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Let A be the exterior algebra of k"* ! and let S be the symmetric algebra of the
dual space (k"*')*. The relations between the derived categories of finitely
generated Z-graded modules over these algebras are studied. It is shown that
A and § are linked by means of some tilting procedure which induces a triangle
equivalence D°(modZ% A) > D®(mod%S).

0. Introduction

Let coh(X) denote the category of coherent sheaves on a projective variety X.
The problem of description of the derived category D®{coh(X)) was intensively
studied in many papers, e.g. [BGG], [Be], [K1], [K2]. The description is
usually given by a triangle equivalence D®(coh(X)) = D*(mod 4), where mod 4
is the category of left finitely generated modules over a certain finite-
dimensional k-algebra A associated with X of finite global dimension (see
[Be] and [K2]). Recently D. Baer in [Ba] and D. Vossieck (unpublished)
explained this equivalence [or projective n-space P" using tilting theory.
Interpreting A as the endomorphism ring of some sheaf on P" satisfying tilting
conditions they adopt in their proofs Happel's arguments (see [H]) who
observed that the tilting construction preserves derived categories.

The description given in [BGG] is different from the above one and has
the form mod*A =3 D®(coh(P")), where mod% A denotes the stable category of
finite-dimensional Z-graded left A-modules. This triangle equivalence is defined
as the composition of three triangle equivalences

mod% A = D*(mod% A)/# = D®(modZ%8S)/ # = D®(coh(X)),
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where Z is a thick subcategory of D°(mod% A) consisting of all complexes X~
with all X' projective, mod*S denotes the category of finitely generated
Z-graded S-modules and _# a thick subcategory of D®(mod*S) consisting of all
complexes Y such that all Y* are finite-dimensional. In contrast to the left and
right triangle equivalences the middle one is rather unexpected. Its proof is
done by an explicit construction of functors F: D*(modZ A) — D®(mod#S) and
G: D°(mod%S)— D(mod%A) which are mutually inverse and preserve the
respective subcategories.

A better understanding of the nature of interrelations between D®(mod? A)
and D°(mod?S) and an explanation of the middle triangle equivalence in the
context of tilting theory are the main aims of this paper.

The main results of this paper were obtained in the autumn of 1986 during
my stay at Universitdt-Gesamthochschule Paderborn. They were presented at
the DFG Meeting “Darstellungstheorie” in January 1987 in Bad Honnef,
where also Schofield announced related results obtained by J. Rickard (see
[R]). Rickard’s tilting complex is more general then our tilting subcategory but
his proofs seem to be much more complicated than ours. The tilting procedure
we need to use in the explanation requires an extra property (o) (see'Section 1)
which reflects the fact that we deal with directed categories and this observably
simplifies the situation.

An explanation of the above triangle equivalence is also discussed in [Bu].

I would like to thank Universitit-Gesamthochschule Paderborn for the
hospitality during my stay there. In particular, I wish to express my deep
gratitude to Helmut Lenzing and his colleagues for fruitful collaboration,
which considerably influenced my work on this and related problems.

1. Preliminaries

Throughout this paper k will denote a fixed algebraically closed field. By
a k-category we mean an additive category R whose morphism sets R(x, y) are
endowed with a k-vector space structure such that the composition of maps is
k-bilinear. An R-module is a k-linear covariant functor from R to the category
of vector spaces over k. An R-module M is finitely generated (finite-dimen-
sional) if M is an epimorphic image of a finite direct sum of representable
functors {resp. ) ..z dim, M (x) is finite). We denote by ModR the category of all
R-modules, and by modR (resp. mod,, R) the full subcategory of Mod R formed
by all finitely generated (resp. finite-dimensional) R-modules. We denote by
proj R and inj R the full subcategory of all projective and injective modules in
mod R respectively. Following [BG], R is locally finite (resp. locally bounded) if
R is a k-category satisfying the following conditions:

(a) For each xe R the endomorphism algebra R(x, x) is local.
(b) Distinct objects are nonisomorphic.
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(c) dim, R(x,y)< oo for any two objects x,yeR (resp.
Y yerdim, R(x, y) < o0 and ) ,.gdim,R(y, x) < co for any zeR).

Observe that if R is locally finite the usual k-duality yields an equivalence
injR°® 3 (projR)?, and if R 1is locally bounded then modR = mod,R.

For any Z-graded k-algebra 4 = @,z 4, we denote by Mod% A (resp.
modZ A, mod% A) the category of Z-graded (resp. finitely generated Z-graded,
finite-dimensional Z-graded) 4-modules with homomorphisms of degree 0 and
we identify it with ModA (resp. mod A, mod,A), where A is the cover
k-category associated to the Z-grading of A, with obA = Z, A(m, n) = A, _,,
and composition given by multiplication in A. The equivalence ModA
~ModZ%A4 is given by the map M @ ,.z M(n), where M e Mod A. Observe
that if 4, is a local ring and dim, 4 < oo (resp. dim, 4,, < oo for each meN)
then the k-category A is locally bounded (resp. locally finite).

If o7 is an additive category then a complex X' = (X', di-);.z Over o is
a collection of objects X' and morphisms di-: X' — X**1 such that d%"'d = 0.
A morphism [ = (f9,z: X" — Y" of complexes is a collection of morphisms /'
X'— Y'such that fi*1d% = di- f'. A complex X" is bounded below (resp. above)
if X'=0 for all but finitely many i <0 (resp. i > 0). It is bounded if it is
bounded below and above. Denote by C(#) the category of all complexes and
their morphisms, and by C* (&) (resp. C~ (&), C®(«¢)) the full subcategory of
C(«) of complexes bounded below (resp. above, bounded). The category
&/ will always be identified with the full subcategory of stalk complexes in
C(=#) consisting of all X* such that X' = 0 for each i # 0. The shift functor
T: C(#)—>C(«) is defined by (TX')=X"*"', (dry)=—(d%?!) and
(Tf'Y =f**'. The mapping cone C,. of the morphism f*: X" — Y* is the complex
C, = ((TX)Y@Y", d,)icz with the differential

—diFt 0\ o .
(f.‘+1 d'}-): XIH@YI—’Xﬁz@YHI-

The mapping cone construction is functorial in the sense that for any f}:
X, -»Y,f5:X5-735,497: X1—- X5 and g5: Y- Y5 such that g5 | =f5g) we
have the morphism Ci.g: Cri »Cry given by the maps ¢i" !@g5. Given
X e C* (o) we define a complex X" by X" = X\, dy-=ds ifi>nand X' =0
for i < n, where n is minimal with X" % 0. Analogously we define /" for
a morphism f*: X' Y" if n is common for X and Y~

If «7 is a full subcategory of an abelian category then the cohomology
H(X") is defined for any ieZ and X eC(&/). A morphism f: X" Y" is
a quasi-isomorphism if the induced cohomology morphisms H(f"):
H(X")— H(Y") are isomorphisms for all ie Z. Denote by K(#) (resp. K* (=),
K~ (#), K®(«)) the factor categories of C(%) (resp. C* (&), C~ (), C*())
modulo the homotopy relation, and in case &/ is abelian by D(«f) (resp.
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D (o#), D™ (), D°(s#)) the respective derived categories, which arise from
K(#) (resp. K* (), K™ (), K*(«/)) by localization with respect to the
multiplicative system of all quasi-isomorphisms. All these categories carry the
structure of triangulated category (see [Ha], [V]), where the translation functor
is given by T, and the triangulation by the set of triangles consisting of all
sextuples isomorphic to those of the form XL Y'—»C,.—TX", for any
[ eC(HA).

We say that a functor of triangulated categories F: € - %' is exact if it
commutes up to isomorphism with the translation functor and sends triangles
to triangles. If moreover F is an equivalence then we call F a triangle
equivalence. The smallest triangulated subcategory of ¥ containing a given
subcategory % of € will always be denoted by (#%).

The categories D°(«Z), D* (), D™ (&) can be identified with full sub-
categories of D(&/) defined by an obvious condition expressed in terms of
vanishing of the respective cohomologies. By the canonical functor
C()— K(«)— D(sf), the category .« is equivalent to the subcategory of all
complexes X " such that H(X") = 0 for all i # 0. For any X, Ye.&/ we have

. e ExtT (X, Y) if m>=0,
D)X, T"Y) = {0 otherwise,
and the composition is given by the Yoneda product (see [Ha]). If .« has
enough Injective (resp. projective) objects then the canonical functor
K*(injsf)— D" (of) (resp. K™ (proj=f)— D~ (/) is a triangle equivalence. If in
addition gldims/ < o0 then there exists a triangle equivalence
K®(inj.«/) S D®(/) (resp. K®(proj./)= D°(.«7)). Now for any full subcategory
&, of o closed under extensions, we denote by D, (.7} the [ull subcategory of
D(s#) consisting of all X* such that H'(X")e s/, for all ieZ. For the basic
properties of triangulated categories we refer to [Ha] and [V].

2. Tilting subcategories

Let % be an additive subcategory of D(«/}. We are going to find a sufficient
condition on % in order that the embedding % — D(.</) has an extension to an
exact tunctor K°(#)— D(«/). Note that the case % < & is obvious.

LEMMA 1. Let & and % be additive categories and let F: % — D(s/) be an
additive functor. Then there exists a functor F: C?(#)— C(«¢) commuting up to
isomorphism with the shift functors and with the cone construction, such that
F|#=F.

Proof. We extend F first to CS%(#) = limCl™"® and next to C®(%)

ieN
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= limC <!, where C!" "% consists of all B" such that B = Ofor ¢t > 0 and t < —i,
ieN

and CS' = T~/(C> ().

Step 1°. In order to define a functor F': C=°(#)— C(s/) together with an
isomorphism w: FTSTF we  construct  inductively functors
F: CU7"95(C(of) together with natural isomorphisms of functors
n: TF,-{SF,T, ieN, such that F;, (|C'"" = F,, 5,,{|Cl""% = 4, and the
cones are preserved. If i = 0 then we set F, = F. Assume that for some n, F, and
n, are constructed in such a way that all properties required are satisfied. In
order to define F,,; and #;,,; we denote by ug,: T"(B~"*!") > B' for each
B e Cl-*+* 101 the morphism in C!"™% defined by dg"*"!. Now let
B eCl~®* 101 then we set

F(B) if B~"*D =0,
Craug)  Otherwise

Fn'.tl(B-) = {

{because B"~ C, ). For any morphism f*: B}— B, we put

. -1
Fov1(f) = egy 0C(r,rn(r- s ) F s n©OChys

where the map eg.: F,,(B)— Cf u,., denotes the canonical isomorphism for
each B e Cl~"* 1.9 The construction of #,., is obvious from the inductive
definition of F,.

Step 2°. In order to define F we construct functors F': CS— C(«/) and
isomorphisms of functors #': TF' S F'~' T, ie N, preserving the cone construc-
tion and such that Fi'*!|CS = Fland #'*!{C~" = n'. We set F® = F. Assume
that F" and #" are defined for some n; then we define F**! and #"*! as follows.
Given B'eC*"*! we put

F(B) if Bt =0,
T 'F"T(B) otherwise,

n+1 if Bn+ 1 _ 0
n+1 B- — 7] 1 3
e (B) {id otherwise.

Fn+l(B-) — {

For any map f*: Bi— B in C¥""! we set F"*1(f}y = T 'F"T(f"). The func-
tor F = limF" has the required properties. The uniqueness follows immediately

neN

from the construction.

Remark 1. (1) Note that we can quite easily recover from the inductive
construction above an explicit formula for F. H BeC%%) then
F(B)= A;eC(«) and F(dy)=f;: A;—>Aj,,€C?#) for each ieN. Our
functor F is isomorphic to a functor F: C®(#)— C(o/) defined by setting
F(B) = (A", d4)nez, Where A" = @247 7" and d%.: iz A7 > Dz A7
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is given by a matrix (v;;);;.z With entries

(-lidw' ifi=1,
Ul.i= f:'I_l if i=1_1,
0 otherwise.

Observe that the functor F attaches to any complex B e C%(#) the total
complex of the bicomplex (F(B), F(d3))icz-

{(i1) If o/ has infinite direct sums then F can be extended to C(%).

(i) The functor F induces an exact functor F: K®(#)— K(%).

(iv) Let F,, F,: # - C(%) be two additive functors. If a: F|#,— F,| %,
is a natural transformation of functors for some full subcategory 4, of 4 such
that add(#) ~ # then there exists a natural transformation f: F, > F, such
that 8|4, = . Moreover, if F,, F,: K®(#) - K (/) are exact functors induced
by F, and F, then B: F, » F, is an isomorphism of functors provided so is
a: F,|#B,—-F,|4%,. The last statement follows from the existence of a long
exact sequence induced by the mapping cone.

COROLLARY 1. Let % be a full additive subcategory of D(sf), where </ is an
abelian category. If there exists a full subcategory 7 of C(«f) such that
the canonical functor n: C(of)— D(«) induces an equivalence of % with
the full subcategory 9% of D(s£) consisting of all objects isomorphic to those in ¥,
then the embedding J:. U — D(w/) can be extended to an exact functor
J: Kb%) ~ K*(B)— D(«A).

Remark 2. Let % = D™ (modR) ~ K™ (projR) and # < C™ (projR) be
additive categories such that n(#) < % and the restriction n|%#: Z—>% is
dense, where R is a k-category. Then |4 is an equivalence iff there is no
nonzero morphism in # homotopic to 0. An analogous fact holds for
% < D* (modR) and # = C*(injR), where R is a locally bounded k-category.

DEerFINITION. Let &7, be a full abelian subcategory of an abelian category
&/, closed under extensions. A full subcategory % consisting of indecomposable
objects of D,() is called an o/ ,-almost tilting subcategory if the following
conditions are satisfied:

(o) There exists a full subcategory # of C(&/) such that the canonical
functor n: C(«/) — D(«/) induces an equivalence of 4 with the full subcategory
4 of D(«/) consisting of all objects isomorphic to those in %.

(1) D(ANX", T"Y) =0 for any objects X°, Y'e# and 0 # neZ.

(2) <) = D3(#).

9 is called an & -tilting subcategory if % is an of y-almost tilting subcategory

and gl.dim mod%°® < oo. If o/, = & we simply call' % an almost tilting (resp.
a tilting) subcategory.

Remark 3. The category formed by all indecomposable direct summands of
a tilting object in the sense of [Ba] is obviously a tilting subcategory.
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The following simple fact observed by Beilinson in [Be] will be used.

LEMMA 2. Let F: € — 2 be an exact functor of triangulated categories and
let & be a set of objects in €. If F induces an isomorphism @ ,.,€(X, T"Y)
SPFX,T"FY) for any X, YeZ then F induces a triangle equivalence
(XYSLFD.

THEOREM 1. Let % be an  4-almost tilting subcategory of D (), where o ,
is a full abelian subcategory of an abelian category o/, closed under extensions.
Then the embedding J: % — D (s¢) induces a triangle equivalence K®(%) =3 D§().
In case % is a tilting subcategory, J induces a triangle equivalence
DP(mod %°P) =3 D® ().

Proof. Let % be an ./ ,-almost tilting subcategory. It follows from (o) that
add(%) and add(%) satisfy the assumption of Corollary 1. Then one can extend
the embedding J,: add(#) — D(</) to an exact functor J,: K*(add(%)) - D(/)
and we conclude from Lemma 2 that K"(proj#°?) ~ K"(add(%))— D§(=) is
a tnangle equivalence. Moreover, if gl.dimmod%°® < v then
D?(mod#°P) =~ K®(proj%°?) and the theorem is proved.

3. The main results

Let A = A(k"* 1) = @ AP (resp. § = S((k"*")*) = @ ,nSP) be the exterior
(resp. symmetric) algebra of the vector space X"*! with the standard basis
€1, ... en+q (resp. (k"*1)* with the standard dual basis x,, ...,x,+,) and let
A (resp. S) be its cover category. Note that dim, 4 is finite. For each me Z we
denote by A, the indecomposable projective A-module A(m, —), by E,, the
simple A-module corresponding to Ay, and by A%, the injective hull A(—, m)*
of E,,. Analogously we denote by S, the indecomposable projective S-module
S(m, —) and by E,, the corresponding simple module.

Let %3 (resp. %3) be the full subcategory of D(mod A) (resp. D(mod $))

consisting of all complexes T"E _ (resp. T"E,), meZ.

ProposITION 1. If A, S, %3, %s are as above, there exist equivalences of
categories:

i) S u;,
(i) A>us5.
For the proof we construct some nice injective (resp. projective) resolu-

tions for all E, (resp. E}), pe Z, by using the Koszul complex for the sequence
XysoersXnt1ES

Ki 054" ®85>... o A4'®S>41°®5 -0
whose differentials are determined by the maps

d,; A"QS' > A '®S'*, teN, 1<r<n+1,
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given by the formula
de,n...ne®s)= ) (—1)7"'e A A A...NE RS X,
=1

for any s€S§' and any sequence 1 <i,,...,i, < n+1. Recall that K induces
exact sequences

K;: 04" @8° A7 18! > ... 5 A°®S5'-»0, =1,

Now consider the operator d = Y 72! (A ¢)®( x;)€ End(A*®, S), where
A* is the dual bimodule Hom,(,4,, k). It is an endomorphism of 1*®,S as
a left A-module as well as a left S-module. Moreover, d preserves gradings.
Consequently, d induces morphisms

(Ar)*®S(m)_’(Ar_l)*®S(m—1)
in mod$ and morphisms
Ay @S = A @S5
in mod A for all r, te N, me Z. Since d* = 0, for each me Z we construct from
the morphisms above a complex I, e C*(injA), where
- Af - y®S  if t =0,
0 if t <0,

and a complex P,eCP(projS), where
pr {(A")*@S(m_,) H0=r=—(n+1),
"o otherwise.
LEMMA 3. For each meZ:
(i) I, is an injective resolution of E, in mod/T;
(i) P;, is a projective resolution of E, in modS.

Proof. It is enough to show that the nontrivial component complexes
P,,(d) over objects d > m (resp. I,,(d) over objects d < m) are exact. Observe
that P, (d) = K,_,, for d > m (resp. I, (d) = K,,—, for d < m), where K, for each
[ > 1 denotes the complex

0 (A)*®S0 &0, (I~ @St 2oy Aty (AO* R S! 0.

For each reN denote by w,: A"—(A")* the vector space isomorphism
determined by bijection of the bases. It is not difficult to see that for all r, re N,

d,,o(w,®idg) = (W, ®idg..)od,,.

Thus for each /> 1 the maps w,®idg, r+t =/, define an isomorphism of
complexes K, K,. Consequently, all complexes K, | > 1, are exact and we
are done.
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LEMMA 4. For all m, meZ and r, te N we have

. S™Tm i t=m—m,
) Extt(Ey, Ey) ~ fL=n
0 otherwise.
Am’—m : ’_ =,
(i EXt§(Ep. Ey) ~ Jom'—m=r
0 otherwise.

Proof. (i) In order to calculate the groups Ext4(E,, E, ) for given m, m' e Z
we apply the functor Homjy(E,, —) to the injective resolution I, . of E, .. Since
for each te N we have an isomorphism

S fm=m—1,
Hom3(E,, /1(*,,,'_,,®S[) ~ Homjy(E,, AE':,,'_,,)®S' = .
0 otherwise,
(1) follows.

(i) Analogously, we calculate the groups Exts(E,,, E,,) for given m, m' e Z
by applying the functor Homs(—, E;-) to the projective resolution
P; of E,,. Since for any reN we have an isomorphism

A f m+r=m,

H AT)* E,)~(A)**®H En) ~
Omg(( ) ®S(m+r)9 m) ( ) ® OmS(S(M+')’ "") {0 Otherwise’

(i1) follows.

LEMMA 5. (i) The isomorphisms ty,,,,: Ext? "™E,_, E )~S""™ m<m,
identify the Yoneda product with the multiplication in S.

(ii) The isomorphisms u)y, .. Ext§ ~™(E,, En) ~ A™ ™™ m < wt', identify the
Yoneda product with the multiplication in A.

Proof. We only prove (ii). The proof of (i) is analogous and technically
simpler. Let m, m', m"€eZ, m<m <m", L,eA™ ™™, A,eA™ ™™, and let
Ay = (A €EXtE " ™E., Ey), Ay = tpy p(A,)€ Exty ~™(E,., E,) be the
cocycles corresponding to A4, and 4, (in our case they are uniquely determined).
Consider the following commutative diagram:

(A™" ™% @ S D AN Sy — e (A™ Y @ S
P 7, A, %

(A™ ™) ® Sy - > (AN DSy ——= [AY)* ® S|y ———E L
A2

I
Epn
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where the 4, are the canonical liftings of A, along the standard projective
resolutions, constructed from 4; by use of the homomorphism

A'>Hom, (A, A'*%) ~ Hom,((4’*7)*, (4)*) >~ Homz((A’*)*® S (A)*® S ),

j=m'—m, ieN, which at the first step attaches to 4, the map — A 4,. The
Yoneda product 1,07, e Ext¥ ~™(E,,, E..)is given by the cocycle Z,-1, which
coincides with u,, .(4, A 4)).

Proof of Proposition 1. (1) We define a functor ¢: S—%;. Let meZ be an
object of S; then we set p(m)=T™ E.. Let m, meZ; then the map @:

S(m, m') - U (¢(m), o(m’)) is defined as the composition
S(m, m') ~ S™ ™ ~ Ext? "™(E,, E,,) = D(mod A)(T"E,,, T"E,,.)

if m<m' and S(m, m')=0= D(modA)T™E,, T"E,.) otherwise. Since by
Lemma 5, ¢ preserves the composition, we see that (i) holds.

(i) Analogously, we can extend the mapping m—T_E,, meZ, to an
equivalence y: A %s.

PROPOSITION 2. (i) %5 is a tilting subcategory in D(mod A).
(i) %3 is a mod,S-almost tilting subcategory in D(mod, ).

Proof. Since by Proposition 1 and Lemma 3, gl. dim %°® = n+ 1, we have
to check properties (0), (1) and (2) of the definition.
(0) Let #; denote the full subcategory of C(modA) formed by all
complexes T™I,, meZ. Observe that
A ,®8t ifiz —m
TmI- | (=1 ’
(T"1) {0 otherwise,
for any i, meZ. Since Homj(Af,, Af,) =0 for m < m’, any homotopy
connecting maps of complexes from % is zero and by Remark 2 the canonical
epimorphism

C(mod ANT™I;,, T I.,)

—K(mod A)(T™I;,, T™ I} ~ D(mod A)(T™E,,, T™ E,.)
is an isomorphism for any m, m' € Z. Moreover, the canonical embedding of

complexes E, — I, induces an isomorphism in D(modA) and (o) is satisfied.
(1) Since

ExtZ **"™E _,E,) if m+t>=m,

D(mod A(T"E,,, T" *'E,,) = {0 otherwise

for all m, m’, te Z, by Lemma 4 we have D(mod A)(T™E,,, T**™E, ) = 0 for
t #0 and (1) is proved. _
(2) Observe that (% ;> < D°(mod A) because % ; < D*(mod A). Therefore
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for the proof of (2) it suffices to show that mod A < (). Since E, € (¥ ;) for
each me Z the crucial inclusion follows from the remark below. Consequently,
%5 1s a tilting subcategory.

The proof of (i) is analogous if for A5 we take the full subcategory of all
complexes T"P., meZ.

m?

Remark 4. Let € be a triangulated subcategory of D(.«). If for some A€ .o/
there exists a subobject A’ such that 4" and A” = 4/A’ belong to ¥ then
A belongs to ¥. This follows from the existence of the triangle
T 'A" 545454 where e: 04848 4"-0 is an element of
Extl (4", A= D(«)T 14", 4A).

Now we can construct two compositions of exact functors
®: D*(mod$) ~ K®(proj$) 5 K *(inj A) € K * (mod A)— D* (mod A),
where F is an extension of the composition of functors (see Lemma 1)
F: projS ~ add(§°) ~ add(S) ~ add(#;) ~ add(#;) = C*(inj A),
and
w: K*inj A)S K®(projS) < K*(mod §) —» D*(mod ),
where G is an extension of the composition of functors
G: injA ~ add(A°?) ~ add(A) ~ add(%3) ~ add(®s) = C®(proj$).
Now we are able to prove our main result.
THEOREM 2. The functor @ induces a triangle equivalence
D*(modS)= DP(mod A)
and the functor ¥ induces a triangle equivalence
K"(inj A) = D§(mod¥S).

Moreover, regarding K®(inj A) as a full subcategory of D®(mod A), the restriction
@, of @ to D§(modS) is a quasi-inverse of ¥ and ¢ induces a triangle equivalence

D®(mod §)/D¥(mod §) = D®(mod A)/K®(inj A).

Proof. The fact that @ and ¥ induce the required triangle equivalences
follows from Theorem 1 and Proposition 2. In order to show that &, is
a quasi-inverse of ¥ one need only construct an isomorphism of functors
DY ~ Idgb;a;2)- Since our functors satisfy the assumption of Remark 1(iv) it is
enough to show that the canonical projections FG(A¥,) = F(T "P,)— A¥,,
meZ, in C*(injA) are quasi-isomorphisms. For this, consider the bicomplex
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1 i 1

0_’(A"+ l)*®A(*M7n~ 2](@81 ... _'(Al)*®A(*M*n—2)®S"+l - (AO)*®Azn—n-2j®Sn+2 nd 0
t T 1

0 (A VP@A% - 1y®S® = . > (AP ®AY, - ) ®S" = (AP @A, 1B -0
T i 1
0 : :
1 T

0 > (APRAL ,®S8° = (A)*@ A%, ®S8' -0
1 T

0 - (/10)*®/1(*,")®SO — 0 t—muh row

T
0

mth column

Diagram |

defining F(T ~™P; ) (see Diagram 1), whose horizontal differentials are given by
the operator Z?iol(f\e,.)(@id@(-xi) whereas the vertical ones by
Y120 id®( A e)®( x;). All nonzero rows but the lowest one are exact and all
nonzero columns are exact except in the lowest nonzero place. Consequently,
using the explicit formula for F (see Remark 1(i)) we can show by an
elementary induction “from left to right” that

o (AP @A%,@S°  if i =0,
H{FT P‘"')):{o ” if i # 0.

This finishes the proof.
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