RELATIVE COHOMOLOGY AND VOLUME FORMS

J.-P. FRANCOISE

Université de Paris-Sud, Mathématiques, Orsay, France

We consider here the classification of couples (f, ω) , where f is a germ of a function $f: (C^n, 0) \to (C, 0)$, and ω is a germ of an n-form, modulo the group of germs of diffeomorphisms of $(C^n, 0)$.

For this classification, the relative cohomology of f appears to be the essential tool. E. Brieskorn and M. Sebastiani have proved that, in the isolated singularity case, these relative cohomology groups are free $C\{f\}$ -modules of rank μ , the Milnor number of f. In the case where f is quasi-homogeneous, we establish the convergence of an effective algorithm which allows to compute the associated characteristic series.

This paper is a survey about questions which have been investigated previously ($[F_1]$, $[F_2]$, $[F_3]$).

The author expresses his gratitude to S. Denkowska and S. Łojasiewicz for inviting him to participate in the meeting on Singularities in Warsaw.

We will use the following notation:

 \mathcal{O} : the local ring of germs of analytic functions at $0 \in \mathbb{C}^n$.

m: its maximal ideal.

 Ω^k : the \mathcal{O} -module of germs at $0 \in \mathbb{C}^n$ of holomorphic k-forms.

 $Diff_0(n)$: the group of germs of diffeomorphisms tangent to the identity at the order two.

 Γ_P : the orbit of $P \in \mathcal{O}$ under $\text{Diff}_0(n)$.

 $G = \Omega^n/dP \wedge d\Omega^{n-2}$ considered as a $C\{t\}$ -module where t acts by multiplication by P.

 $\Omega_*^n = \{ \omega \in \Omega^n | \omega(0) \neq 0 \}.$

We will call volume forms the elements of Ω_{+}^{n} .

All the coordinate systems are supposed to be holomorphic. By coordinate systems we actually always mean germs of coordinate systems.

1. The case of a Morse function

We assume here that P is a germ of a Morse function, hence there is a holomorphic coordinate system x around $0 \in \mathbb{C}^n$ so that $P = \sum_{i=1}^n x_i^2$. Let Γ_P be the set $\{f \in \mathcal{O} | f \in (P) + m^3\}$.

J. Vey and independently V. Guillemin ([V], [G]) proved the following:

THEOREM 1.1. Given $(f, \omega) \in \Gamma_P \times \Omega_*^n$, there is a system of local coordinates $y = (y_1, \ldots, \hat{y_n})$ such that f is a power series $\psi^*(P)$ where $P = \sum_{i=1}^n y_i^2$ and $\omega = dy_1 \wedge \ldots \wedge dy_n$.

Such a coordinate system is not unique, but the series ψ^* is a characteristic of the couple (f, ω) and can be interpreted geometrically by means of integrals on vanishing cycles of the level hypersurfaces P = t.

Let us observe that in dimension two we get Birkhoff's statement on the local normal form of a quadratic Hamiltonian system in the group of analytic symplectic transformations. We know that such a normal form exists in the formal symplectic category in higher dimensions but a theorem of C. L. Siegel shows its generic divergence ([Si]).

So Theorem 1.1 implies, by contrast, that everything goes well in the volume-preserving case for the classification of generic germs of functions. It can be interpreted in the following way.

Let f be a Morse germ, x a system of coordinates around $0 \in \mathbb{C}^n$, and $\omega = dx_1 \wedge \ldots \wedge dx_n$ the associated volume form. Then there is a coordinate system $y = (y_1, \ldots, y_n)$ so that $f = \psi(\sum_{i=1}^n y_i^2)$ and $dy_1 \wedge \ldots \wedge dy_n = dx_1 \wedge \ldots \wedge dx_n$. Here we will consider another version of this theorem.

THEOREM 1.2 Given $(f, \omega) \in \Gamma_P \times \Omega_*^n$, there is a coordinate system $y = (y_1, \ldots, y_n)$ so that $f = \sum_{i=1}^n y_i^2$ and $\omega = \psi(P) dy_1 \wedge \ldots \wedge dy_n$ where $\psi(t) \in C\{t\}$ is a characteristic of the couple (f, ω) .

Such a theorem is, of course, no longer a statement about normal forms and it must be read in the following way: For each orbit of $\Gamma_P \times \Omega_*^n$ under $\mathrm{Diff}_0(n)$, there is a simple representative (which we call a local model) of the type $(P, \psi(P)dy)$. We will just indicate how Theorem 1.2 is a consequence of Theorem 1.1 since the result can be deduced as a corollary of our general method presented in Section 2.

Proof. $1.1 \Leftrightarrow 1.2$.

Let $(f, \omega) \in \Gamma_P \times \Omega_*^n$. Theorem 1.1 provides us with a local coordinate

system $x = (x_1, ..., x_n)$ so that $f = \psi^*(P) = P + ...$ and $\omega = dx_1 \wedge ... \wedge dx_n$ with $P = \sum_{i=1}^n x_i^2$.

Let us write $\psi^*(P)^{1/2} = P^{1/2} u(P)$ with $u \in C\{t\}$, u(0) = 1. Then we define a new coordinate system by the relations $x_i' = x_i u(P)$. Clearly, in this new coordinate system we have

$$P' = \sum_{i=1}^{n} x_i'^2 = \left(\sum_{i=1}^{n} x_i^2\right) u^2(P) = \psi^*(P) = f.$$

Furthermore, the relations $x_i' = x_i u(P)$ turn into $x_i = x_i' v(P')$ with $v \in C\{t\}$, v(0) = 1. Hence,

 $\omega = dx_1 \wedge \ldots \wedge dx_n = \left[v(P')^n + 2v(P')^{n-1}v'(P')P'\right]dx_1' \wedge \ldots \wedge dx_n',$ and

$$\omega = \psi(P') dx'_1 \wedge \ldots \wedge dx'_n,$$

and we get Theorem 1.2.

Now, conversely, if we have a coordinate system $x' = (x'_1, ..., x'_n)$ so that $f = P' = \sum_{i=1}^{n} x_i'^2$ and $\omega = \psi(P) dx'_1 \wedge ... \wedge dx'_n$, then we solve the differential equation for w:

$$\frac{2}{n}tw'(t)+w(t)=\psi(t).$$

If we fix w(0) = 1, the variation of the constants leads to the following formula:

$$w(t) = t^{-n/2} \int_{0}^{t} \frac{1}{2} n \tau^{(n-2)/2} \psi(\tau) d\tau + 1$$

which is analytic in t.

Then, if we write $v = w^{1/n}$ and $x_i = x_i' v(P')$ in the coordinate system $x = (x_1, \ldots, x_n)$, we conclude that f = P' is a power series in $P = \sum_{i=1}^{n} x_i^2$, and furthermore we have $\omega = dx_1 \wedge \ldots \wedge dx_n$, which is the statement of Theorem 1.1.

2. The general isolated case

In this section, P will denote an element of \mathcal{O} which has an isolated singularity at $0 \in \mathbb{C}^n$. Let us denote by χ the Lie algebra of germs of holomorphic vector fields at $0 \in \mathbb{C}^n$.

We wish to describe the simplest possible local model in each orbit of $\Gamma_P \times \Omega_{\perp}^n$ under the action of Diff₀(n).

Let us consider a couple $(f, \omega) \in \Gamma_P \times \Omega_+^n$. After a first change of local coordinates, we can assume that f = P and write $\omega = a(x) dx$, $a(0) = a \neq 0$. Now in order to find a local model for the couple, we can try to reduce ω to a simple form with a diffeomorphism which preserves the function P.

So we need to understand better the action of I(P), the isotropy subgroup of P for the group $Diff_0(n)$. I am indebted to J. Martinet for the following

PROPOSITION 2.1. Let $\omega \in \Omega_*^n$. The tangent space $T(\omega)$ at ω to the orbit of ω for the group I(P) is $dP \wedge d\Omega^{n-2}$.

Proof. By definition, $T(\omega)$ is the set of Lie derivatives $L_X \omega$, where X is an element of $\mathscr{J}(P) \subset \chi$, the Lie algebra of vector fields which preserve P:

$$T(\omega) = \{L_X \omega \mid X \in \chi, L_X P = 0\}.$$

Let $X \in \mathcal{J}(P)$. Then $dP \wedge i_X \omega = (L_X P) \omega = 0$, and the theorem of De Rham ([D]) implies the existence of $\eta \in \Omega^{n-1}$ such that $i_X \omega = dP \wedge \eta$; and by the formula of H. Cartan, we have

$$L_{\mathbf{x}}\omega = dP \wedge d(-\eta).$$

Conversely, let η be an element of Ω^{n-1} . Since ω is a volume form, there is an element X of χ such that

$$i_X \omega = dP \wedge d(-\eta).$$

Actually $X \in \mathcal{J}(P)$ since we have

$$0 = dP \wedge i_X \omega = (L_X P) \omega,$$

and finally

$$L_{\mathbf{X}}\omega=dP\wedge d\eta.$$

This proposition is not necessary in what follows but we can see from it why the module $G = \Omega^n/dP \wedge d\Omega^{n-1}$ is involved in our problem.

Now we use J. Moser's method for the conjugacy problem of forms ([Mo]).

THEOREM 2.1. Let (ω, ω') be elements of Ω^n_* such that $\omega - \omega' \in dP \wedge d\Omega^{n-2}$. There is a $\varphi \in I(P)$ so that $\varphi^* \omega' = \omega$.

Proof. Let us write $\omega - \omega' = dP \wedge d\eta$ and introduce the path $\omega_i = \omega + t(\omega' - \omega)$, $t \in [0, 1]$.

We look for a path of diffeomorphisms $\varphi_t \in Diff_0(n)$ which satisfies

$$\varphi_t^* \, \omega_t = \omega$$

and comes from the integration of a path of vector fields X_i . The equation (1) implies that

$$\varphi_t^*(L_{X_t}\omega_t+\omega_t)=0,$$

and so

$$(2) L_{X_t}\omega_t=dP\wedge d\eta.$$

Let us then define X_t by

$$i_{X_t}\omega_t=-dP\wedge\eta;$$

such an X_t satisfies (2) and the family of diffeomorphisms φ_t that we get by integration of X_t , fixing $f_0 = \text{Id}$, satisfies (1).

We remind the reader of the fact proved for instance in [To], that we can integrate X_t on a given ball for all t because X_t vanishes at $0 \in C^n$.

Now (3) implies that

$$0 = dP \wedge i_{X_t} \omega_t = (L_{X_t} \cdot P) \omega_t.$$

So $X_t \in \mathcal{J}(P)$ and the φ_t obtained by integration preserve P. We now take $\varphi = \varphi_1$ to prove the result required.

We will use

THEOREM 2.3. ([B], [Se], [Ma₂]). The C $\{t\}$ -module $G = \Omega^n/dP \wedge d\Omega^{n-2}$ is free of rank μ .

After a choice of $\gamma_{\alpha} \in \Omega^{n}$ ($\alpha \in A$, A an appropriate index set so that the classes of γ_{α} modulo $dP \wedge d\Omega^{n-2}$ give a $C\{t\}$ -basis of G), we can prove the following

COROLLARY. Given a couple $(f, \omega) \in \Gamma_P \times \Omega_*^n$, there is a $\varphi \in \text{Diff}_0(n)$ such that $\varphi^* f = P$ and

$$\varphi^* \omega = \sum_{\alpha \in A} \psi_{\alpha}(P) \gamma_{\alpha}$$

where $\psi_{\alpha}(t) \in C\{t\}$.

We now consider the question of the unicity of the functions ψ_{α} of the corollary.

In the following, we use the notations:

 $Diff_0^{\hat{}}(n)$: the group of formal transformations with n variables whose first order jet is the identity;

 $\hat{\chi}(n)$: the Lie algebra of formal vector fields in *n* variables;

 $\hat{\Omega}^k$: the formal completion of Ω^k ;

 \hat{G} : $\hat{\Omega}^{n}/dP \wedge \hat{\Omega}^{n-2}$ regarded as a C[[t]]-module.

An analytic function P is considered as an element of $\widehat{\mathcal{O}}$, the ring of formal power series, through the injection $\mathcal{O} \hookrightarrow \widehat{\mathcal{O}}$.

LEMMA 2.4. Let φ be an element of I(P); φ can be interpolated by a one-parameter group of formal transformations which preserve the function P.

Proof. We want to construct a one-parameter group φ_t contained in Diff₀ (n) such that $\varphi_1 = \varphi$ and $\varphi_i^* P = P$.

We write $\varphi = {\varphi_i; i = 1, ..., n}$, the component functions of φ , and

$$\varphi_i = x_i + \sum_j \sum_{|\beta| = j} \varphi_{i,\beta} x^{\beta},$$

their Taylor developments at $0 \in C^n$. We construct $\varphi_i = \{\varphi_{i,i}; i = 1, ..., n\}$,

$$\varphi_{t,i} = x_i + \sum_j \sum_{|\beta| = j} \varphi_{i,\beta}(t) x^{\beta},$$

as the solutions of the differential equation (cf. [St])

$$\varphi_{l}' = \varphi_{0}' \circ \varphi_{l}$$

with the boundary values $\varphi_0 = \text{Id}$ and $\varphi_1 = \varphi$.

It we assume that the $\varphi_{i,\beta}(t)$ are known by induction up to $|\beta| = j \le k-1$, then we can determine the $\varphi_{i,\beta}(t)$ with $|\beta| = k$. The equation (4) imposes a condition

(5)
$$\varphi'_{i,B}(t) = \varphi'_{i,B}(0) + f_{i,B}(t)$$

where the $f_{i,\beta}(t)$ are known by induction and vanish at 0.

The equation (5) can be integrated to give

$$\varphi_{i,\beta}(t) = \varphi'_{i,\beta}(0) t + \int_{0}^{t} f_{i,\beta}(\tau) d\tau.$$

We can check that $\varphi_{i,\beta}(0) = 0$ and we need to choose $\varphi'_{i,\beta}(0)$ such that

$$\varphi_{i,\theta}(1) = \varphi_{i,\theta}$$

We then observe that the coefficients $\varphi_{i,\beta}(t)$ are polynomials in t, and from the fact that φ_t is an interpolation of φ , $\varphi_t^* P - P = 0$ for all integers t.

If we fix a number k, the homogeneous part of degree k of $\varphi_t^* P - P$ is a polynomial in t which must vanish for all integer values of t and consequently this polynomial must vanish identically. We deduce that $\varphi_t^* P = P$ for all real values of t.

Let us denote by $\hat{X} \in \hat{\chi}$ the formal vector field which generates the group φ_t . From the preceding lemma we deduce that $L_{\hat{X}} \cdot P = 0$. We do not know if φ can be interpolated by an analytic one-parameter group but this has no importance because of the following

THEOREM 2.5. \hat{G} is isomorphic to $G \otimes_{C_{[t]}} C[[t]]$.

This is a theorem of Bloom and Brieskorn who proved it using the Hironaka desingularisation. In [Ma₂], B. Malgrange gave another proof

using the regularity of the Gauss-Manin connection and his theorem on the analytical index.

In the special case where P is quasi-homogeneous, it is a simple consequence of our Section 3.

So if $[\gamma_{\alpha}]$ is a basis of G as a $C\{t\}$ -module, then $[\gamma_{\alpha}]$ is a basis of \widehat{G} as a C[[t]]-module and any $\omega \in \widehat{\Omega}^n$ can be written in a unique way as

(6)
$$\omega = \sum_{\alpha \in A} \hat{\psi}_{\alpha}(P) \gamma_{\alpha} + dP \wedge d\hat{\eta}$$

where $\hat{\psi}_{\alpha} \in C[[t]]$ and $\hat{\eta} \in \hat{\Omega}^{n-2}$.

We can prove

PROPOSITION 2.6. Let $\varphi \in I(P)$ and $\omega \in \Omega^n$. There is an $\eta \in \Omega^{n-2}$ such that

$$\omega - \varphi^* \omega = dP \wedge d\eta$$
.

Proof. We interpolate φ by the one-parameter formal group $\varphi_t = \exp t\hat{X}$ constructed in Lemma 2.4. We get

(7)
$$\omega - \varphi^* \omega = \int_0^1 \frac{d}{dt} \varphi_i^* \omega dt = \int_0^1 \varphi_i^* (L_{\hat{X}} \omega) dt.$$

Since we have $L_X \hat{P} = 0$, we get

$$dP \wedge i_{\hat{X}}\omega = 0,$$

and De Rham's theorem implies that there is a $\hat{\varrho} \in \hat{\Omega}^{n-2}$ such that

$$i_{\hat{X}}\omega = dP \wedge \hat{\varrho}.$$

Now φ_i preserves P, so we have

(8)
$$\omega - \varphi^* \omega = dP \wedge d \left(\int_0^1 \varphi_t^* \, \hat{\varrho} \, dt \right) = dP \wedge d\hat{\eta}.$$

We can write $\omega - \varphi^* \omega = \sum_{\alpha \in A} \psi_{\alpha}(P) \gamma_{\alpha} + dP \wedge d\eta$, but this can be read as a decomposition in $\hat{\Omega}^n$. From (8) and the unicity of the decomposition (6) we have $\psi_{\alpha} = 0$ for all $\alpha \in A$, and

$$\omega - \varphi^* \omega = dP \wedge d\eta.$$

We can summarize the results in

THEOREM 2.7. There is a bijection between $\mathrm{Diff}_0^{\wedge}(n) \setminus \Gamma_P \times \Omega_*^n$ and $C\{t\}^{\mu}$; the μ series ψ_* which are associated to the orbit of a couple $(f, \omega) \in \Gamma_P \times \Omega_*^n$ can be obtained in the following way: we choose a coordinate system in which f can be written as P and then we decompose in this system

$$\omega = \sum_{\alpha \in A} \psi_{\alpha}(P) \gamma_{\alpha} + dP \wedge d\eta.$$

We have to prove that the functions ψ_{α} are effectively independent of the coordinate system that we use to write f as P, and only depend on $[\gamma_{\alpha}]$.

If we have two coordinate systems in which f can be written as P, then the diffeomorphism φ which transforms one system into another has to preserve P. In the first coordinate system, we write

$$[\omega] = \sum_{\alpha \in A} \psi_{\alpha}(P)[\gamma_{\alpha}].$$

In the second one, we have

$$[\varphi^*\omega] = \sum_{\alpha \in A} \psi'_{\alpha}(P)[\gamma_{\alpha}],$$

and Proposition 2.6 implies that

$$\psi_{\alpha}(P) = \psi'_{\alpha}(P)$$
, for all $\alpha \in A$.

3. Algorithm of construction of the characteristic series for the quasi-homogeneous case

M. Sebastiani [Se] proved the conjecture of Brieskorn that if $P \in \mathcal{O}$ has an isolated singularity whose Milnor number is μ , then $G = \Omega^n/dP \wedge d\Omega^{n-2}$ is a free $C\{t\}$ -module of rank μ where the action of t is the multiplication by P.

Here we give a new constructive proof of this result in the case where P is quasi-homogeneous, based on B. Malgrange's theorem on "privileged neighborhoods".

First of all we make precise some more notations.

Let

$$H = \sum_{i=1}^{n} m_i x_i \frac{\partial}{\partial x_i}, \quad m = (m_1, \ldots, m_n) \in (\mathbf{Q}_+^*)^n,$$

be the weight vector field of P. So we have

$$L_{\mathbf{H}} \cdot P = H \cdot P = P.$$

We choose monomials $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ $(\alpha \in A \subset N^n)$ whose classes modulo J_P , the Jacobian ideal of P, give a C-basis of \mathcal{C}/J_P .

Let $d^n x = dx_1 \wedge \ldots \wedge dx_n$ denote the standard volume form.

We can state

THEOREM 3.0. The μ classes of $x^{\alpha} d^{n}x$ modulo $dP \wedge d\Omega^{n-2}$ give a $C\{t\}$ -basis of the module G.

We first prove that G is finitely generated as a $C\{t\}$ -module.

3.1. G is finitely generated

3.1.1. The formal case. Let us denote in this section by $\hat{\mathcal{O}} = C[[x_1, \ldots, x_n]]$ the ring of formal series in the indeterminate $\mathbf{x} = (x_1, \ldots, x_n), \hat{\Omega}^k$

the $\widehat{\mathcal{O}}$ -module of k-forms with coefficients in $\widehat{\mathcal{O}}$ and \widehat{J}_P the Jacobian ideal of P considered as a part of $\widehat{\mathcal{O}}$.

The choice of monomials x^{α} ($x \in A \subseteq N^{n}$) whose classes modulo \hat{J}_{P} give a C-basis of \hat{C}/\hat{J}_{P} determines a decomposition of $\hat{\Omega}^{n}$; for $f \in \hat{C}$, we write

(9)
$$f d^n x = \sigma(f) d^n x + dP \wedge \pi$$

$$= \sum_{\alpha \in A} \sigma_{\alpha}(f) x^{\alpha} d^n x + dP \wedge \pi (\sigma_{\alpha}(f) \in C).$$

We begin with

LEMMA 3.1.1. For $H = \sum_{i=1}^{n} m_i x_i \frac{\partial}{\partial x_i}$ write $M = \sum_{i=1}^{n} m_i$. Then H + M: $F \mapsto H \cdot F + Mf$ is a bijection of $\widehat{\mathcal{O}}$ onto $\widehat{\mathcal{O}}$.

Proof.
$$(H+M) x^{\beta} = (\langle \beta, m \rangle + M) x^{\beta}$$
 and $\langle \beta, m \rangle + M$ is never zero. \square

We now consider $\hat{G} = \hat{\Omega}^n/dP \wedge d\hat{\Omega}^{n-2}$ as a C[[t]]-module where the action of t is multiplication by P. Then we can state

PROPOSITION 3.1. \hat{G} is a C[[t]]-module of finite type and the classes of $x^{\alpha} d^{n} x$ ($\alpha \in A$) give a system of generators.

Proof. For every element $f \in \hat{\mathcal{O}}$, we have to find $\varphi_{\alpha} \in C[[t]]$ and $\xi \in \hat{\Omega}^{n-2}$ such that

$$\int d^n x = \sum_{\alpha \in A} x^{\alpha} \varphi_{\alpha}(P) d^n x + dP \wedge d\xi.$$

In order to do this, we write

$$f d^n x = \sigma(f) d^n x + dP \wedge \pi_1$$

(where we choose a π_1 which is determined obviously modulo $dP \wedge \hat{\Omega}^{n-2}$ ([D])). Then we have

$$d\pi_1 = u_1 d^n x$$
;

and if $\varphi_1 = (H+M)^{-1} u_1$, we have

$$d\pi_1 = d(i_{\varphi_1 H} d^n x).$$

We then produce a ζ_2 such that

$$\pi_1 = i_{\varphi_1 H} d^n x + d\zeta_2,$$

and we have

$$f d^{n} x = \sigma(f) d^{n} x + dP \wedge i_{\varphi_{1}H} d^{n} x + dP \wedge d\zeta_{2},$$

$$f d^{n} x = \sigma(f) d^{n} x + P_{\varphi_{1}} d^{n} x + dP \wedge d\zeta_{2}.$$

We then write

$$\varphi_1 d^n x = \sigma(\varphi_1) d^n x + dP \wedge \pi_2, \quad d\pi_2 = u_2 d^n x,$$

$$\varphi_2 = (H+M)^{-1} u_2, \quad \pi_2 = i_{\varphi_2 H} d^n x + d\zeta_3$$

and so on ...

For the p-th iterate of this process, we get

$$\int d^{n} x = \sum_{j=0}^{p} P^{j} \sigma(\varphi_{j}) d^{n} x + P^{p} dP \wedge \pi_{p+1} + dP \wedge d \left(\sum_{j=1}^{p} P^{j-1} \zeta_{j+1} \right)$$

where we write $\varphi_0 = F$.

It is easy to check the convergence in Krull's topology and we get the result.

We have to emphasize the fact that at each step of the iteration process the choice of π_j has some arbitrariness. Anticipating somewhat on what will follow, let us note that if we identify $\hat{\Omega}^n$ with $\hat{\mathcal{O}}$ and $\hat{\Omega}^{n-1}$ with $\hat{\mathcal{O}}^n$, then the choice of π_j can be done when we have a section λ of $u: dP \wedge \ldots : \hat{\mathcal{C}}^n \to \hat{\mathcal{C}}$. In the analytic case, we need to precise the choice of a section.

3.1.2. The analytic case. For $r = (r_1, ..., r_n) \in \mathbb{R}_+^{*n}$ let us introduce the polycylinder

$$D(r) = \{x \in \mathbb{C}^n | ||x_i|| \leqslant r_i\}.$$

For $f = \sum_{\beta} a_{\beta} x^{\beta} \in \mathcal{O}$, we write

$$|f|_{r} = \sum_{\beta} |a_{\beta}| r^{\beta}.$$

We denote by \mathcal{O}_r the set of elements of \mathcal{O} such that $|f|_r < \infty$. For $f = (f_1, \ldots, f_p) \in \mathcal{O}_r^p$, we write

$$|f|_r = \sum_{i=1}^p |f_i|_r.$$

Let Ω_r^k denote the \mathcal{O}_r -module of exterior k-forms with coefficients in \mathcal{O}_r . We identify Ω_r^n (resp. Ω_r^{n-1}) with \mathcal{O}_r (resp. with \mathcal{O}_r^n).

Let u be an \mathcal{O}_r -linear mapping from \mathcal{O}_r^n to \mathcal{O}_r . A section λ of u is a C-linear mapping from \mathcal{O}_r to \mathcal{O}_r^n such that $u = u\lambda u$.

We say that λ is adapted ([Ma₁]) to D(r) if λ is a continuous map from the Banach space \mathcal{O}_r , to the Banach space \mathcal{O}_r^n , i.e. if there is a $C_r > 0$ such that

$$|\lambda f|_r \leq C_r |f|_r$$
, for all $f \in \mathcal{O}_r^n$.

The theorem on the privileged neighborhoods of B. Malgrange has the following consequence:

Proposition 3.2. Given u, there is a section λ such that the set of D(r) to which λ is adapted gives a fundamental system of neighborhoods of the origin.

In the following, we choose such a section to write the iteration process that we described in Section 3.1.1. We now need to check the norms at each step of the computation.

Lemma 3.1.2. Let $m = \min_{\substack{j=1,\ldots,n\\j=1,\ldots,n}} (m_j), \quad r_0 = \min_{\substack{j=1,\ldots,n\\j=1,\ldots,n}} (r_j).$ If $\varphi \in \mathcal{O}_r$ and $\pi \in \Omega_r^{n-1} \simeq \mathcal{O}_r^n$ are such that $d(i_{\varphi H} d^n x) = d\pi$, then we have

$$|\varphi|_r \leqslant \frac{1}{mr_0} |\pi|_r.$$

Proof. We can write with $d\hat{x}_i = dx_1 \wedge \ldots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \ldots \wedge dx_n$

$$\pi = \sum_{j=1}^n \pi_j d\hat{x}_j, \qquad \pi_j = \sum_{\beta} a_{\beta}^j a^{\beta};$$

then we have

$$\varphi = \sum_{j=1}^{n} \sum_{\beta} \frac{\beta_{j}}{\langle \beta, m \rangle - m_{j} + M} a_{\beta}^{j} x^{\beta - l_{j}},$$

with $I_j = (0, ..., 1, ..., 0)$ where the 1 is at the j-th position.

LEMMA 3.1.3. Let us denote $R = \sum_{j=1}^{n} r_j$ and let $\theta \in \Omega_r^{n-1}$ be such that $d\theta = 0$; then there is a $\zeta \in \Omega_r^{n-2}$ such that $\theta = d\zeta$ and $|\zeta|_r \leq R |\theta|_r$.

This is an obvious consequence of any proof of Poincaré's theorem. We can now state

THEOREM 3.2. Let D(r) be a polycylinder to which λ is adapted. Then there is a r' such that D(r') < D(r) and for all $f \in \mathcal{O}_r$, there are $\xi \in \Omega_{r'}^{n-2}$ and $\varphi_{\alpha}(P) \in \mathcal{O}_r$ satisfying the equation

$$\int d^n x = \sum_{\alpha \in A} x^{\alpha} \varphi_{\alpha}(P) d^n x + dP \wedge d\xi.$$

Proof. At the first step of the iteration, we have

$$\int d^n x = \sigma(f) d^n x + dP \wedge \pi_1$$
 with $|\pi_1|_r \leqslant C_r |f|_r$;

then $d(i_{\varphi_1 H} d^n x) = d\pi_1$, and Lemma 3.1.2 gives

$$|\varphi_1|_r \leqslant \frac{C_r}{mr_0}|f|_r.$$

The relation $d\zeta_2 = i_{\varphi_1 H} d^n x - \pi_1$ and Lemma 3.1.3 then give

$$|\zeta_2|_r \leqslant R \left[1 + \frac{MR}{mr_0}\right] C_r |f|_r,$$

and so on. For the p-th iterate we get

$$\begin{aligned} |\varphi_j|_r &\leq \left(\frac{C_r}{mr_0}\right)^j |f|_r, \\ |\zeta_{j+1}|_r &\leq RC_r \left[1 + \frac{MR}{mr_0}\right] \left[\frac{C_r}{mr_0}\right]^{j-1} |f|_r, \end{aligned}$$

for j = 1, ..., p.

Let us choose r' so that $|P|_{r'} C_r/(mr_0) < 1$. Then since

$$\Big|\sum_{j=1}^{p} P^{j+1} \zeta_{j+1}\Big|_{r'} \leqslant \sum_{j=1}^{p} |P|_{r'}^{j-1} |\zeta_{j+1}|_{r'} \leqslant \sum_{j=1}^{p} |P|_{r'}^{j-1} |\zeta_{j+1}|_{r}$$

and

$$\left|\sum_{j=0}^{p} P^{j} \sigma(\varphi_{j})\right|_{\mathbf{r}'} \leqslant \sum_{j=0}^{p} |P|_{\mathbf{r}'}^{j} |\varphi_{j}|_{\mathbf{r}},$$

the result of the theorem follows with, furthermore, the explicit estimations

$$|\xi|_{r'} \le \frac{RC_r(1+MR/(mr_0))}{1-|P|_{r'}C_r/(mr_0)}|f|_r \quad \text{and} \quad |\varphi_\alpha(P)|_{r'} \le \frac{|f|_r}{1-|P|_{r'}C_r/(mr_0)}.$$

We deduce as a corollary that $G = \Omega^n/dP \wedge d\Omega^{n-2}$ is a $C\{t\}$ -module of finite type. We now prove that G has no torsion.

3.2. The weight vector field $H = \sum_{i=1}^{n} m_i x_i \frac{\partial}{\partial x_i}$ defines a graduation of the exterior algebra $\Omega = \bigoplus_{k \geq 0} \Omega^k$.

A form $\bar{\omega}$ is quasi-homogeneous of weight h if $L_H \bar{\omega} = h \bar{\omega}$. Given a differential form, we denote by $\bar{\omega} = \sum_h \bar{\omega}_h$ its decomposition into quasi-homogeneous components.

In particular, an element $f \in \mathcal{O}$ ($\sim \Omega^0$) can be written as $f = \sum_{h} f_h$.

LEMMA 3.2.1. Let f be an element of \mathcal{O} such that $f d^n x \in dP \wedge d\Omega^{n-2}$. Then every quasi-homogeneous component f_h satisfies

$$\int_h d^n x \in dP \wedge d\Omega^{n-2}.$$

Proof. We write $f d^n x = dP \wedge d\eta$, and so we have

$$f_h d^n x = dP \wedge (d\eta)_{h-1+M};$$

but

$$(d\eta)_{h-1+M}=d(\eta_{h-1+M})$$

because the Lie derivative commutes with d.

PROPOSITION 3.3. The module G is torsion free.

Proof. Let $f \in \ell$ be so that $Pfd^n x = dP \wedge d\eta$; we can write

$$dP \wedge (i_{fH} d^n x - d\eta) = 0,$$

and so ([D]) we have

$$i_{fH}d^nx - d\eta = dP \wedge \rho$$
 and $(H \cdot f + Mf)d^nx = dP \wedge d(-\rho)$.

If we decompose f into its quasi-homogeneous components, we get

$$f_h d^n x = dP \wedge d\left(\frac{-\varrho h - 1 + M}{h + M}\right),$$

and from this we can deduce the existence of an analytic (n-2)-form

$$\xi = \sum_{h} -\varrho \frac{h-1+M}{h+M}$$

such that

$$\int d^n x = dP \wedge d\xi.$$

3.3. A basis of G. Let $F = \frac{dP \wedge \Omega^{n-1}}{dP \wedge d\Omega^{n-2}}$ be considered as a $C\{t\}$ -module; then clearly $tG \subset F$.

Proposition 3.3. We have the equality tG = F.

Proof. Let us denote by $[\omega]$ the class in G of an element ω of Ω^n . We remark that the classes $[\omega_{\beta,i}]$, where $\omega_{\beta,i} = dP \wedge (x^{\beta} d^n x_i)$, generate F. A simple computation then leads to

$$t\left[\beta_{i} x^{\beta-I_{i}}\right] = \langle \beta, m \rangle + \sum_{\substack{j=1 \ j \neq i}}^{n} m_{j} \left[\omega_{\beta,i}\right].$$

We can deduce from this proposition that G/tG = G/F. But then

$$G/F \simeq \Omega^{n}/dP \wedge \Omega^{n-1} \simeq \mathcal{O}/J_{P}.$$

The fact that the classes $[x^{\alpha}d^{n}x]$ ($\alpha \in A$) give a basis of G follows from Nakayama's lemma, so Theorem 3.0 is proved.

4. The non-isolated case (normal crossing)

How to extend the classification of couples functions-volume forms to the case where the function has a non-isolated singularity? Obviously, there are examples where the moduli space $\Omega^n/dP \wedge d\Omega^{n-2}$ is no longer a finitely generated $C\{t\}$ -module.

But it is interesting to note first of all that we are in fact concerned with

$$G' = \Omega^n / \{ d\eta \mid dP \wedge \eta = 0 \},$$

and that this module is $C\{t\}$ finitely generated in the case where P is a normal crossing $P = x_1^{p_1} \dots x_n^{p_n}$. We write in this case $p_i = p_i' d$ (i = 1, ..., n), where d is the g.c.d. of the p_i , and $\omega_j = \prod_{i=1}^n x_i^{jp_i-1} d^n x$ for j = 1, ..., d.

Given a couple $P = x_1^{p_1} \dots x_n^{p_n}$ and $\omega = a(x) d^n x$ with a(0) = 1, we have:

Theorem 4.1. There is a diffeomorphism φ which preserves P and transforms ω into the model

$$\varphi^* \omega = dx_1 \wedge \ldots \wedge dx_n + \sum_{j=1}^n \psi_j(P) \omega_j.$$

Let $\overline{\Omega}^n$ be the set of *n*-forms $d\eta$ such that $dP \wedge \eta = 0$. The same proof as in Theorem 2.1 gives the fact that if two volume forms ω and ω' are such that $\omega(0) = \omega'(0) = dx_1 \wedge \ldots \wedge dx_n$ and $\omega - \omega' \in \overline{\Omega}^n$, then there is a diffeomorphism φ so that $\varphi^* P = P$ and $\varphi^* \omega = \omega'$.

The above theorem is a consequence of

Proposition 4.1. The $C\{t\}$ -module $G' = \Omega^n/\overline{\Omega}^n$ is free of rank d and the classes of the ω_j modulo $\overline{\Omega}^n$ give a basis of G' as a $C\{t\}$ -module.

Proof. Given $f \in \mathcal{O}$ and $\omega = f dx_1 \wedge \ldots \wedge dx_n$, we write $f = \sum_{\alpha} f_{\alpha} x^{\alpha}$ and we try to decompose ω into

$$\int d^n x = d\eta + \sum_{j=1}^d \psi_j(P) \,\omega_j$$

with $d\eta \in \overline{\Omega^n}$.

We can treat each monomial separately, and so given a monomial $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$, we need to know for which values of $\alpha = (\alpha_1, \dots, \alpha_n)$ we can be sure to find η_1, \dots, η_n such that

$$x^{\alpha} = \frac{\partial \eta_1}{\partial x_1} + \dots + \frac{\partial \eta_n}{\partial x_n},$$

$$0 = \frac{\partial x^p}{\partial x_1} \eta_1 + \dots + \frac{\partial x^p}{\partial x_n} \eta_n.$$

We can look for $\eta_1, ..., \eta_n$ of the type

$$\eta_1 = A_1 x_1^{a_1+1} \dots x_n^{a_n}, \dots, \quad \eta_n = A_n x_1^{a_1} \dots x_n^{a_n+1}.$$

We then have to solve the system

$$(\alpha_1 + 1) A_1 + \dots + (\alpha_n + 1) A_n = 1$$

 $p_1 A_1 + \dots + p_n A_n = 0.$

Such a system has a solution if and only if $(\alpha_1 + 1, ..., \alpha_n + 1)$ is not a multiple of $(p_1, ..., p_n)$. This case corresponds to

$$\alpha_1 + 1 = \lambda p_1 = (\lambda d) p'_1,$$

$$\ldots \ldots \ldots$$

$$\alpha_n + 1 = \lambda p_n = (\lambda d) p'_n.$$

 λd is necessarily an integer and the different values $\lambda = j/d$, when j varies from 1 to d, correspond to the different monomials which give the d series $\psi_i(P)\omega_i$.

In $[F_3]$, I have considered the question of C^{∞} conjugacy for the real normal crossing.

The problem of C^{∞} -conjugacy has been considered by Colin de Verdière and J. Vey ([C]) and V. Guillemin ([G]) for the Morse functions, and by C. Roche in general in his thesis ([R]).

References

- [B] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161.
- [C] Y. Colin de Verdière et J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293.
- [D] G. De Rham, Sur la division des formes et des courants par une forme linéaire, Comment. Math. Helv. 28 (1954), 346-352.
- [F₁] J.-P. Françoise, Modèle local simultané d'une fonction et d'une forme de volume, Astérisque 59-60 (1978), 119-130.
- [F₂] -, Le théorème de M. Sebastiani pour une singularité quasi homogène isolée, Ann. Inst. Fourier (Grenoble) 29 (1979), 247-254.
- [F₃] -, Réduction simultanée d'un croisement normal et d'un volume, Bol. Soc. Brasil. Mat. 13 (1982), 79-83.
- [G] V. Guillemin, Band asymptotics in two dimensions, Adv. in Math. 42 (1981), 248 282.
- [Ma₁] B. Malgrange, Frobenius à singularités 1: codimension un, Publ. Math. Inst. Hautes Études Sci. 46 (1976), 163-173.
- [Ma₂] -, Intégrales asymptotiques et monodromie, Ann. École Nat. Sup. Méc. Nantes 4 (1974), 405-430.
- [Mo] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120-121 (1965), 286-294.
 - [R] C. Roche, Thèse, Université de Grenoble, 1981.
- [Se] M. Sebastiani, Preuve d'une conjecture de Brieskorn, Manuscripta Math. 2 (1970), 301-308.

- [Si] C. L. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer-Verlag, Berlin-Heidelberg 1971.
- [St] S. Sternberg, Infinite Lie groups and formal aspects of dynamics, J. Math. Mech. 10 (1961).
- [To] J.-C. Tougeron, *Idéaux de fonctions différentiables*, Ergeb. Math. Grenzgeb. 71, Springer-Verlag, Berlin 1970.
- [V] J. Vey, Sur le lemme de Morse, Invent. Math. 40 (1977), 1-9.

Presented to the semester Singularities 15 February – 15 June, 1985