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We consider here the classification of couples (f, w), where f is a germ of a
function f: (C", 0) = (C, 0), and w is a germ of an n-form, modulo the group
of germs of diffeomorphisms of (C", 0).

For this classification, the relative cohomology of f appears to be the
essential tool. E. Brieskorn and M. Sebastiani have proved that, in the
isolated singularity case, these relative cohomology groups are free C|f}-
modules of rank u, the Milnor number of f. In the case where f is quasi-
homogeneous, we establish the convergence of an effective algorithm which
allows to compute the associated characteristic series.

This paper is a survey about questions which have been investigated
previously ([F,], [F,]. [F;]).

The author expresses his gratitude to S. Denkowska and S. Lojasiewicz
for inviting him to participate in the meeting on Singularities in Warsaw.

We will use the following notation:

¢: the local ring of germs of analytic functions at 0eC".

m: its maximal ideal.

@*: the ¢-module of germs at 0€C" of holomorphic k-forms.

Diff,, (n): the group of germs of diffeomorphisms tangent to the identity
at the order two.

I'p: the orbit of Pe ¢ under Difly(n).

G =Q"dP A dQ"~? considered as a C{t}-module where ¢ acts by
multiplication by P.

Q, = weQ"| w(0)#0}.

We will call volume forms the elements of Q.

All the coordinate systems are supposed to be holomorphic. By coordinate
systems we actually always mean germs of coordinate systems.
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1. The case of a Morse function
We assume here that P is a germ of a Morse function, hence there is a

holomorphic coordinate system x around Oe C” so that P = ) x?. Let I'p be

i=1
the set {fe@| f<(P)+m’}.
J. Vey and independently V. Guillemin ([V], [G]) proved the following:

THEOREM 1.1. Given (f, w)el'px$2,, there is a system of local
coordinates y =(y;, ..., y,) such that f is a power series Yy*(P) where P

=Y ytand w=dy, n ... Ady,.
i=1

Such a coordinate system i1s not unique, but the series ¢* 1s a
characteristic of the couple (f, w) and can be interpreted geometrically by
means of integrals on vanishing cycles of the level hypersurfaces P =1,

Let us observe that in dimension two we get Birkhoff's statement on the
local normal form of a quadratic Hamiltoman system in the group of
analytic symplectic transformations. We know that such a normal form exists
in the formal symplectic category in higher dimensions but a theorem of
C. L. Siegel shows its generic divergence ([Si]).

So Theorem 1.1 implies, by contrast, that everything goes well in the
volume-preserving case for the classification of generic germs of functions. It
can be interpreted in the following way.

Let f be a Morse germ, x a system of coordinates around Oe (", and w
=dx, A ... ~dx, the associated volume form. Then there is a coordinate

system y=(y,...,y) so that f=y¢() y}) and dy, A ... Ady,
i=1

=dx, A ... Andx,. Here we will consider another version of this theorem.

THEOREM 1.2 Given (f, w)eI'p x§2,,, there is a coordinate system y
= (Vis.-s Ve SO that f=)Y y? and o=y (P)dy, n ... ndy, where
i=1
Y (t)e C\t} is a characteristic of the couple (f, w).

Such a theorem is, of course, no longer a statement about normal forms
and it must be read in the following way: For each orbit of I'p x £2; under
DifT, (n), there is a simple representative (which we call a local model) of the
type (P, ¢ (P)dy). We will just indicate how Theorem 1.2 is a consequence of
Theorem 1.1 since the result can be deduced as a corollary of our general
method presented in Section 2.

Proof. 1.1 < 1.2
Let (f, w)elp x82,. Theorem 1.1 provides us with a local coordinate
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system x = (x,,

Xy sothat f=y*(P)=P+ ...and w=dx, ~ ... Andx,
with P = Z x?

Let us wnte y* (P)Y/? = PY2y(P) with ue C {1}, u(0) = 1. Then we define

a new coordinate system by the relations x; = x; u(P). Clearly, in this new
coordinate system we have

Zx’z (y_i Du?(P) = y*(P) = f.

Furthermore, the relations x; = x;u(P) turn into x; = x;v(P’) with ve C {¢},
v(0) = 1. Hence,

w=dx; A ... ndx,=[v(P)"+20(P)" ' (P)Pldxy A ... Adx.,
and
o=Yy(P)dx; ~ ... ndx,,
and we get Theorem 1.2.

Now, conversely, if we have a coordinate system x' = (xj, ..., x;) so that
n

f=P =Y x> and w =y (P)dx; A ... Adx,, then we solve the differential

equation for w:

%tw’(t)+w(l) =y (t).

If we fix w(0) =1, the variation of the constants leads to the following
formula:

w() =t "2 }%m("_z"zdl(t)dr+l
o

which is analytic in t.

Then, if we write v = w!” and x; = x{v(P’} in the coordinate system x
=(Xg, 0y X

, X,), we conclude that f = P’ is a power series in P = ) x?, and
furthermore we have o =dx, A
Theorem 1.1.

i=1
. Adx,, which is the statement of

O
2. The general isolated case

In this section, P will denote an element of ¢ which has an isolated

singularity at 0eC". Let us denote by y the Lie algebra of germs of
holomorphic vector fields at 0e C™

14 — Banach Center 1. 20
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We wish to describe the simplest possible local model in each orbit of
I'p x€2,, under the action of Diffy(n).

Let us consider a couple (f, w)eI'p x2,. Alter a first change of local
coordinates, we can assume that f = P and write w = a(x)dx, a(0) =a # 0.
Now in order to find a local model for the couple, we can try to reduce w to
a simple form with a diffeomorphism which preserves the function P.

So we need to understand better the action of I(P), the isotropy
subgroup of P for the group Diff;(n). I am indebted to J. Martinet for the
following

ProposiTION 2.1. Let we ;. The tangent space T(w) at w to the orbit
of w for the group 1(P) is dP A dQ"" 2.

Proof. By definition, T(w) is the set of Lie denvatives Ly w, where X is
an element of #(P) < g, the Lie algebra of vector fields which preserve P:

T(w) = {Lyw| Xey, LxyP =0}.

Let Xe #(P). Then dP niyw =(LyP)w =0, and the theorem of De
Rham ([D]) implies the existence of e 2"~ ! such that iyw = dP A n; and by
the formula of H. Cartan, we have

Lyw=dP ~rd(—n).

Conversely, let n be an element of Q" 1. Since w is a volume form, there
is an element X of y such that '

iyo=dP ~rd(—n).
Actually X e ¢ (P) since we have
0=dP niyw =(Ly Plw,

and finally
Lyw =dP A dy. O

This proposition is not necessary in what follows but we can see from it
why the module G = 2"/dP A dQ"" ! is involved in our problem.
Now we use J. Moser’'s method for the conjugacy problem of forms

([Mo]).

THEOREM 2.1. Let (w,w’) be elements of £, such that w-—w'
€dP A dQ"" 2, There is a ¢ el(P) so that ¢*v = .

Proof. Let us write w—w' =dP Adn and introduce the path o, =
w+i{w —w), te[0,1].

We look for a path of diffeomorphisms ¢, Difl,(n) which satisfies

(1) ofo,=w
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and comes from the integration of a path of vector fields X,. The equation
(1) implies that

o' (Lx, o, +w,) =0,

and so

(2) Ly @, =dP A dn.
Let us then define X, by

(3) ix @ = —dP A1,

such an X, satisfies (2) and the family of difftomorphisms ¢, that we get by
integration of X,, fixing f, = Id, satisfies (1).
We remind the reader of the fact proved for instance in [To], that we
can integrate X, on a given ball for all ¢+ because X, vanishes at 0e C".
Now (3) implies that

0=dP Aiy o, =(Ly, P)o,.

So X,e #(P) and the ¢, obtained by integration preserve P. We now take ¢
= @, to prove the result required. O

We will use

Tueorem 23. ([B], [Se), [Ma,]). The C{t}-module G = Q"/dP A dQ"~2
is free of rank pu.

After a choice of y,e Q" (xe A, A an appropriate index set so that the
classes of y, modulo dP A dQ""? give a C {t}-basis of G), we can prove the
following

CoroLLARY. Given a couple (f, w)e I'p xQ,, there is a @€ Diffy(n) such
that o*f = P and

P*w =3 ¥,(P)v,
acA

where W, (t)e C {t}.

We now consider the question of the unicity of the functions y, of the
corollary.

In the following, we use the notations:

Diffg (n): the group of formal transformations with n vanables whose
first order jet is the identity;

7 (n): the Lie algebra of formal vector fields in n variables;

@*: the formal completion of ©*;

G: Q"dP A @2 regarded as a C[[t]]-module.

An analytic function P is considered as an element of 0, the ring of
formal power series, through the injection ¢ < @.
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LEMMA 24. Let @ be an element of 1(P); ¢ can be interpolated by a
one-parameter group of formal transformations which preserve the function P.

Proof. We want to construct a one-parameter group ¢, contained in
Diff; (n) such that ¢, = ¢ and ¢* P =P.

We write ¢ = |¢;; i =1, ..., n}, the component functions of ¢, and
@ = X.'+Z Z Pip xf,
Jj 18l=i
their Taylor developments at Oe C". We construct ¢, = \¢,;; i=1, ..., n},
Pri = xi+z Y 0iplD) x?,
Jjlp=J

as the solutions of the differential equation (cf. [St])

(4) @ = P00,
with the boundary values ¢, =1Id and ¢, = ¢.
It we assume that the ¢, 4(f) are known by induction up to |f| =

< k—1, then we can determine the ¢, ;(t) with |f| = k. The equation (4)
imposes a condition

(3 @i (1) = 9ip(0)+1i5(0)

where the f; ;(t) are known by induction and vamsh at 0.
The equation (5) can be integrated to give

@ip(t) = @; (0}t + _[f-n(r) dr.

We can check that ¢;4(0) =0 and we need to choose ¢;4(0) such that
‘Pi,p(l) = ®i5-

We then observe that the coefficients ¢, z(t) are polynomials in t, and
from the fact that ¢, is an interpolation of ¢, ¢Ff P— P = 0 for all integers t.
If we fix a number k, the homogeneous part of degree k of ¥ P—Pis a
polynomial in ¢t which must vanish for all integer values of ¢t and
consequently this polynomial must vanish identically. We deduce that ¢} P
= P for all real values of t. O

Let us denote by X € j the formal vector field which generates the group
@,. From the preceding lemma we deduce that Lg- P = 0. We do not know if
¢ can be interpolated by an analytic one-parameter group but this has no
importance because of the following

Tueorem 2.5. G is isomorphic to G ®cn CLLT]

This is a theorem of Bloom and Brieskorn who proved it using the
Hironaka desingularisation. In [Ma,], B. Malgrange gave another proof
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using the regularity of the Gauss—Manin connection and his theorem on the
analytical index.

In the special case where P is quasi-homogeneous, it is a simple
consequence of our Section 3.

So if [7.] is a basis of G as a C {r}-module, then [y,] is a basis of G as a
C[(t]]-module and any we Q" can be written in a unique way as

(6) 0=y ¥, (P)y.,+dP ~dij

aeA

where ¥, C[[t]] and 4eQ" 2,
We can prove

ProrosITiION 2.6. Let e I(P) and we Q" There is an ne Q" 2 such that
w—@*w =dP A dy.

Progf. We interpolate ¢ by the one-parameter formal group ¢,
= exptX constructed in Lemma 24. We get

1 d 1
(7 w—qo*m=j'£qa;'wdt=j'(p,‘"(L;(w)dt.
0 0

Since we have Ly P =0, we get
dP nigw =0,
and De Rham’s theorem implies that there is a ge Q" 2 such that
iyw=dP A .
Now ¢, preserves P, so we have
(8) m—q;*m=dPAd(}(p?‘éd[)=dP/\dﬁ.
0

We can write w—@*w = ) ¥ (P)y,+dP A dn, but this can be read
" aeAd
as a decomposition in £2". From (8) and the unicity of the decomposition (6) we

have ¢, = 0 for all a €A, and
wo—@¢*w =dP ~dy. O
We can summarize the results in
Tueorem 2.7. There is a bijection between Diflg (n)\I'p x Q] and C (t}*;
the yu series y, which are associated to the orbit of a couple (f, w)e I'p x 2},

can be obtained in the following way: we choose a coordinate system in which
can be written as P and then we decompose in this system

w=) Y, (P)y,+dP A dn.

acA
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We have to prove that the functions , are effectively independent of the
coordinate system that we use to write f as P, and only depend on [}.].

Il we have two coordinate systems in which f can be written as P, then
the difftomorphism ¢ which transforms one system into another has to
preserve P. In the first coordinate system, we write

[w] =) v (P[]

2eA
In the second one, we have

[o* 0] =} va(P)[7].

acA

and Proposition 2.6 implies that
Y. (P) =y (P), for all acA.

3. Algorithm of construction of the characteristic series for
the quasi-homogeneous case

M. Sebastiani [Se] proved the conjecture of Brieskorn that if Pe (¢ has an
isolated singularity whose Milnor number is u, then G = Q"/dP A dQ" % is a
free C{t}-module of rank u where the action of ¢ is the multiplication by P.

Here we give a new constructive proof of this result in the case where P
is quasi-homogeneous, based on B. Maligrange’s theorem on “privileged
neighborhoods”.

First of all we make precise some more notations.
Let

n 0
H= Zrn‘ixl'gx_’ m=(m1,...,mn)e(Q’:)",
i=1 i

be the weight vector field of P. So we have
Ly-P=H-P=P.

We choose monomials x*=x}'...x;" (xeA = N" whose classes
modulo Jp, the Jacobian ideal of P, give a C-basis of €/Jp.

Let d"x =dx; A ... Adx, denote the standard volume form.

We can state

THEOREM 3.0. The u classes of x*d"x modulo dP A dQ"* give a Cit}-
basis of the module G.

We first prove that G is finitely generated as a C {¢}-module.

3.1. G is finitely generaced

3.1.1. The formal case. Let us denote in this section by CAOA=
C[[xi, ..., x,]] thering of formal series in the indeterminate x = (x, ..., x,), *
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the @-module of k-forms with coefficients in & and J, the Jacobian ideal of P
considered as a part of a.

The choice of monomials x* (xe A = N") whose classes modulo Jp give a
C-basis of @/J, determines a decomposition of Q%; for fe @, we write

9) Jd"x=0(f)d"x+dP r m
=) 0,()x*"d"x+dP A n (6,(NeC).
aeA

We begin with

n a n
Lemma 3.1.1. For H= ) m; X; write. M =) m,. Then H+M:
i=1 i i=1

F—H-F+Mf is a bijection of O onto 0.
Proof. (H+M)x? = ({8, m>+ M)x? and (B, m>+ M is never zero. [J

We now consider G = Q"/dP A dQ""2 as a C[{r]]-module where the
action of t is multiplication by P. Then we can state

ProposiTioN 3.1. G is a C[[t]]-module of finite type and the classes of
x*d"x (xe A) give a system of generators.

_Proof. For every element fe0, we have to find ¢,eC[[t]] and
£€Q" 2 such that

fd"x =) x*@,(P)d"x+dP ~ d¢.

aecA

In order to do this, we write
fd"x =6(f)d"x+dP A=,

(where we choose a m, which is determined obviously modulo dP A @72
([D1). Then we have

dn, = u;d"x;
and if ¢, = (H+ M) 'u,, we have
dny = d(iy, g d" x).
We then produce a {, such that

My =i, qd"x+d{,,
and we have
fd"x=0(f)d"x+dP Ai, yd"x+dP A d{,,
fd"x =a(f)d"x+ P, d"x+dP A d{,.
We then wnte )
¢;d"x =a(@,}d"x+dP A n,, dn,=u,d"x,
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(Pz =(H+M)_luz, T[z =i¢,2Hd"x+dC3

and so on .
For the p-th iterate of this process, we get

14 p

fd"x =) Pa(p)d"x+PPdP Ampy+dP Ad()Y PP71EGL)
j=0 j=1

where we write @, = F.

It is easy to check the convergence in Krull’s topology and we get the
result. O

We have to emphasize the fact that at each step of the iteration process
the choice of n; has some arbitrariness. Anticipating somewhat on what will
follow, let us note that if we identify Q" with @ and Q"1 with ", then the
choice of n; can be done when we have a section A of u: dP A ...: " — (. In
the analytic case, we need to precise the choice of a section.

3.1.2. The analytic case. For r=(r,, ..., r,)e R%" let us introduce the
polycylinder
D(r) = (xe C"| |x| <r;}.

For f =Y agxfe (), we write
5

|f|r=Z|aﬁ|rﬂ

]

We denote by (¢, the set of elements of ¢ such that |f], < oc.
For f =(/,...,f)e CF, we write

o= 3 1f

Let ©* denote the (/,-module of exterior k-forms with coefficients in €.
We identify Q7 (resp. Q" ') with ¢, (resp. with (7).

Let u be an O,-linear mapping from (7 to ¢,. A section Z of u is a
C-linear mapping from @, to (7 such that u = ulu.

We say that 1 is adapted ((Ma,]) to D(r) if 4 is a continuous map from
the Banach space ¢, to the Banach space (7, i.e. if there is a C, > 0 such that

Afl, < C.|fl,, for all fe(.

The theorem on the privileged neighborhoods of B. Malgrange has the
following consequence:

ProposiTioN 3.2. Given u, there is a section A such that the set of D(r)
to which A is adapted gives a fundamental system of neighborhoods of the
origin.
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In the following, we choose such a section to write the iteration process
that we described in Section 3.1.1. We now need to check the norms at each
step of the computation.

LemMma 3.1.2. Let m= min (m;), ro= min (r). If ¢e€, and
=1,. ji=1,m
neQr~! ~ @7 are such that d(tq,Hd"x) dn, then we have

1
lol, < —|nl,.
mr

0

Proof. We can write with dx; =dx; A ... Adx;_y Andxjoy A ... Adx

then we have

with I; =(0, ..., 1,..., 0) where the 1 is at the j-th position. O

LemMMa 3.1.3. Let us denote R = Z rj and let 6 Q;~" be such that d6
= 0; then there is a { €Q" % such that 9 d{ and |{}, < R|0),.

This 1s an obvious consequence of any proof of Poincaré’s theorem.
We can now state

THEOREM 3.2. Let D(r) be a polycylinder to which A is adapted. Then
there is a r' such that D(r') < D(r) and for all fe C, there are E€ Q"% and
¢, (P)e O, satisfying the equation

fd"x =) x*@,(P)d"x+dP A déE.

acA
Proof. At the first step of the iteration, we have

fd"x =0()d"x+dP A ny with |z, < C,|fl,;

then d(i,,gd"x) =dn;, and Lemma 3.1.2 gives

I(pl|r S

The relation d{, =i, yd"x—n, and Lemma 3.1.3 then give

0

MR
1Cals < R[l +_:'Cr L1,
mr
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and so on. For the p-th iterate we get

C j
<= r
]q’jlr (Wo) |f|

MRI[ C. J!
|CJ+1|r<RCr[1+_}[ :r Iflr!
mro mrq
for j=1,...,p

Let us choose r’ so that |P|,. C,/(mr,) < 1. Then since

P 14 14
| P Gl < X IPE MGaale < X0 IPET MG el
j=1 i=1 i=1
and
p . p .
|Z PJU(‘PJ)':’ < Z IPH |(Pj|r»
j=0 j=0
the result of the theorem follows with, furthermore, the explicit estimations

RC, (14 MR/(mr)) | f1,
=P, Clmrg) P 2 1Pl <975 e gy

|€|r' $

We deduce as a corollary that G = Q"/dP A dQ2"" % is a C{t}-module of
finite type. We now prove that G has no torsion.

3.2. The weight vector field H = Z m;X; —
the exterior algebra Q = @ Q.

k20
A form @ is quasi-homogeneous of weight h if Lyo = hw. Given a

differential form, we denote by @ =) @, its decomposition into quasi-
h

o defines a graduation of

homogencous components.
In particular, an element fe ¢ (~ Q° can be written as f =) f,.

Lemma 3.2.1. Let [ be an element of (V such that fd"xedP A dQ" 2.
Then every quasi-homogeneous component f, satisfies

fyd"xedP A dQ" 2
Proof. We write fd"x =dP A dn, and so we have

Sod"x =dP A(dnhy_y+um5
but
@Mh-1+m =d(Mh-1+m)

because the Lie derivative commutes with 4. O
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ProrosiTioN 3.3. The module G is torsion free.
Proof. Let fe( be so that Pfd"x =dP A dn; we can write
dP A (ipyd"x—dn) =0,
and so ([D]) we have
ijgd"x—dn=dP ngo and (H-f+Mf)d"x =dP ~nd(—9).
If we decompose f into its quasi-homogeneous components, we get

. —oh—1+M
f;,d x=dP Ad(Tfo—)’

and from this we can deduce the existence of an analytic (n—2)-form
h—1+M
STl 0w

h

such that
fd"x=dP n d¢. O
. dP A Q! _
33. A basis of G. Let F= 1P ndo? be considered as a

C |t}-module; then clearly tG = F.

ProposiTiON 3.3. We have the equality tG = F.

Proof. Let us denote by [w] the class in G of an element w of Q". We
remark that the classes [w,;], where w,; = dP A (x? d" x;), generate F. A simple
computation then leads to

(B:x" " = (B, my+ 3 mi[e,,). O
S
We can deduce from this proposition that G/tG = G/F. But then
G/IF ~Q"dP A Q"' ~ (/J,.

The fact that the classes [x*d"x] (ze A) give a basis of G follows from
Nakayama’s lemma, so Theorem 3.0 is proved.

4. The non-isolated case (normal crossing)

How to extend the classification of couples functions-volume forms to the
case where the function has a non-isolated singularity? Obviously, there are
examples where the moduli space Q"/dP AdQ" % is no longer a finitely
generated C {t}-module.
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But it is interesting to note first of all that we are in fact concerned with
G =Q"/{dn| dP A n =0},
and that this module is C{t} finitely generated in the case where P is a

normal crossing P = x{! ... x’". We write in this case p, = pjd (i =1, ..., n),

where d is the gcd. of the p;, and w; = [] P gk for j=1, ..., d.
i=1

Given a couple P = x}' ... x!" and w = a(x)d"x with a(0) = 1, we have:

THeEOREM 4.1. There is a diffeomorphism ¢ which preserves P and
transforms w into the model

p*w =dx; A ... Adx,+ Y Y;(Pw;.
=1

j=

Let Q" be the set of n-forms dn such that dP A n = 0. The same proof as
in Theorem 2.1 gives the fact that if two volume forms w and ' are such

that w(0)=w'(0)=dx; A ... Adx, and w—w’ea, then there 1s a
diffeomorphism ¢ so that ¢* P =P and ¢*w = w'.
The above theorem is a consequence of

ProposiTioN 4.1, The C {t}-module G' = Q*/Q" is free of rank d and the
classes of the w; modulo Q" give a basis of G’ as a C {t}-module.

Proof. Given fe( and w = fdx; A ... A dx,, we write f=) [, x*

and we try to decompose w into

fdux=dn+ Y (P

with dne Q"
We can treat each monomial separately, and so given a monomial
x* = x}' ... x.", we need to know for which values of a = (a,, ..., a,) we can

be sure to find #,, ..., n, such that

0 5
L VLN
o) ox,,
0 OxP + +f‘x”
B ('5x1n1 T Ox, -

We can look for 5, ..., n, of the type

ayp+1 ap

3] Zn+1
n = Ay x, e Xy e, Mp=Apxy oo x
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We then have to solve the system
(a1+1)A1+ ...+(a,,+1)A,,,=l
p1A1+ o +p,|An=0

Such a system has a solution if and only if (a;+1,...,2,+1) is not a
multiple of (p,, ..., p,). This case corresponds to

a;+1 = 4ip, = (Ad) p},

Ad is necessarily an integer and the different values A = j/d, when j varies
from 1 to d, correspond to the different monomials which give the d series

l.[/j(P)wj- 0

In [F;], I have considered the question of C™ conjugacy for the real
normal crossing.

The problem of C*-conjugacy has been considered by Colin de Verdiére
and J. Vey ([C] and V. Guillemin ([G]) for the Morse functions, and by
C. Roche in general in his thesis ([R]).
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