. We assume,
of course, that UA,, B,, and V, satisfy Hypotheses 1.1, 1.2, and 1.3. In
addition, the base problem should satisfy two conditions:

CoNDITION 2.1. One of the Monotony Theorems applies and implies
that A" =2, §=1,...,J.

ConprTION 2.2. The base problem is sufficiently tractable; i.e., the
eigenvalues A9,..., AP are computable, and such other spectral prop-
erties of the base problem ag are needed can be obtained.

The eigenvalue A" is usually not a very good approximation to
Ay 3 =1,...,J. Therefore one introduces intermediate problems using
forms ¥,, B, on a vector space V, and with eigenvalues {A{}., These
problems are so chosen that, in addition to Hypotheses 1.1, 1.2, and 1.3,
the following conditions hold:

ConDITION 2.3. The Monotony Theorems imply that AD > i >...
A=A, =1,

ConNDITION 2.4. Each intermediate problem is, in an appropriate
gense, a finite dimensional perturbation of the base problem [2].

The last condition implies, for each n =1, 2, ..., the existence of
a perturbation determinant M, ({) which is meromorphic for those { e C
with Rel > Iy = supo,(T,). (T, is the self-adjoint operator associated
with the base problem.) Moreover, M, ({) can be explicitly computed if
enough is known about 7T, (see Condition 2.2). The eigenvalues {A}
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are related to the eigenvalues {A"} by Aronszajn’s Rule:
(2.1) My (4) = 0(2)+ my(4),

where m,(A) is the multiplicity of 1 as an eigenvalue of B, with respect
to A, on V,, my(4) is the multiplicity of 1 as an eigenvalue of B, with
respect to A, on ¥4, and o(A) is the order of 1 as a zero or pole of M, ({).
Since my(4) is known and o(4) can be computed, Aronszajn’s Rule enables
one (at least theoretically) to find A{, ..,, A,

Remark 2.1. Other methods can also be used to find the eigenvalues
of the intermediate problems from those of the base problem. See, e.g.,
[4], [6], [156], and the Standard References.

A{" is in general a better approximation to 2, thanis A", j =1, ..., J.
In fact, for each j =1,...,J, {A"} iz a non-increasing sequence. If it
can be shown that li’lznzl}") = J;, then by choosing # sufficiently large

one can obtain as good an upper bound for A, as one wishes.

Analogous techniques can be used to give lower bounds 2}”" for
b, § =1,...,J. For any choice of m, % one therefore has ™ < 1, < 4,
j=1,...,J, and the difference A™— ™ gives an a posteriori error
bound.

3. Lower bounds. The Rayleigil-Ritz method

One of the best known and most used variational approximation methods
is the Rayleigh—~Ritz method. This method is used to obtain lower bounds
and is based on Monotony Theorem 1.1. To find approximations to cigen-
values 4,,...,4; of B with respect to A on ¥V (the given problem) one
chooses a linearly independent sequence {p,} in V and defines ¥, to be
the subspace of V spanned by p,, ..., P,,. The mth intermediate problem
is simply the restriction of the given problem to V,, instead of V. By
Theorem 1.1 the eigenvalues of this problem satisfy 2™ < Ayd=1,...,4d.
If one takes as base problem the restriction of the given problem to the
trivial subspace V, = (0), then Conditions 2.1-2.4 are satistied. However,
the intcrmediate problems are all finite dimensional problems and so can
be solved (at least in theory) without the use of a base problem or of
perturbation theory.

It is well known that if the sequence {p,} is complete in the Hilbert
space completion H of V with respect to %'”, then A™ —4, j =1, ...
Moreover, for special classes of problems arising from elliptic differential
operators, the elements {p,} can be chosen using splines or finite element
methods. For guch special choices a priori error estimates are even avail-
able (3], [7].
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4. Upper bounds. The Weinstein method

In the Weinstein method the given problem involving forms %, B on the
vector space V is replaced by a base problem involving forms %A, %,
on V,, where VooV and A =%y, B =B, on V. Thus by Monotony
Theorem 1.1 the eigenvalues {A{"} of the base problem give upper bounds
for the eigenvalues {4;} of the given problem. Algo, one may consider
the Hilbert space completion H of V with respect to U to be a closed
subspace of the completion H, of V, with respect to A}% Let T, T, be the
self-adjoint operators associated with the forms B, 8B, on H, H, respect-
ively. One agsumes that T' = Q7,@ on H, where ¢ is the orthogonal pro-
jection of H, onto H.

Choose a linearly independent sequence {p,} in the orthogonal com-
plement H' of H in H,;let H,, be the orthogonal complement of span {p,, ...
vrvy Dot in Hy; @, be the orthogonal projection of H, onto H,; and T, he
the restriction of @,7,Q, to H,. It is important to note that D(T)
= S(Tn) NH.

The nth intermediate problem is defined by taking %U,, %8B, to be
the restrictions of %, B, respectively to V, = D(T,) « H,. Monotony
Theorem 1.1 shows that the corresponding variational eigenvalues satisfy

<. <A< <A, j=1,2,...

All four conditions of Section 2 will hold, provided the base problem is
nice enough (see Condition 2.2). The nth perturbation determinant is
the celebrated Weinstein determinant

(4.1) Wa(d) = det {¥%, ((To— )72, )}
{i.e., W,(A) is the determinant of the » X » matrix whose general term is

QIO((TO_A)_IPUp:f)’ ij =1y.00,m).
There remains the question of convergence of the approximations.

Leyma 4.1. Let {x,} be a sequence in D(T,) such that Wy(z,) =1,
@, 0, and Wo(Tox,,x,)>4". Then A <1y = supa,(T,).

Proof. Assume that A’ > I;. Choose 1 such that A'> 1> I} and such
that there are no eigenvalues of T, between 1 and A, Let A= 10> ...
... = AT be those cigenvalues of T, which are > A’. (There may be none,
in which case the neccssary modifications in what follows will be clear.)
Then

-~

A

(£.2) Ty = [ 2dEy(d) = [ 2dBo(A)+ D) AOA( -, u))uy,
N —00 =1
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where Fy(4) is the resolution of the identity corresponding to T,, and
Uy «e-y Uy 18 2 Set of orthonormal eigenvectors corresponding to the
eigenvalues A, ..., A5} of T,. Define ||lz|t = ,(x), © € H,. Then

i M
(43) 1=l = fdnE |t = f ANBo(A)alP + D) 1%o (@, up)l-

=1

M
Since z,—0, therefore linm 2 Wy (x,, %,)]* = 0, and (4.3) implies that
i=1

-~

(4.4) L=1m [ d|Be(A)z.
From (4.2) follows

i
Wo(Toty, @) f A1 By (A)er, | + 21@ Wy (2, 9y)°
=1

)

M
<1 [aiBAadt+ D) A0 [l (z,, ),

i=1

which, together with (4.4) implies

A —thI (Lo, 2,) < A,

a contradiction, The lemma is proved.

LEMMA 4.2. Assume the sequence {p,;} is compleie in HL. If 2; >3,
then LmA® = 1) where 1’ is an eigenvalue of T and A' > A;. Moreover,

let u, be a normalized eigenvector of T, corresponding to the eigenvalue AP,
n =1,2,... Then there exists a subsequence {u,} of {u,} suoh that u, ;= %
where u i8 an eigenvecior of T corresponding to A

Proof. {#%} is a non-increasing sequence such that A > 1, for all
n =0,1,2,... Hence A’ = lim1}) exists, and 4’ > A;. By hypothesis
n

— — q(n). —
”un” - 1) 'u’n E-Hu) Tnun, - ZJ)"’rU n = 1! 25

Since {u,} is a bounded sequence in H,, there exists » e H, and & sub-
sequence {u,} of {u,} such that u ny— - We shall show that « is an eigen-
vector of 17 corresponding to the eigenvalue A,

First, since Q,u, = u,,

m (T ?’”n ’ %1 ) mo(Tnj'“’an u‘ﬂj) l j - ﬂ" ZJ >L}':'
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By Lemma 4.1 therefore » # 0. Second, for each ¥ =1,2,...,
Wy (nyy D) =0 for — my> k.
Thus
Wo(uy D) ‘_"]jm‘lro(%nj:pk) =0, k=1,2,..;
nj

i.e., u € H. Finally, for every veD(T) = SD(Tnj)nH < H,

QI(AI’M’ ‘U) = A’Q[g(u; fu) = ]im}“.(}b)%ﬂ(unj1 'U)
]

= Hm W, (T,
n;

juﬂjlv) = ]i%lQIO(u’njl Tﬂjlu)

= limﬂ[o(uﬂj, Tov) = Wo(u, Tyv) = A(u, Iv).
iy

Thus % e D(T*) = D(T) and Tu = A'%. The lemma is proved.

THEOREM 4.1. Assume {p,} i5 complete in HL, and let A; > 1;. Then
Imi® =4, j =1,...,J. Moreover, for each n = 0,1, ... let u{, ..., u{
n

be an orthonormal set of eigenvectors of T, corresponding to the eigenvalues
AW 20, Then there is a linearly independent set %y, ..., uy of eigen-
vectors of T corresponding 1o Ay, ..., A; and a subsequence {n;} of the non-
neg ative integers such that w\®—u;, j =1, ..., J.

Proof. We proceed by induetion on j =1,...,J:
For j = 1 the theorem follows from Lemma 4.2. Asgume the theorem
true for j = 1,..., k—1, where k< J. By Lemma 4.2 2’ = limA™ is an

eigenvalue of T, and clearly 4,_, > A= 4,. Let 4™, ..., 4 be as
in the statement of the theorem. By the induction hypothesis and Lemma
4.2 there are subsequences u{™—u,, j =1,..., k=1 and wu{m—uy,
where %,, ..., 4;_, are linearly independent eigenvectors of T' correspond-
ing to eigenvalues 4,,...,4,., respectively, and « is an eigenvector
of T corresponding to A'.

There are two possibilities:

1. I 4,_,> 4, then 2 =2, # 4,_,. Then %, = % is orthogonal to
YUyy oo vy Uy_; and therefore w4, ..., u, are linearly independent eigenvectors
corresponding to 4, ..., 4;. Thus the theorem holds for j = & as required.

2. I ' = A;_;, then there is a smallest integer I, 1 <1< k—1, such
that 4 = A,_,. Thus 4_, >4 =4, =... = 4_; =4, and %, ...
oy U1, % are all eigenvectors corresponding to the multiple eigenvalue
4;. We need only show that these ¥ —1 41 vectors are linearly independent.
For then 4; has multiplicity > % —1+41, so that A, = A,_, = A’. We then
may take %, = u and the theorem will be proved.
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By way of contradiction assume that u;, %,,,, ..., %,_;, ¥ are linearly

dependent. Then there are constants a;, a;,, . ak such that 2 la,? =1
k-1
and 2 oyt + % = 0. Forn =1, 2 letmn 2 o ul™, Thenw e D(T,)
j-
c S(TO y HCU “2 2 Iajl = 1 &Ly, — 2 aj -l-ak’u = O, Whlle

k k
o (Lo@py %) = Wo(Tp2,, @,) = 2 }‘gn)lajlz_)'lk-—l Z ]a,[z =M1y > lu*r
i=1 F=I

contradicting Lemma 4.1, The theorem is proved.

Remark 4.1, Lemma 4.1 applies to any self-adjoint operator 7', which
is semi-bounded above. For bounded operators it implies that the essen-
tial numerical range of T, lies to the left of I3. In [11] the notion of essen-
tial numerical range is used to study convergence for approximation
methods based on orthogonal projections converging strongly to the
identity.

5. Upper bounds. Aronszajn’s method

Aronszajn’s method is based on Monotony Theorem 1.2 (or 1.2°). The
given problem, defined by forms %, B on the (infinite dimengional) space
V, is replaced by a base problem using forms %,, B, on V, where %A > A,
and B <B,. Thus

A=A+, B =B,—B,

where U, B’ are positive forms on V.,

Ag usual H, will denote the Hilbert space completion of V with
respect to A?. For convenience we assume that W', B’ have positive
lower bounds on V (see Remark 5.2 however) and that the associated
self-adjoint operators M, N respectively have domains in H, which include
V. Thus

W(u, v) = U (Mu, v), B'(w,v) =N (Nu,v) for u,veV.
We extend U',B’ to closed forms by setting
W, v) =Yg (MPu, M), B'(u,v) = WLp(N"u, N'0)

with domains D(MY?), D(N'?) respectively. (Note that D(MW*), D(N'/?)
are themselves Hilbert spaces with scalar products induced by %«', B’
respectively.)

We further assume that, for sufficiently large k,

ConpITION 5.1, The operator T, — kM —N is self-adjoint in H,.
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Note then that T,— %I —%M —XN is the self-adjoint operator cor-
responding to the form B —iW in H,.

To form the intermediate problems for Aronszajn’s method we choose
two linearly independent sequences {{,} and {y,} in ¥, and combine
them into a single sequence {p,} having {{,} and {w;} as disjoint sub-
sequences. Then for each » =1, 2, ... the finite sequence {p,,...,p,}
is formed using sequences {{, ..., {;} and {y;, ..., ¥}, Where a+b =n,
Let P, be the orthogonal projection of the Hilbert space D (M%) onto
span {f, ..., &} and @, be the orthogonal projection of D(N'?) onto
span {y,, ..., ¥p}. The nth intermediate problem is defined by the forms

Wy (u) = Uy (u) +W (Pgu)y, By(w) = Bo(w) —B'(Qyu)
on V. By Monotony Theorem 1.2
AL <A AL A < AP

for all j such that A, > 0. The conditions of Section 2 will hold provided
Condition 2.2 does. The associated perturbation determinant (the Aron-
szajn determinant) is

(6.1) M,(%)

1
Wo((To"l)‘lMCi- - & MCJ) Wo (Ty— 1)~ ML, Nyp)
= det A

Ql:cv((-Tc)_'}*)dll‘h"’a’ M‘:j) QID((TO—}')—I-N‘Pu_"/’u’ -N'/’ﬁ)

(where 4,j =1, ...,a and a, 8 =1, ..., b).

In order to investigate convergence for Aronszajn’s method we shall
use a slightly modified form of a construction due to Weinberger [13],
Chapter 4.5, which allows one to deduce convergence for .Aronszajn’'s
method from that for Weinstein’s method. Accordingly, choose k > 2¢,
where ¢, is the upper bound of B, with respect to %, on V (see Hy-
pothesis 1.2). Then the self-adjoint operator L = k—T, is positive defi-
nite and continuously invertible, and the form

M(u) = Ay (L), 1w e DL

is closed. Note that D(L'?) is itself a Hilbert space with scalar product

induced by €.
Define the Hilbert space

#y = D(L") xD(M) xD(N'),

with norm determined by the positive definite quadratic form

Gol[uy v, w]) = A(u)+ kA (0) +B'(w), [u, v, w] € #,.
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On #, define the real quadratic form
Do([uy vy w]) = W)~ (u) ~ B’ (w).

It is not difficult to see that 2, is bounded with respeet to %, on »#, and
the associated (bounded) self-adjoint operator S, is defined by

(5.2) So(lu, v, w]) = (L™ ~D)%, 0, —w].
The spectrum of S, is
0(80) = {—1}U {0}u (s = A/(k—2): A& a(Ty)},
and for u ¢ o(S,)
(6.3) (80— pI)'([u, v, w])

-1
- [—I—L(To— uk ) u, — g 3 w].
1+p p+1 p 1+pu
Note in particular that §y([0,2,0]) = 0 for all v e D(M'?), 80 0 € 0, (8,)
and sup o,(8,) = max {0, I;/(k —1U3)}. The variational eigenvalues of 2, with
respect to %, on i, are precisely those u{” = AV/(k—i") with A
> max {0, I3}
Detine

# = {[u, 4, u] € #o: 4 e DIN)AD (M) ND(N')}.

Then  is a closed subspace of #,, and #* is the closure in #, of the
space o = {[—L Y (ML+Ny), k73, y]: L eD(M), peD(N)). Using
Oondition 5.1, one sees that ¥ = {[u, 4, u]: 4 e D(L)ND(M)ND(N)} is
a dense subspace of s. Therefore the variational eigenvalues {u;} of
2, with respect to %, on # are the same as those of 2, with respect to
%, on ¥". But for [u,u,u]e¥ (or v e D(L)ND(M)ND(N))

Do([u, u, u]) 5B (u)

Gol[v, w,u])  KU(w)—B(4)’
80 ‘llr.i = Z.,/(k—li), 'l: == 1, 2, e
We consider the eigenvalue problem for £, with respect to %, on
¥ (or o) as a given problem, and that for 2, with respect to 4, on »#,

as a corresponding base problem. Let ;> max{0, Ij}. Then u;>
sup o, (8,) and so, by Monotony Theorem 1.1,

'l .
K —m>ﬂj= PR Jj=1..4J.

Note also that u{? is known, since A" is.
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We form intermediate problems using Weinstein’s method and the
sequence {#,} in #* defined by
_LTMt,, kY, 01 i py =&,
(B.4) P, = [ . 3 ) . k )
[—L7 " Nyg 0, vl it p, =y,

(Recall the sequence {p,} in V is formed using {{,} and {yz}.) The eigen-
values {u{} of the nth intermediate problem satisfy

W< << <<l <y =100,

and (ses equation (4.1)) can be found from the Weinstein determinant
(8.8) Walp) = det {€o((8o— 1) 7Py, Zj)}ijmr,nne
Moreover, by Theorem 4.1:

THEOREM 5.1. Let 1y > max{0, l;}. If {#.} is complete in H#L, then.

Hmp® =y, § =1,

We use #,(u) to investigate the intermediate eigenvalues {u{M}

From (5.1), (b.3), (6.4), and (5.5) we obtain
Wolu) = ¢, Mp(2),

‘where y = A/(k— 1), a+b = n, and ¢, is a non-zero constant, (The am-
biguity in sign results from a rearrangement of rows and columns in the
matrix defining #,(u).) It follows that uf™ = A /(E—AM), § =1,...,d.
In particular, h’frpny}"’ = u; if and only if lianlj") =i, J=1,..,d.

THBOREM 5.2. Let Ay > max {0, Ij}. If {#,} is complete in "L, then
mim =4, § =1,...,J.
n

CoROLLARY B.1. Let ;> max {0, 1} If {M(Z,)} and {N(y,)} are
complete in Hy, then ImiAM =4, 4 =1, ..., J.
n

Proof. Assume that {M({,)} and {N(y,)} are complete in H,. If
[4, v, w] € #, i8 orthogcnal to every #,, ¥ =1,2, ..., then for every a

(5.6) 0 = %y([u, v, w], [ —L ML, k7L, 0])

= W(w, —L ML)+ (v, L)

= —Wy(u, ML)+ (v, ML) = Wp(v—u, ML),
which implies that v = . Similarly,
{8.7) 0 = &,([u, v, w], [—L "Ny, 0, p,])

= —Wo(u, Nyp) +B’ (w, v;5) = Up{w —u, Nyp)
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for every § implies w = %, Hence [u, v, w] = [%, », 4] with % e D(LY*)n
ND(MEYND(N'P), ie., [u,v,w] e s#. It follows that {#,} is complete
in s+, and the corollary follows from Theorem 5.2

Remark 5.1. The hypothesis of Corollary 5.1 that {¥ ({,)} be complete
in H, may be replaced by the condition:

{a) DLy <« D(MY?)  and  {¢,} is complete in D(M?).

For, under condition (a), equation (5.6) will still imply that v = . Simi-
larly, the hypothesis that {V(y,)} be complete in H, be replaced by:

{b) DILP) e DNY)  and {y,} is complete in DHN).

The condition D(L'?) « D(N'?) will hold automatically if D(N'?)
contains the domain of the form closure of B in H,. Simpler still, it will
hold if N is bounded in H,. In such cases (b) can be replaced by:

(b’) {ws} is complete in D(N'?).

Similar remarks apply to the condition (a). In particular, wher ¥
and %, are equivalent, then %’ will be bounded and (a) can be replaced by:

{a’) {€.} is complete in D(H?).

{See [1].) In general, however, conditions (a’) and (b’) are not sufficient
to insure the conclusions of Corollary 5.1. This fact will be demonstrated
by the example of Section 6.

Remark 5.2. The conclusions of this section can be modified to include
the case that A’y B’ are only positive semi-definite (see [13], Section 4.5).
The necessary modifications are especially easy in case A’ =0 or B’ = 0.
When %’ = 0 the forms B, and B are defined in the same Hilbert space
H, = H, with associated self-adjoint operators T, and T'(—X respectively.
This case is the one considered in [14], Chapter 5.

In this case, also, we may replace the condition ;> max{ij, 0}
in Corollary 5.1 by the simpler condition A, > Ij. To see this we need
only choose d > 0 such that A;+d > 0, and replace the forms By, B by
By +dW,, B+ dN, respectively. (Note that this replacement does not
affect A, or B'.)

Finally, in the case %A’ = 0, compare Corollary 5.1 and condition (b)
©f Remark 5.1 with the results of [1], [6], [10], [12].

6. A counterexample for Aronszajn’s method

In this section we construct an example of Aronszajn’s method with
W =0, 4,>1;, and {y,} complete in D(N"), but with 11'211{"’ # A

Let N be an unbounded, sclf-adjoint positive definite operator in
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a Hilbert space H,, and let & be bounded below by a positive constant d;
ie., (Nz,s) > dlz|* V2 eH,. Let {y;} be a sequence in D(N) such that
span {y;} is a core of N'/* but not of N. Then ([9], problem III. 5.19)
there exists @, € Hy, liz,]l =1, such that (zy, Nys) =0 V= 1,2,...

Choose 4 € #(N) such that |y] =1 and (¥, %) # 0. Then choose
a strictly decreasing sequence {1}")} of positive numbers converging to
zero, with A > (Nz,, 2,)(y, @,)|7% Let T, be a bounded self-adjoint
operator in H, whose (upper) eigenvalues are preciscly the A}")’s and
with T,z, = A{",.

Define guadratic forms associated to T;,, N on V = D(N) by the
formulas

By(2) = (Tyw,2), B'(2) = (Nz,n)

respectively, and let 8 = B,—B’. The self-adjoint operator T associated
to Bis T' =T,—~N, and D(T) =D(N) = V. The operators associated
to B, and B’ are T, and N respectively.

Let {A;} be the sequence of (upper) eigenvalues of 7, and note that
Bz) <Bo()—a <AV —d < 2" ¥V x e V. Hence
(6.1) A< A9,
But also,
(6.2) 2 (Ty,y) = 20|y, 2)]*—(Ny, y) > 0 = supa,(Ty).

Use the eigenvalue problem for B with respect to Wy(+) = -2 on ¥
af a given problem and that for B, with respect to U, on ¥V as a base
problem. Use the sequence {y;} to form intermediate problems following
Aronszajn’s method. We modify the Weinberger construction of Section 5
to take account of the fact that U’ = 0, and find:

Ho = HyxDIN),  Gy([u, w]) = ALlu)+B' (w),

Do([u, w]) = kﬂIo(fu) —ﬁ(u) —B(w), H = {[,u,, w]: % EE(NW)},
and .
# = {[—L7'Ny, y): y eD(N)}.

The nth Weinstein intermediate problem in this case is formed using
therestrictions of 2, and €, to the orthogonal complement 5, of span {#,,...
.y ?,}, where @5 =[—L 'Nyg, ], § =1,...,n Note that

€ ([2oy 01, [—L"'Ny,, Ypl) = — (@, Nyy) = 0 V§=1,2...,
so that [z,,0]es, Vn =1,2,...
On the other hand,

Po([20, 00 _ A
Col[@g, 01) ]c__.,‘]'g‘o) H17y
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50 [y, 0]is an eigenvector of 2, with respect to %, on »#,. In fact, uf" = u{®
and M =40 Vn =1,2,...
We therefore have, in view of (6.1) and (6.2), that limA{® = 10 > 4,
n

Thus the conclusion of Corollary 5.1 fails even though 1, > supo,(T,)
and {y,} is complete in D(N'?) (and in H,).

Remark 6.1. Similar counterexamples can be constructed when
B’ = 0. See, e.g., [6].

7. Concluding remarks

In this infroduction to variational approximation methods we have
considered only three explicit methods. There are, besides these three
most basic methods, numerous extensions, modifications, and refinements.
These other methods are covered in the standard texts [8], [13], [14],
which also include detailed proofs, extensive refcrences, and numerous
examples and applications. The convergence results proved in Sections 4
and 5 can be applied to several of these modified methods (e.g., the Bazley
distinguished choice, the Bazley-Ifox method).
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