Chapter I. Families of nets on a Riemannian manifold............................................................. 8 1. Family of canonical triangulations of $R^m$...................................................................... 8 2. Non-degeneracy in the case of nets defined by simplicial subdivisions...................... 9 3. Auxiliary lemmas....................................................................................................................... 13 4. Proofs of the auxiliary lemmas............................................................................................... 14 5. Nets defined by successive simplicial and standard geodesic subdivisions............. 18 6. Non-degeneracy in the case of nets defined by standard geodesic subdivisions...... 25
Chapter II. Finite-dimensional approximation of the Laplacian................................................ 44 7. Difference forms on a net........................................................................................................ 44 8. Integration. The Stokes theorem........................................................................................... 48 9. Discrete Laplacians on a Riemannian net. The Hodge theorem................................... 52 10. Orientation and Hodge operators on a Riemannian net................................................ 54 11. Approximation of the operator d........................................................................................... 57 12. Approximation of the operator ∂ and the Laplacian......................................................... 64 13. Convergence of the approximations................................................................................... 70
Institute of Mathematical Methods in Physics, Warsaw University, Poland
Bibliografia
[1] J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), p. 79-104.
[2] J. Komorowski, On a global problem of the discrete and continuous potential theories, in Proc. of the C. Caratheodory Symposium 1973, Greek Math. Soc. 1974, p. 318-327.
[3] J. Komorowski, On finite-dimensional approximations of the exterior differential, codifferential and Laplacian on a Riemannian manifold, Bull. Acad. Polon. Sci. Sér. sci. math., astr. et phys. 23 (1975), p. 999-1005.
[4] J. Komorowski, A minorization of the first positive eigenvalue of the scalar Laplacian on a compact manifold, Diss. Math. 171 (in preparation).
[5] C. W. Misner and J. A. Wheeler, Gravitation, electromagnetism, unquantized charge and mass as properties of curved, empty space, Ann. of Phys. 2 (1957), p. 525-660.
[6] T. Poston, Fuzzy spaces, preprint, Warwick University, 1971.
[7] S. Sternberg, Lectures on differential geometry. Prentice Hall, 1964.
|8] H. Whitney, Geometric integration theory, Princeton University Press, 1957.