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Abstract

Let a C1-function f : R → R be given which satisfies f(0) = 0, f ′(ξ) < 0 for all ξ ∈ R, and
sup f <∞ or −∞< inf f . Let C = C([−1, 0],R). For an open-dense set of initial data the phase
curves [0,∞)→ C given by the solutions [−1,∞)→ R to the negative feedback equation

x′(t) = −µx(t) + f(x(t− 1)), with µ > 0,

are absorbed into the positively invariant set S ⊂ C of data φ 6= 0 with at most one sign change.
The global attractor A of the semiflow restricted to S is either the singleton {0} or it is given
by a Lipschitz continuous map a with domain pA in a 2-dimensional subspace L ⊂ C and range
in a complementary subspace Q; pA is homeomorphic to the closed unit disk in R2. We show
that a is in fact C1-smooth.



1. Introduction

Result and method. The equation

(1) x′(t) = −µx(t) + f(x(t − 1))

with µ > 0 and a function f : R → R is the simplest model for a system governed by

delayed feedback and decay. In case

f(0) = 0 and ξf(ξ) < 0 for all ξ 6= 0

there is a rest state given by ξ = 0, and the feedback is negative with respect to this rest

state. The hypothesis in the present paper is the stronger condition that

f is C1-smooth, f(0) = 0 and f ′(ξ) < 0 for all ξ 6= 0,

and that f is bounded from below or bounded from above.

In [12] it is shown that in this case there is an open and dense set of initial data φ in

the phase space

C = C([−1, 0],R) with ‖φ‖ = max
−1≤t≤0

|φ(t)|

so that the solution xφ : [−1,∞) → R given by xφ|[−1, 0] = φ is eventually slowly

oscillating in the sense that there exists tφ ≥ −1 so that all zeros of xφ in [tφ,∞) are

farther apart than the delay 1 in the equation. The phase curves

[0,∞) ∋ t 7→ xt ∈ C, xt(s) = x(t+ s),

of such solutions x = xφ enter the set

S = {φ ∈ C \ {0} : there are z ∈ [−1, 0] and j ∈ {0, 1}

with (−1)jφ(s) ≤ 0 for s ∈ [−1, z]

and 0 ≤ (−1)jφ(s) for s ∈ [z, 0]}

of data with at most one sign change, which is positively invariant under the semiflow

F : [0,∞) × C ∋ (t, φ) 7→ xφt ∈ C

of equation (1). The position of S in C can be described in terms of the linearization of

F at the stationary point 0 ∈ C. The generator of the C0-semigroup of the operators

D2F (t, 0), t ≥ 0,

has a leading pair of eigenvalues, and the associated reellified generalized eigenspace

L ⊂ C satisfies dimL = 2 and L ⊂ S while the reellified generalized eigenspace Q defined

by the remaining spectrum is disjoint from S.

The restricted semiflow on the closure S = S ∪ {0} has a global attractor A ⊂ S.

Every φ ∈ A\{0} uniquely determines a solution x = x(φ) which is defined on R, satisfies
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x0 = φ, is bounded, and slowly oscillating in the sense that all zeros are farther apart

than the delay 1. The attractor A consists of the segments xt of all solutions of this type,

and of the stationary point 0 ∈ C. In [20] the inclusion A−A ⊂ S is derived and used to

show that the attractor A can be written as a map a from a subset La ⊂ L into Q,

A = {χ+ a(χ) : χ ∈ La}.

In case A 6= {0} the domain La is a neighbourhood of 0 in L and homeomorphic to the

closed unit disk in R2, and ∂La is the projection of the orbit in C of a slowly oscillating

periodic solution. The periodic orbits on A project into simple closed curves in the plane

L which are nested and contain 0 ∈ L in the interior. For the aperiodic solutions with

segments in A a Poincaré–Bendixson theorem holds. An a-priori estimate of the form

(2) c‖q(φ− ψ)‖ ≤ ‖p(φ− ψ)‖ for φ, ψ in A

with the projection p : C → C onto L along Q and q = id−p shows in [20] that the map

a is Lipschitz continuous.

The present paper proves that in caseA 6= {0} the map a is continuously differentiable.

The precise result is stated as Theorem 2.3.1 below. The proof is long and involved. Partial

results were obtained earlier in [17, 19]. The main result of [17] implies that a is C1-smooth

on an open neighbourhood of 0 ∈ L provided the stationary point is linearly unstable,

i.e., the real parts of the leading pair of eigenvalues are positive. The results in [19] yield

that a is C1-smooth on open annuli given by unstable sets of unstable hyperbolic periodic

orbits in A. It is not hard to see, however, that there are cases where A is nontrivial with

the stationary point linearly stable. Furthermore, there is at least one periodic orbit in A

which is not hyperbolic and unstable, namely the orbit projecting onto the boundary ∂La.

The starting point of the smoothness proof is the simple fact that the phase curves

R ∋ t 7→ xt ∈ C of bounded slowly oscillating solutions x on R are C1-smooth. Using

this foliation of A into smooth curves it is not very difficult to show that a is C1-smooth

in a neighbourhood of a point pφ, φ ∈ A \ {0}, provided there exist t > 1 and a C1-curve

α : (−1, 1) → C on A so that α and the phase curve s 7→ x(φ)s intersect transversally at

α(0) = x(φ)−t.

Such transversals are rather easily found for wandering points φ ∈ A \ {0}, i.e., for

points φ so that the solution x(φ) is not periodic. Due to the Poincaré–Bendixson theorem

from [20] the α-limit set of x(φ) is either the stationary point or a periodic orbit. Suppose

it is a hyperbolic periodic orbit. Then φ belongs to an unstable set as studied in [19], and

a piece of a one-dimensional local unstable manifold of a Poincaré map on a hyperplane

transversal to the periodic orbit yields a suitable curve α.

More difficult is the construction of smooth curves on A which transversally intersect

periodic orbits which are attracting or stable. Consider a slowly oscillating periodic so-

lution y with minimal period ω > 0. Set φ = y0. Let a closed hyperplane Z ⊂ C be given

so that φ+ Z is transversal to the phase curve t 7→ yt at t = ω, i.e.,

φ′ = y′ω = D1F (ω, φ)1 6∈ Z.

Assume for simplicity that the orbit {yt : t ∈ R} projects into the open kernel L◦
a.
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A technique from [20] yields an injective continuous curve

d : (−δe, δi) → C with d(0) = φ

which parametrizes the intersection A ∩ (φ + Z) in a neighbourhood of φ and has the

property that d((0, δi)) projects into the interior of the simple closed planar curve [0, ω] ∋

t 7→ pyt ∈ L while d((−δe, 0)) projects into the exterior. Suppose that no value d(s), s 6=

0, is on a periodic orbit. This can be achieved if the periodic orbit is attracting. The

smoothness of A at wandering points can then be used to show that both restrictions

d|(−δe, 0), d|(0, δi) are C1-smooth, with d′(s) 6= 0 for s 6= 0. In order to have smoothness

of d at 0 and transversality one needs that the tangent vectors d′(s) ∈ Z, s 6= 0, converge

to a nonzero limit vector as 0 6= s→ 0. The proof of convergence, in case of an attracting

periodic orbit and for a reparametrization of d, is based on the following considerations.

(i) The invariance properties of A imply that the trace of d is locally positively

invariant for the Poincaré map PZ defined in a neighbourhood of φ in φ+ Z. Therefore,

if d′(0) exists, then necessarily

DPZ(φ)d′(0) ∈ Rd′(0),

and d′(0) is an eigenvector or zero.

(ii) The inclusion A − A ⊂ S implies d′(s) ∈ S for s 6= 0, and d′(0) ∈ S if d is

differentiable at 0.

(iii) Floquet theory for slowly oscillating periodic solutions of equation (1) yields a

radius ̺ ∈ (0, 1) so that the reellified generalized eigenspace C> given by the Floquet

multipliers λ ∈ C of the periodic solution y with |λ| > ̺ satisfies

dimC> = 2 and C> ⊂ S

while the reellified generalized eigenspace C< of the remaining spectrum of the mon-

odromy operator D2F (ω, φ) satisfies

C< ∩ S = ∅.

The fact that 1 is a Floquet multiplier with eigenvector D1F (ω, φ)1 = y′ω = φ′ implies

C> = Rφ′ ⊕ Rφ∗

for some unit vector φ∗ ∈ C>, and it is not hard to see that the choice Z = C< ⊕ Rφ∗
yields a Poincaré map for which the nontrivial multiples of φ∗ are the only eigenvectors

of DPZ(φ) in S. Let λ∗ be the eigenvalue of DPZ(φ) associated with φ∗. Then |λ∗| > ̺,

in fact,

λ∗ ∈ (̺,∞)

as will be shown in Subsection 2.4 below.

(iv) In case the fixed point φ of PZ is hyperbolic and attractive, i.e., ̺ < λ∗ < 1,

trajectories (φn)∞n=0 of PZ in, say, d((0, δi)) converge to d(0) as n→ ∞. Then φn = d(sn)

with sn ∈ (0, δi), and a special case of the desired convergence property would be that

the sequence of the tangent vectors d′(sn) has a limit as n→ ∞. Observe that

d′(sn) ∈ S \ {0} = S ⊂ C \ C<
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This suggests using an inclination lemma in order to show that at least the slopes of

d′(sn) with respect to the decomposition C = C> ⊕ C< tend to 0, or equivalently, that

1

‖d′(sn)‖
d′(sn) → {φ∗,−φ∗} as n→ ∞.

An analysis of this approach shows that it requires a new a-priori estimate of the form

(3) c‖d′(s)‖ ≤ ‖p∗d
′(s)‖ for s 6= 0

with the projection p∗ : Z → Z onto Rφ∗ along C<. In other terms, the vectors d′(s),

which are tangent to the set A at d(s) and in Z, should belong to a certain cone which

contains the most unstable direction for DPZ(φ) and is disjoint from the complementary

space C<.

(v) An estimate of the form (3) follows rather easily from another a-priori estimate

which generalizes (2) in the sense that the projection p is replaced by the projection onto

C> along C< associated with a slowly oscillating periodic solution, and φ−ψ ∈ A−A ⊂ S

is replaced by elements from a larger subset of S.

Organization of the paper. Section 2 contains facts about slowly oscillating solutions,

the set S, the attractor A, Floquet multipliers of slowly oscillating periodic solutions,

Poincaré maps, local invariant manifolds, and curves in a plane. For proofs of results

which are presented without reference, see [17, 20]. In addition to the local Poincaré

maps on the special hyperplanes

y0 + (C< ⊕ Rφ∗)

mentioned before, a global return map P as in [20] and in many earlier papers on slowly

oscillating periodic solutions is discussed; for data φ ∈ C so that φ(−1) = 0 < φ(0),

[−1, 0] ∋ t 7→ eµtφ(t) ∈ R is increasing, and xφ has a first and second zero z1(φ) and

z2(φ) in (0,∞), P is given by

P (φ) = F (z2(φ) + 1, φ).

The map P will be useful in the proof that the map a is smooth in a neighbourhood of

0 ∈ L.

In Section 3 the a-priori estimate of the form (3) is derived. The proof of the genera-

lization of (2) is modelled after the proofs of variants of (2) in [16, 17, 4]; it is technically

more complicated.

In Section 4 sufficient conditions for smoothness of a are given in terms of the existence

of smooth curves on A which are transversal to the semiflow. Furthermore, smoothness

at wandering points is established.

Section 5 deals with the construction of curves on A which intersect or end at periodic

orbits. In Subsection 5.3 smoothness at wandering points and the a-priori estimate of

Subsection 3.2 are used to obtain in certain cases C1-curves whose tangents have a limit

at the periodic orbit. In Subsection 5.4 a curve on A is constructed which connects the

stationary point to a periodic orbit and on which the global return map P is conjugate

to a strictly monotone interval map. Differentiability of this curve will not be needed.

Section 6 completes the proof that a is smooth at projected periodic orbits, using the

results of Subsection 5.3 and local invariant manifolds of Poincaré maps.
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In Section 7 it is shown that a is smooth at 0 ∈ L, with Da(0) = 0. Ingredients

of the proof are local invariant manifolds of the semiflow at 0 ∈ C, the curve from

Subsection 5.4, and a lemma on inclinations of tangent spaces Tχ+a(χ)A for χ close to

0 ∈ L and a smooth in a neighbourhood of χ.

Related work. I. Tereščák announced a proof that attractors of certain semilinear

parabolic initial boundary value problems are contained in smooth finite-dimensional

manifolds [15]. Concerning Floquet theory and Poincaré–Bendixson theorems for delay

differential equations, see the work of J. Mallet-Paret and G. Sell [10, 11].

Terminology and notation. For a subset M of a topological space the closure, boun-

dary, and the set of inner points are denoted by M,∂M,M◦, respectively.

A curve γ is a continuous map defined on an open interval in R. Its range, or trace, is

often written |γ|. The interior and the exterior of a simple closed curve in a 2-dimensional

vector space over R are denoted by int(γ) and ext(γ), respectively.

If X and Y are Banach spaces over R or C then Lc(X,Y ) stands for the Banach space

of linear continuous maps from X into Y .

If M is a subset of a Banach space X over R and x ∈M then TxM denotes the set of

all tangent vectors of M at x, i.e. the set of all v ∈ X so that there exists a differentiable

curve γ : (−1, 1) → X with

γ(0) = x, |γ| ⊂M, v = γ′(0) = Dγ(0)1.

Observe that 0 ∈ TxM , RTxM ⊂ TxM , and that TxM + TxM 6⊂ TxM is possible. If

f is a differentiable map from an open subset U of X into a Banach space Y over R, if

M ⊂ U and f(M) ⊂ N ⊂ Y then

Df(x)TxM ⊂ Tf(x)N for all x ∈M,

by the chain rule.

The word “solution” (of a delay differential equation) always refers to a real- or

complex-valued function while the word “phase curve” is reserved for the associated

curves of the form t 7→ xt with values in the space of initial data. The word “trajectory”

is used if a set X , a map f : M → X,M ⊂ X , and a sequence

(xj)j∈J , J = Z ∩ I, I ⊂ R an interval,

are given so that

xj+1 = f(xj) for all j ∈ J with j + 1 ∈ J.

Reference in subsection (n.m) to equation (c) from another subsection (a.b) is made

using the label (a.b.c), analogously for propositions, lemmas, corollaries, and theorems.

2. The delay differential equation and
its attractor of almost all solutions

2.1. The delay differential equation. Let a C1-function f : R → R satisfy

f(0) = 0, f ′(x) < 0 for all x ∈ R, and −∞ < inf f or sup f <∞.
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Let µ > 0. A solution of the equation (1.1.1)

x′(t) = −µx(t) + f(x(t − 1))

is either a continuous real function x which is defined on an interval [t0 − 1,∞), t0 ∈ R,

and is differentiable and satisfies equation (1.1.1) for all t > 0, or a differentiable real

function x which satisfies equation (1.1.1) for all t ∈ R. Solutions x : [t0−1, t1)→ R with

t0 < t1 or x : [t0 − 1,∞) → R of more general equations

(1) x′(t) = g(t, x(t− 1))

given by functions g : [t0,∞)×R → R, t0 ∈ R, or g : R×R → R are defined analogously.

Let C denote the space of continuous real functions on the interval [−1, 0], equipped

with the norm given by

‖φ‖ = max
t∈[−1,0]

|φ(t)|.

Every φ ∈ C extends to a uniquely determined solution xφ on the interval [−1,∞). This

is most easily seen using the variation-of-constants formulae

x(t) − x(n) = e−µ(t−n)x(n) +

t\
n

e−µ(t−s)f(x(s− 1)) ds

for n ∈ N0, n ≤ t ≤ n+ 1. Solutions depend continuously on the initial data in the sense

that given φ ∈ C, ε > 0, and t0 ≥ 0, there exists δ > 0 so that for all ψ ∈ C with

‖ψ − φ‖ ≤ δ and for all t ∈ [−1, t0],

|xψ(t) − xφ(t)| < ε.

For a function y : D → R and for t ∈ R with [t−1, t] ⊂ D, the segment yt : [−1, 0] → R

is defined by

yt(s) = y(t+ s).

The relations

F (t, φ) = xφt , φ ∈ C, t ≥ 0,

define a continuous semiflow F : [0,∞) × R → R. Each map F (t, ·) : C → C, t ≥ 0, is

injective; if solutions x : [−1,∞) → R and y : [−1,∞) → R satisfy xt = yt for some t ≥ 0

then xs = ys for all s ≥ 0. All maps F (t, ·), t≥1, are compact in the sense that for every

bounded set B ⊂ C the set F (t, B) is compact. For every φ ∈ C the ω-limit set

ω(φ) = {ψ ∈ C : there exists a sequence (tn)∞n=0 in [0,∞)

so that tn → ∞ and F (tn, φ) → ψ as n→ ∞}

is nonempty, compact, connected; for each ψ ∈ ω(φ) there exists a solution x = x(ψ)

which is defined on R and satisfies x0 = ψ. Note that due to injectivity of the maps

F (t, ·), x(ψ) is uniquely determined. The set ω(φ) is invariant in the sense that

x(ψ)t ∈ ω(φ) for all ψ ∈ ω(φ), t ∈ R.

Similarly, every solution x : R → R of equation (1.1.1) which is bounded at −∞ has a

nonempty α-limit set
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α(x) = {ψ ∈ C : there exists a sequence (tn)0n=−∞ in R

so that tn → −∞ and xtn → ψ as n→ −∞},

which is compact and connected and has the same invariance properties as the ω-limit

sets.

Each map F (t, ·), t ≥ 0, is C1-smooth, and for all t ≥ 0, φ ∈ C, ψ ∈ C,

D2F (t, φ)ψ = vψt

where v = vψ is the solution of the variational equation along x = xφ,

(2) v′(t) = −µv(t) + f ′(x(t − 1))v(t− 1)

with initial condition v0 = ψ.

Each map D2F (t, φ), t ≥ 0 and φ ∈ C, is injective, and all maps D2F (t, φ), t ≥ 1

and φ ∈ C, are compact. For t > 1 and φ ∈ C the partial derivative D1F (t, φ) exists,

and

D1F (t, φ)1 = x′t for x = xφ

where x′t = (xt)
′. The map D1F : (1,∞)×C→Lc(R, C) is continuous, and the restriction

F |(1,∞) × C is C1-smooth. If x : [t0 − 1,∞) → R is a solution of equation (1.1.1) and

t ≥ s > t0 + 1 then

x′t = D2F (t− s, xs)x
′
s.

Let φ ∈ C, t > 1, and let Z be a closed hyperplane in C such that

D1F (t, φ)1 6∈ Z.

Z is the nullspace of a linear continuous functional φ∗ : C → R. An application of the

Implicit Function Theorem to the equation φ∗(F (s, ψ) − F (t, φ)) = 0 with the solution

s = t, ψ = φ shows that there exist an open neighbourhood U of φ, ε > 0 with 1 < t− ε,

and a C1-map τ : U → R so that

τ(φ) = t, τ(U) ⊂ (t− ε, t+ ε),

F (τ(ψ), ψ) ∈ F (t, φ) + Z for all ψ ∈ U,

and for all ψ ∈ U and s ∈ (t− ε, t+ ε),

τ(ψ) = s if and only if F (s, ψ) ∈ F (t, φ) + Z.

Moreover,

D1F (τ(ψ), ψ)1 6∈ Z for all ψ ∈ U.

The map τ is called a stopping time, and the C1-map

I : U ∋ ψ 7→ F (τ(ψ), ψ) ∈ C

is called an intersection map. Obviously, I(U) ⊂ F (t, φ)+Z. The derivatives of I satisfy

DI(ψ) = pξ ◦D2F (τ(ψ), ψ), ψ ∈ U,

with the projection pξ :C→C along Rξ, ξ=D1F (τ(ψ), ψ)1, onto Z=TI(ψ)(F (t, φ) + Z);

for each linear continuous functional φ∗ : C → R with Z = (φ∗)−1(0) and for all χ ∈ C,

pξχ = χ−
φ∗(χ)

φ∗(ξ)
ξ.
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The linear operators T (t) = D2F (t, 0), t ≥ 0, which are given by the solutions of the

linearization

(3) x′(t) = −µx(t) − αx(t − 1),

α = −f ′(0) > 0, of equation (1.1.1) at the zero solution R ∋ t 7→ 0 ∈ R, form a

strongly continuous semigroup. The spectrum σ of its generator is discrete and consists

of eigenvalues; it is given by the characteristic equation

λ+ µ+ αe−λ = 0.

There exists a leading pair Λ0 = {λ0, λ̃0} ⊂ σ, i.e.,

Re(λ̃0) ≤ Re(λ0) and Re(λ̃0) > max{Re(λ) : λ ∈ σ, λ0 6= λ 6= λ̃0}.

Furthermore,

Λ0 ⊂ R + i(−π, π) and σ \ Λ0 ⊂ {λ ∈ C : 2π < | Im(λ)|}.

The reellified generalized eigenspace L ⊂ C given by the spectral set Λ0 has dimension 2.

Let Q denote the reellified generalized eigenspace given by the complementary spectral

set σ \ Λ0, and let p : C → C denote the projection along Q onto L; set q = id−p.

Depending on α and µ, either both λ0 and λ̃0 are real and λ0 < 0, or 0 < Im(λ0) and

λ̃0 = λ0. In particular,

0 < Im(λ0) and λ̃0 = λ0 in case 0 ≤ Re(λ0).

Set u0 = Re(λ0), v0 = Im(λ0).

The subsequent properties of curves in L are needed later.

Proposition 1. Let g : [a, b] → L be a simple closed C1-curve. Suppose γ = g′(a)

and χ ∈ L are linearly independent. Then there exist ε > 0, k ∈ {0, 1}, q ∈ (0, 1) so that

g(a) + (0, ε)(−1)kχ ⊂ int(g), g(a) + (0, ε)(−1)k+1χ ⊂ ext(g),

∅ = |g| ∩ {g(a) + xγ + yχ : |x| < q|y|, −ε < y < 0}.

If h : (c, d) → L is a C1-curve with c < 0 < d, h(0) = g(a), h′(0) = (−1)kχ then there

exists ε′ ∈ (0, ε) with h((0, ε′)) ⊂ int(g), h((−ε′, 0)) ⊂ ext(g).

Proposition 2. Let g : [a, b] → L be a simple closed C1-curve. Suppose γ = g′(a)

and χ ∈ L are linearly independent. Let h : (c, d) → L be a continuous curve with

c < 0 < d, h(0) = g(a). Assume that the restrictions h|(c, 0), h|(0, d) are C1-smooth,

h((c, 0)) ⊂ ext(g), h((0, d)) ⊂ int(g),

h′(s) → χ as 0 > s→ 0 and h′(s) → (−1)jχ as 0 < s→ 0

for some j ∈ {0, 1}. Then j = 0, and h is C1-smooth.

P r o o f. Choose ε and q according to Proposition 1, and choose ε ∈ (0, 1) with

ε/(1 − ε) < q. Assume j = 1. The equations

h(s) − g(a) = t(s)γ + u(s)χ for c < s < 0,

h(s) − g(a) = v(s)γ + ω(s)χ for 0 < s < d,
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define real C1-functions t, u on (c, 0) and v, w on (0, d) which satisfy

t(s) → 0, u(s) → 0, t′(s) → 0, u′(s) → 1 as 0 > s→ 0,

v(s) → 0, ω(s) → 0, v′(s) → 0, ω′(s) → −1 as 0 < s→ 0.

It follows that there exists δ ∈ (0,min{d,−c}) so that

|u(s)| < ε, |u(s) − s| ≤ ε|s|, |t(s)| ≤ ε|s| for − δ < s < 0,

|w(s)| < ε, |w(s) + s| ≤ ε|s|, |v(s)| ≤ ε|s| for 0 < s < δ.

Hence

|t(s)| ≤
ε

1 − ε
|u(s)| and −ε < u(s) < 0 for −δ < s < 0,

|v(s)| ≤
ε

1 − ε
|w(s)| and −ε < ω(s) < 0 for 0 < s < δ.

The convex set {g(a)+xγ+ yχ : |x| < q|y|, −ε < y < 0} is disjoint from |g| and contains

points of ext(g) as well as points of int(g), which implies a contradiction.

2.2. Slowly oscillating solutions. A function x : D →M, D ⊂ R, is called slowly

oscillating if |z − z′| > 1 for every pair of zeros z 6= z′. It is called eventually slowly

oscillating if there exists t ∈ R so that [t,∞) ⊂ D and x|[t,∞) is slowly oscillating. The

main result in [12] implies that the set

E = {φ ∈ C : xφ eventually slowly oscillating}

is open and dense in C.

Segments xt of slowly oscillating solutions belong to the set

S = {φ ∈ C \ {0} : there exist n ∈ {0, 1} and z ∈ [−1, 0] so that

(−1)nφ(t) ≤ 0 on [−1, z], 0 ≤ (−1)nφ(t) on [z, 0]}

of data with at most one sign change, which satisfies

(1) S = S ∪ {0}, RS = S, L ⊂ S, S ∩Q = ∅.

A useful observation is that the scaled differences t 7→ eµt(x(t) − y(t)) of solutions x, y

of equation (1.1.1) which are defined on some interval [t0 − 1,∞), t0 ∈ R, solve equation

(2.1.1) with g : [t0,∞) × R → R given by

g(t, δ) = eµt(f(e−µ(t−1)δ + y(t− 1)) − f(y(t− 1))) = eµt
e−µ(t−1)δ+y(t−1)\

y(t−1)

f ′(ξ) dξ

so that the negative feedback condition

(2) δg(t, δ) < 0

for t ≥ t0, 0 6= δ ∈ R, is satisfied. If φ ∈ C and v : [−1,∞) → R is a solution of

the variational equation along xφ then the scaled function t → eµtv(t) is a solution of

equation (2.1.1) with

g(t, δ) = eµf ′(xφ(t− 1))δ for t ≥ 0, δ ∈ R,

and (2) holds for t ≥ 0, 0 6= δ ∈ R.
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Proposition 1. Let t0 ∈ R, t1 > t0. Suppose g : [t0, t1) × R → R is continuous , (2)

holds for t0 ≤ t < t1 and 0 6= δ ∈ R, and x : [t0 − 1, t1) → R is a solution of equation

(2.1.1) with xt0 ∈ S. Then xt ∈ S for all t ∈ [t0, t1). In case t0 + 4 ≤ t1 there exists

t ∈ [t0, t0 + 4) so that xt has no zero, and x|[t− 1, t1) is slowly oscillating.

P r o o f. Compare the proofs of Remark 6.1 and Proposition 6.1 in [17].

Corollary 1. (i) Let t0 ∈ R. For every pair x : [t0 − 1,∞) → R, y : [t0 − 1,∞) → R

of solutions of equation (1.1.1) with xt0 − yt0 ∈ S,

xt − yt ∈ S for all t ≥ t0

and there exists t ∈ [t0, t0+4] so that xt−yt has no zero. The restriction (x−y)|[t−1,∞)

is slowly oscillating.

(ii) Let φ ∈ C. If v : [−1,∞) → R is a solution of the variational equation along xφ

with v0 ∈ S then vt ∈ S for all t ≥ 0, and there exists t ∈ [0, 4] so that vt has no zero;

the restriction v|[t− 1,∞) is slowly oscillating.

P r o o f. Compare the proofs of Remark 6.1 and Proposition 6.1 in [17].

The convex cone

K = {φ ∈ C : φ(−1) = 0, t 7→ eµtφ(t) increasing, 0 < φ(0)}

in the closed hyperplane

H = {φ ∈ C : φ(−1) = 0} = ev−1(0) for ev : C ∋ φ 7→ φ(−1) ∈ R

satisfies K ⊂ S,K = K ∪ {0}.

Proposition 2. (i) Suppose φ ∈ C has no zero, z > 0, xφ(t) 6= 0 for 0 < t < z and

xφ(z) = 0. Then xφz+1 ∈ K ∪ (−K).

(ii) Suppose φ ∈ K ∪ (−K), or φ has no zero. Either xφ(t) 6= 0 for all t > 0, |xφ|

is decreasing on (0,∞), and xφ(t) → 0 as t → ∞, or the zeros of xφ in (0,∞) are all

simple and form a strictly increasing sequence of points zn(φ), n ∈ I(φ) = N ∩ [1, n(φ))

with n(φ) ∈ N ∪ {∞}. In the last case,

F (zn(φ) + 1, φ) ∈ (−1)nK for all n ∈ I(φ) if φ ∈ K,

F (zn(φ) + 1, φ) ∈ (−1)n+1K for all n ∈ I(φ) if φ ∈ −K.

(iii) Let φ ∈ K ∪ (−K). Suppose xφ has positive zeros. In case φ ∈ K, (xφ)′(t) < 0

on (0, z1(φ)) and 0 > xφ(t) ≥ min[0,‖φ‖] f for z1(φ) < t < z1(φ) + 1. In case φ ∈ −K,

(xφ)′(t) > 0 on (0, z1(φ) and 0 < xφ(t) ≤ max[−‖φ‖,0] f for z1(φ) < t < z1(φ) + 1.

(iv) Suppose φ ∈ K ∪ (−K), xφ has zeros in (0,∞), and n(φ) > 2. Then there exists

a neighbourhood N of φ in C so that each xψ, ψ ∈ N ∩ (K ∪ (−K)), has zeros in (0,∞)

with n(ψ) > 2, and the map

N ∩ (K ∪ (−K)) ∋ ψ 7→ z2(ψ) ∈ R

is continuous.

(v) In case u0 ≥ 0, the zeros of each xφ, φ ∈ K ∪ (−K), in (0,∞) are unbounded ,

and for every bounded subset B ⊂ K ∪ (−K) there exists b > 0 with

z2(φ) < b for all φ ∈ B.
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P r o o f. For (i) and (ii), compare the proof of Proposition 3.2 in [20]. Proof of (iii)

in case φ ∈ K and xφ has positive zeros: For 0 < t < z1(φ), (xφ)′(t) = −µxφ(t) +

f(xφ(t− 1)) ≤ −µxφ(t) < 0, and for z1(φ) < t < z1(φ) + 1,

(xφ)′(t) > f(xφ(t− 1)) ≥ min
[−1,z1(φ)]

f(xφ(s)) = min
[0,‖φ‖]

f.

For (iv), compare part 1 of the proof of Proposition 9.2 in [17]. For (v), compare the

proof of Proposition 6.3 in [17].

Consider the return map P : K ∪ {0} ∪ (−K) → K ∪ {0} ∪ (−K) given by

P (φ) =

{
F (z2(φ) + 1, φ) in case φ 6= 0, and xφ has positive zeros with n(φ) > 2,
0 otherwise.

The domain of P is closed.

Proposition 3. (i) P is continuous , and P (K ∪ {0} ∪ (−K)) is compact.

(ii) Suppose J ⊂ K ∪ {0} ∪ (−K) is a subset so that for every φ ∈ J \ {0},

0 6= φ(t) for −1 < t ≤ 0,

and xφ has positive zeros with n(φ) > 2. Then the restriction P |J is injective.

P r o o f. Assertion (i) follows by arguments as in the proof of Proposition 3.4 in [20].

Let φ, ψ in J be given with P (φ) = P (ψ). If φ = 0 then the equation 0 = P (φ) = P (ψ),

the properties of J and the definition of P altogether yield ψ = 0. In case 0 6= φ ∈ K one

has K ∋ P (φ) = P (ψ). It follows that ψ ∈ K, and F (z2(φ) + 1, φ) = F (z2(ψ) + 1, ψ).

Proof of z2(φ) = z2(ψ): In case z2(ψ) < z2(φ) the injectivity of the maps F (t, ·),

t ≥ 0, gives F (z2(φ) − z2(ψ), φ) = ψ ∈ K. On the other hand, the hypothesis on J and

Proposition 2(ii) yield F (t, φ) ∈ C \K for all t ∈ (0, z2(φ) + 1), a contradiction.

The injectivity of F (z2(φ) + 1, ·) = F (z2(ψ) + 1, ·) implies φ = ψ. The proof in case

0 6= φ ∈ −K is analogous.

The next results concern slowly oscillating solutions on R.

Proposition 3. If x : R → R is a slowly oscillating solution of equation (1.1.1)

which is bounded on (−∞, 0] then inf x−1(0) = −∞. The zeros of x are all simple and

form a strictly increasing sequence (zn(x))n∈I(x), I(x) = {n ∈ Z : n < n(x)} with

n(x) ∈ Z ∪ {∞}, so that xzn(x)+1 ∈ K ∪ (−K) for all n ∈ I(x).

P r o o f. See Proposition 3.1(ii) in [20], and use Proposition 2.

Proposition 4. (i) For every slowly oscillating solution x : R → R of equation (1.1.1)

which is bounded on (−∞, 0] there exists a strictly increasing sequence (tn)
0
n=−∞ in R

with tn → −∞ as n→ −∞ so that (xtn)0n=−∞ is a trajectory of P in K.

(ii) For every bounded trajectory (φn)0n=−∞ of P in K ∪ (−K) there exist a bounded

slowly oscillating solution x : R → R of eq. (1.1.1) and a strictly increasing sequence

(tn)
0
n=−∞ in R with tn → −∞ as n→ −∞ so that φn = xtn for all integers n ≤ 0.

P r o o f. To prove (i) observe that for integers n with n+1 < n(x) and j ∈ {0, 1} with

xzn(x)+1 ∈ (−1)jK, the simplicity of zn+1(x) > zn(x) + 1 yields xzn+1(x)+1 ∈ (−1)j+1K.

Fix some integer n < n(x) with xzn(x)+1 ∈ K, and set tj = zn+2j(x) + 1, for integers

j ≤ 0.
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Proof of (ii): The hypothesis that (φn)0n=−∞ is a trajectory of P in K∪(−K) implies

that for every integer j < 0, xφj has positive zeros, n(φj) > 2, and φj+1 = P (φj) =

F (z2(φj)+1, φj). Consider the sequence in R given by t0 = 0 and tj = tj+1−(z2(φj)+1)

for integers j < 0. The equations x(t) = xφj (t− tj) for tj < t ≤ tj+1, j ∈ −N, determine

a solution x : R → R of equation (1.1.1) with xtj = φj ∈ K ∪ (−K) for all integers j ≤ 0,

and Proposition 2(ii) guarantees that x is slowly oscillating. It remains to show that x is

bounded. Observe that parts (iii) and (i) of Proposition 2 imply that in case inf f > −∞

each xφ, φ ∈ K ∪ (−K), with positive zeros and 2 < n(φ) is bounded on [z2(φ),∞) by

c = max[inf f,0] f − inf f . For every t ∈ R there exists an integer j ≤ 0 so that tj ≤ t,

x(t) = xφj−1 (t − tj−1), t − tj−1 ≥ tj − tj−1 = z2(φj−1) + 1, and φj−1 ∈ K ∪ (−K).

Therefore |x(t)| ≤ c. The proof in case sup f <∞ is analogous.

Proposition 4(ii) shows in particular that nonzero fixed points φ of P define slowly

oscillating periodic solutions of equation (1.1.1) with period ω = z2(φ) + 1.

The next result generalizes the fact that phase curves of bounded slowly oscillating

solutions enter and remain in a cone containing the linear space L, which consists of

segments of slowly oscillating solutions of the linear equation (2.1.3), and 0.

Proposition 5. Let r > 0. There exists c(r) > 0 with the following property. If

x : [t0 − 1,∞) → R, y : [t0 − 1,∞) → R are solutions of equation (1.1.1) so that x0 − y0
has no zero and |x(t)| ≤ r, |y(t)| ≤ r on [t0 − 1,∞), then

c(r)‖xt − yt‖ ≤ ‖p(xt − yt)‖ for all t ≥ t0 + 2.

P r o o f. See the proof of Proposition 7.1 in [17], and correct the argument in case B2

according to the arguments in case II, subcase 2, in the proof of Lemma 5 in [16], or see the

arguments in case (D)(iv) in the proof of Proposition XV.4.2 in [4] with |x(t−1)| > |x(t)|

instead of . . . = . . . in line 3, page 396, and “all” instead of “some” in line 7, page 396.

2.3. The attractor of eventually slowly oscillating solutions. An attractorM∞

of a continuous semiflow Φ : [0,∞)×M →M on a complete metric space M is a compact

set M∞ ⊂M which is invariant in the sense that

Φ(t,M∞) = M∞ for all t ≥ 0

and which attracts all bounded sets in the sense that for every bounded set B ⊂M and

for every neighbourhood N of M∞ there exists tBN ≥ 0 with

Φ(t, B) ⊂ N for all t ≥ tBN .

This definition is equivalent to the definition of compact global attractors used in [5];

see Chapter XVI in [4]. In case all maps Φ(t, ·) : M → M , t ≥ 0, are injective it is also

equivalent to the definition given in Chapter 4 of [20]. Attractors contain all ω-limit sets,

in particular, all stationary points and periodic orbits. In Chapter 4 of [20] it is shown

that the restricted semiflow

FS : [0,∞) × S ∋ (t, φ) 7→ F (t, φ) ∈ S

has an attractor which is denoted by A.
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Proposition 1. (i) φ ∈ A if and only if either φ = 0, or there exist a bounded slowly

oscillating solution x : R → R of equation (1.1.1) and t ∈ R with φ = xt.

(ii) If x : R → R is a solution of equation (1.1.1) so that x|(−∞, 0] is bounded and

if there is a sequence (tn)
0
n=−∞ with tn → −∞ as n→ −∞ and xtn ∈ S for all integers

n ≤ 0 then xt ∈ A for all t ∈ R.

(iii) A ∩H = A ∩ (K ∪ {0} ∪ (−K)).

(iv) P (A ∩K) = A ∩K,P (A ∩ (−K)) = A ∩ (−K), P (A ∩H) = A ∩H.

(v) Suppose that for every φ ∈ A ∩ (K ∪ {0} ∪ (−K)) the solution xφ has positive

zeros , and n(φ) ≥ 2. Then the map A ∩H ∋ φ 7→ P (φ) ∈ A ∩H is bijective.

P r o o f. 1. Proof of (i): Proposition 4.1 of [20] yields that 0 and all segments xt
of bounded slowly oscillating solutions x : R → R of equation (1.1.1) belong to A.

Conversely, if φ ∈ A then the same proposition shows that there are a bounded solution

x : R → R with xs ∈ S for all s ∈ R, and t ∈ R with φ = xt. In case φ 6= 0, the

injectivity of the maps F (t, ·), t ≥ 0, implies xs ∈ S \ {0} = S for all s ∈ R, and

Proposition 2.2.2(i), (ii) guarantees that x is slowly oscillating.

2. Proof of (ii): Suppose inf f >−∞. Corollary 2.2.1 yields that x is slowly oscillating.

Apply Proposition 2.2.3. In case n(x) < ∞, Proposition 2.2.2(ii) implies x(t) → 0 as

t→ ∞. In case n(x) = ∞, Proposition 2.2.2(iii) gives

0 ≥ x(t) > inf f for zn(x) < t < zn+1(x), n ∈ Z, x′(zn(x)) < 0,

and consequently

0 ≤ x(t) < max
[inf f,0]

f for zn(x) < t < zn+1(x), n ∈ Z, 0 < x′(zn(x)).

It follows that x is bounded. Apply assertion (i). The proof in case sup f <∞ is analogous.

3. Proof of (iii): For 0 6= φ ∈ A ∩H , consider t ∈ R and a solution x according to

assertion (i), and apply Proposition 2.2.2(i) to xs with s < t− 1 so that x has no zero on

[s− 1, t− 1). It follows that φ ∈ K ∪ (−K).

4. Proof of A ∩K ⊂P (A ∩K): Let ψ∈A ∩K. Assertion (i) and Proposition 2.2.3

show that there exist t ∈ R and a bounded slowly oscillating solution x : R → R and

an integer n < n(x) with ψ = xt and t − 1 = zn(x). It follows that φ = xzn−2(x)+1

belongs to A∩K, z2(φ) + 1 = zn(x)− zn−2(x), and P (φ) = F (z2(φ) + 1, φ) = F (zn(x)−

zn−2(x), xzn−2(x)+1) = ψ.

5. Proof of (v): Part (i) and Proposition 2.2.3 combined guarantee that for φ ∈

A ∩ (K ∪ (−K)) and for −1 < t ≤ 0, φ(t) 6= 0. Apply Proposition 2.2.3(ii).

For φ ∈ A let x(φ) denote the uniquely determined solution of equation (1.1.1) which

is defined on R and satisfies x(φ)0 = φ.

Proposition 2. The map FA : R ×A ∋ (t, φ) 7→ x(φ)t ∈ A is a continuous flow.

P r o o f. See Proposition 4.3 in [20].

Proposition 3. For every φ ∈ A the curve R ∋ t 7→ x(φ)t ∈ C is C1-smooth, with

x(φ)′t = D(s 7→ x(φ)s)(t)1 for all t ∈ R. The map A ∋ φ 7→ φ′ ∈ C is continuous , and

for all φ ∈ A \ {0}, φ′ 6= 0. The map R ×A ∋ (t, φ) 7→ x(φ)′t ∈ C is continuous.
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P r o o f. The equations x(φ)t+h − x(φ)t = F (2 + h, x(φ)t−2)−F (2, x(φ)t−2) for t ∈ R

and |h| < 1 yield the differentiability of the curve, and the formula

D(s 7→ x(φ)s)(t)1 = D1F (2, x(φ)t−2)1 = F (2, x(φ)t−2)
′ = (x(φ)t)

′.

Continuity of the derivative of the curve follows from

x(φ)′t = −µx(φ)t + f ◦ x(φ)t−1 = −µFA(t, φ) + f ◦ (FA(t− 1, φ)).

The last equation shows in case t = 0 that the map A ∋ φ 7→ φ′ ∈ C is continuous. φ′ = 0

implies 0 = −µφ + f ◦ x(φ)−1, hence µφ(0) = f(x(φ)(−1)) = f(φ(−1)) = f(φ(0)), and

therefore φ(0) = 0, and φ = 0.

In Chapter 7 of [20] it is shown that

(1) A−A ⊂ S.

This inclusion and the relations S ∩ Q = ∅, or equivalently, 0 6∈ pS, are used in [20] to

obtain a map a : pA→ Q so that

A = {χ+ a(χ) : χ ∈ pA}.

An a-priori estimate as in Proposition 2.2.5 yields that the map a is Lipschitz continuous.

The next result is a first indication that a is even better.

Proposition 4. For every pair of differentiable curves γ : (−1, 1)→C, ̺ : (−1, 1)→C

with γ(0) = ̺(0) and γ([0, 1)) ∪ |̺| ⊂ A,

Rγ′(0) + R̺′(0) ⊂ S.

In particular , TφA+ TφA ⊂ S.

P r o o f. Let r, s ∈ R. Then

rγ′(0) = lim
h→0

r

h
(γ(h) − γ(0)), −s̺′(0) = lim

h→0

−s

h
(̺(h) − ̺(0)).

In case r > 0 6= s,

rγ′(0)+ s̺′(0) = lim
0<h→0

1

h
[(γ(rh)− γ(0))− (̺(−sh)− ̺(0))] = lim

0<h→0

1

h
(γ(rh)− ̺(−sh)).

Recall (1) and RS ⊂ S. It follows that rγ′(0) + s̺′(0) ∈ S. In case r < 0 6= s, use

rγ′(0) + s̺′(0) = lim
0>h→0

1

h
[(γ(rh) − γ(0)) − (̺(−sh) − ̺(0))].

The proof in case r = 0 or s = 0 is similar and simpler.

Note that Propositions 4 and 3 combined yield

(2) φ′ ∈ S and 0 6= pφ′ for every φ ∈ A \ {0}.

In case the attractor A is nontrivial, i.e., A 6= {0}, there are periodic orbits in A. For

a slowly oscillating periodic solution y : R → R of equation (1.1.1) with zero sequence

(zn(y))
∞
n=−∞, the minimal period ω = ω(y) > 0 is given by zn+2(y) − zn(y), and the

orbit parametrization η : [0, ω] ∋ t 7→ yt ∈ C is a simple closed C1-curve with |η| ⊂ A.

The projected parametrization p ◦ η is a simple closed curve, with 0 ∈ int(p ◦ η); for
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any other slowly oscillating periodic solution ỹ : R → R of equation (1.1.1) with orbit

parametrization η̃, either

ỹ = y(t+ ·) for some t ∈ R,

or

|η| ∩ |η̃| = ∅, and |p ◦ η| ⊂ int(p ◦ η̃) or |p ◦ η̃| ⊂ int(p ◦ η).

In case A 6= {0} there exists a slowly oscillating periodic solution yb of equation (1.1.1),

with yb(−1) = 0 < (yb)′(−1), so that

pA = int(p ◦ ηb) ∪ |p ◦ ηb|,

with the orbit parametrization ηb of yb. For every φ ∈ A\{0} so that x(φ) is not periodic,

α(x(φ)) ∩ ω(φ) = ∅,

and each limit set is either the singleton {0} or the orbit |η| of a slowly oscillating periodic

solution y : R → R of eq. (1.1.1). For proofs, see [20].

In the present paper we prove the following result on smoothness.

Theorem 1. In case A 6= {0} the restriction a|int(p ◦ ηb) is C1-smooth, and for

every χ ∈ ∂pA = |p ◦ ηb| there exist an open neighbourhood N of χ in L and a C1-map

aN : N → Q with

a|pA ∩N = aN |pA ∩N.

Assume from now on A 6= {0}. The next propositions on periodic orbits in A are used

in parts of the proof of Theorem 1.

Proposition 5. Let y : R → R be a slowly oscillating periodic solution with orbit

parametrization η. Let φ ∈ A. If pφ ∈ int(p ◦ η) [. . . ∈ ext(p ◦ η)] then pFA(t, φ) ∈

int(p ◦ η) [. . . ∈ ext(p ◦ η)] for all t ∈ R.

P r o o f. Let φ ∈ A, pφ ∈ int(p ◦ η). Suppose pFA(t, φ) ∈ L \ int(p ◦ η) for some t ∈ R.

Then there exists s ∈ R with pFA(s, φ) ∈ ∂(int(p ◦ η)) = |p ◦ η|, and pFA(s, φ) = pyt
for some t ∈ R. Hence FA(s, φ) = pFA(s, φ) + a(pFA(s, φ)) = pyt + a(pyt) = yt, and

consequently φ = FA(−s, yt) = yt−s, or pφ ∈ |p ◦ η|, which yields a contradiction to

pφ ∈ int(p ◦ η).

Incidentally, note that for every slowly oscillating periodic solution y : R → R and for

all n ∈ Z,

(3) H ∩ |η| = {yzn(y)+1, yzn+1(y)+1} = (K ∪ (−K)) ∩ |η|

and

(4) yzn(y)+1 ∈ K if and only if yzn+1(y)+1 ∈ −K.

Proposition 6. Suppose

0 < I = inf{‖pyt‖ : y is a slowly oscillating periodic solution of equation (1.1.1), t ∈ R}.

Then there exist a slowly oscillating periodic solution y of equation (1.1.1) and t ∈ R so

that I = ‖pyt‖. Let η denote the orbit parametrization of y. For every φ ∈ A \ {0} with
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pφ ∈ int(p ◦ η), either

α(x(φ)) = {0} and ω(φ) = |η|

or

α(x(φ)) = |η| and ω(φ) = {0}.

P r o o f. 1. There is a sequence of slowly oscillating periodic solutions y(n), n ∈ N,

with minimal periods ωn and y
(n)
0 ∈ K for all integers n, and there is a sequence of reals

tn ∈ [0, ωn), n ∈ N, so that

‖py
(n)
tn ‖ → I as n→ ∞.

All y
(n)
0 belong to the compact set A∩K, and a subsequence (y

(nj)
0 )∞j=1 converges to some

φ ∈ A ∩K, with ‖pφ‖ = limj→∞ ‖py
(nj)
0 ‖ ≥ I > 0. It follows that φ ∈ K \ {0} = K, and

the continuity of P gives

P (φ) = P ( lim
j→∞

y
(nj)
0 ) = lim

j→∞
P (y

(nj)
0 ) = lim

j→∞
y
(nj)
0 = φ,

so that y = x(φ) is a slowly oscillating periodic solution, with minimal period

ω = z2(φ) + 1 = z2( lim
j→∞

y
(nj)
0 ) + 1 = lim

j→∞
z2(y

(nj)
0 ) + 1,

according to Proposition 2.2.2(iv). Hence ωnj
→ ω as j → ∞, and the sequence (tnj

)∞j=1

is bounded. A subsequence of points sk = tnjk
, k ∈ N, converges to some t ∈ [0, ω + 1].

Using continuous dependence on initial data on the interval [0, ω + 1] and the equations

y
(njk

)
sk − yt = (y

(njk
)

sk − ysk
) + (ysk

− yt), k ∈ N,

one finds

y
(njk

)
sk → yt as k → ∞, py

(njk
)

sk → pyt as k → ∞,

and consequently, I = ‖pyt‖.

2. Let η denote the orbit parametrization of y. Let φ ∈ A \ {0}, pφ ∈ int(p ◦ η).

Claim: x(φ) is not periodic.

Proof : Suppose the slowly oscillating solution x(φ) is periodic. Let ξ denote its orbit

parametrization. Then |p ◦ ξ| ⊂ int(p ◦ η), according to Proposition 5. It follows that

ext(p ◦ η) ⊂ ext(p ◦ ξ), and

|p ◦ ξ| ∩ {pyt} = ∅.

Moreover,

|p ◦ ξ| ∩ [0, 1)pyt = ∅

since otherwise ‖pxs‖ < ‖pyt‖ = I, contrary to the definition of I. Choose a convex

open neighbourhood N of pyt in L so that N ∩ |p ◦ ξ| = ∅. Then N contains points in

ext(p ◦ η) ⊂ ext(p ◦ ξ). It follows that 0 ∈ int(p ◦ ξ) can be connected by a continuous

curve in L \ |p ◦ ξ| to points in ext(p ◦ ξ), which yields a contradiction.

3. Suppose {0} 6=α(x(φ)) 6= |η|. Then there exists a slowly oscillating periodic solution

x̃ of equation (1.1.1) with orbit parametrization η̃ so that α(x(φ)) = |η̃|. By Proposition 5,

px(φ)t ∈ int(p ◦ η) for all t ∈ R. This yields

|p ◦ η̃| = pα(x(φ)) ⊂ int(p ◦ η) = int(p ◦ η) ∪ |p ◦ η|.
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In case p ◦ η̃(s) ∈ int(p ◦ η) for some s one obtains a contradiction to the result of the

claim in part 2. In case p ◦ η̃(s) ∈ |p ◦ η| for some s one obtains |η| = |η̃| = α(x(φ)),

contrary to the assumption. It follows that α(x(φ)) = {0} or α(x(φ)) = |η|.

The proof for ω(φ) is analogous.

2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted

Poincaré maps. Let y : R → R be a slowly oscillating periodic solution of equation

(1.1.1) with minimal period ω > 2 and orbit parametrization η : [0, ω] ∋ t 7→ yt ∈ C. The

associated monodromy operator

Y = D2F (ω, y0)

is compact. The nonzero points λ in the spectrum Σ of Y are called Floquet multi-

pliers ; each of them is an isolated point of Σ and an eigenvalue with finite-dimensional

generalized eigenspace in the complexification of the space C. They are real or occur

in complex conjugate pairs. The derivative y′ is a solution of the variational equation

along y|[−1,∞), with y′(t) 6= 0 for some t ∈ [−1, 0] since otherwise y(−1) = y(0) and

0 = −µy(0)+ f(y(−1)) = −µy(0)+ f(y(0)), hence 0 = y(0) = y(−1) and y would not be

slowly oscillating. It follows that

Y y′0 = y′0 6= 0,

and 1 is a Floquet multiplier. The solution y is called hyperbolic if the generalized eigen-

space of the Floquet multiplier 1 has dimension 1, and if

|λ| 6= 1 for all Floquet multipliers λ 6= 1.

The proofs of the results on slowly oscillating solutions and on the attractor A of the

restricted semiflow FS which are recalled in Subsection 2.3 do not make use of Floquet

multipliers. The proof of Theorem 2.3.1 in the present paper, however, relies on a-priori

results about them. Such results were derived in [3, 18, 8] for equation (1.1.1) with µ = 0.

In the sequel they are extended to the case µ > 0.

Proposition 1. Let a : R→R be continuous , and b=eµa. A function v : [t0− 1,∞)

→ R (v : R → R) is a solution of the equation

(1) v′(t) = −µv(t) + a(t)v(t − 1)

if and only if the function w given by w(t) = eµtv(t) on the domain of v is a solution of

the equation

(2) w′(t) = b(t)w(t− 1).

The zeros of v and w coincide, and a zero of v is simple if and only if the zero of w

is simple. The map I : C → C given by (Iφ)(t) = eµtφ(t) is a topological isomorphism,

with IS = S. For every s ≥ 0 the maps As : C → C and Bs : C → C given by Asφ = vs
where v : [−1,∞) → R is the solution of equation (1) with v0 = φ, and Bsψ = ws where

w : [−1,∞) → R is the solution of eq. (2) with w0 = ψ, satisfy

(3) Bs ◦ I = eµsI ◦As = I ◦ eµsAs.

The proof is left as an exercise.
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Consider a : R → R given by a(t) = f ′(y(t − 1)), s = ω. Then the function b = eµa

is continuous, negative, and has period ω. Let B = Bω, and observe that Y = Aω . The

results in Section 5 of [8] show that there exists β > 0 so that the spectrum Σ(B) of B

is disjoint from {λ ∈ C : |λ| = β}, and the reellified generalized eigenspaces CB<, CB>
associated with the spectral subsets Σ(B)< = {λ ∈ Σ(B) : |λ| < β}, Σ(B)> =

{λ ∈ Σ(B) : β < |λ|}, respectively, satisfy

C = CB< ⊕ CB>, CB< ∩ S = ∅, CB> ⊂ S, dimCB> = 2.

The equations (3) imply that the spectra Σ(B) and Σ(eµωY ) coincide, and that for

every spectral subset the associated reellified generalized eigenspaces CB and Cµ for B

and eµωY , respectively, satisfy

CB = ICµ.

Furthermore, Σ(eµωY ) = eµωΣ, and Σ∗ ⊂ Σ is a spectral subset if and only if eµωΣ∗

is a spectral subset of Σ(eµωY ); given a spectral subset Σ∗ ⊂ Σ the associated reellified

generalized eigenspaces C∗ of Σ∗ and Y , and C∗µ of eµωΣ∗ and eµωY coincide. Set

̺ = e−µωβ.

Corollary 1. For all λ ∈ Σ, |λ| 6= ̺, and ̺<1. The reellified generalized eigenspa-

ces C<, C> associated with the spectral subsets {λ ∈ Σ : |λ| < ̺} and {λ ∈ Σ : ̺ < |λ|},

respectively, satisfy

C = C< ⊕ C>, C< ∩ S = ∅, C> ⊂ S, dimC> = 2.

P r o o f. All assertions except the inequality for ̺ are immediate from the preceding

remarks. The inclusion A− A ⊂ S = RS yields S ∋ limt→0
1
t (yt − y0) = y′0 6= 0. Corol-

lary 2.2.1(ii) and periodicity imply that y′ is slowly oscillating. Therefore the reellified

generalized eigenspace of the Floquet multiplier 1 contains the element y′0 ∈ S, and the

assumption ̺ > 1 would imply a contradiction to C< ∩ S = ∅.

Note the analogy with the properties of the spaces Q and L of Subsection 2.1. Corol-

lary 1 leaves the following possibilities.

(4) The Floquet multiplier 1 has multiplicity 2, and |λ| < 1 for all λ ∈ Σ \ {1},

or

(5) y is hyperbolic, and there exists a real Floquet multiplier λ∗ ∈ Σ\{1} with ̺ < |λ∗|.

Proposition 2. In case (5), 0 < λ∗.

P r o o f. 1. Suppose (5) holds. There exists φ∈C> with Y φ = λ∗φ 6= 0. It follows that

there is a solution v : R → R of equation (1) with vnω = λn∗φ for all integers n. Observe

that for every t ≥ 0,

vt+ω = D2F (t+ ω, y0)φ = D2F (t, F (ω, y0))D2F (ω, y0)φ

= D2F (t, y0)Y φ = λ∗D2F (t, y0)φ = λ∗vt.

In particular,

(6) v(t+ ω) = λ∗v(t) for all t ≥ −1.
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The solutions rv + sy′, r, s in R, of equation (1) form a linear subspace V of RR with

C> = {x0 : x ∈ V }, dimV = 2, xnω ∈ C> ⊂ S for all integers n.

Using Corollary 2.2.1(ii) one deduces that each x ∈ V \ {0} is slowly oscillating. For

0 6= x ∈ V all zeros are simple since otherwise,

0 = x′(t) = −µx(t) + a(t)x(t − 1) = a(t)x(t − 1)

for some zero t gives x(t) = 0 = x(t − 1), which contradicts the fact that x is slowly

oscillating.

The properties of y imply that the zeros of y′ ∈ V are given by a strictly increasing

sequence (qn)∞n=−∞. Applications of Lemmas 1, 2 of [18] to the space of all solutions

w : R ∋ t 7→ eµtx(t) ∈ R, x ∈ V,

of equation (2) yield that for every x ∈ V \{0} the zeros form a strictly increasing sequence

(tn,x)
∞
n=−∞, and that for x and u in V \ {0} and for all n ∈ Z with tn,x < tn,u < tn+1,x,

(7) tn+1,x < tn+1,u.

Set tn = tn,v, for all integers n. Choose j ∈ Z with −1 ≤ qj . Set n = max{m ∈ Z :

tm ≤ qj}. There exists a positive integer k with qj +ω=qj+2k since y′ has period ω, and

all zeros of y′ are simple.

2. Suppose tn < qj . Then v(qj) 6= 0, qj < tn+1, and consequently qj+m < tn+1+m <

qj+(m+1) for all nonnegative integers m. In particular, qj+2k ∈ (tn+2k, tn+2k+1), and the

equations

0 6= sign(v(qj)) = sign(v′(tn)) = sign(v′(tn+2k))

(due to the simplicity of the zeros)

= sign(v(qj+2k)) = sign(v(qj + ω)), v(qj + ω) = λ∗v(qj)

yield λ∗ > 0.

3. Suppose tn = qj . Then v(qj + ω) = λ∗v(qj) = 0 = y′(qj) = y′(qj + ω). Suppose

v(t) = 0 for some t ∈ (qm, qm+1), m ≤ j+2k−1. Then repeated application of (7) yields

v(qj + ω) = v(qj+2k) 6= 0, a contradiction.

It follows that v−1(0)∩ (−∞, qj +ω] ⊂ {qm : m ≤ j+2k} = (y′)−1(0)∩ (−∞, qj +ω].

Analogously one gets (y′)−1(0) ∩ (−∞, qj + ω] ⊂ v−1(0) ∩ (−∞, qj + ω]. Hence

v−1(0) ∩ [qj , qj + ω] = {qj+m : m = 0, . . . , 2k},

and

0 6= sign(v′(qj + ω)) = sign(v′(qj+2k)) = sign(v′(qj)) (by simplicity).

Now (6) yields 0 < λ∗.

Let p< : C → C and p> : C → C denote the projections along C> onto C<, and

along C< onto C>, respectively. By C< ∩ S = ∅,

(8) 0 6∈ p>S

in analogy to the relation 0 6∈ pS which follows from Q ∩ S = ∅ in (2.2.1).

In the second part of this section Floquet multipliers are used to construct adapted

Poincaré maps. In case (4) holds choose a unit vector φ∗ ∈C> \ Ry′0; in case (5) holds
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choose a unit eigenvector φ∗∈C> of λ∗. In both cases, φ∗ and y′0 are linearly independent,

and

(9) C> = Rφ∗ ⊕ Ry′0.

Proposition 3. pφ∗ and py′0 are linearly independent.

P r o o f. For real r, s with rpφ∗ + spy′0 = 0, the relations 0 = p(rφ∗ + sy′0) and

rφ∗ + sy′0 ∈ C> ⊂ S yield rφ∗ + sy′0 ∈ Q ∩ S = {0}, and linear independence of φ∗ and

y′0 gives r = 0 = s.

Set C∗ = Rφ∗, Cy = C< ⊕ C∗, and let p∗ : Cy → Cy and p< : Cy → Cy denote the

projections along C< onto C∗ and along C∗ onto C<, respectively. Then

(10) for every φ ∈ Cy , p>φ = p∗φ and p<φ = p<φ.

Set Hy = y0 + Cy, and observe that F (ω, y0) = yω = y0 ∈ Hy,

D1F (ω, y0)1 = y′ω = y′0 6∈ Cy = Ty0H.

For φ = y0, t = ω, Z = Cy, consider an open neighbourhood U of y0 in C, ε > 0, and a

stopping time τ : U → R as in Subsection 2.1.

Proposition 4. There exist an open neighbourhood Uy of y0 in U , εy ∈ (0, ε), and

ty ∈ [0, ω) with the following properties :

• ‖F (t, ψ)‖ ≤ maxt∈[0,ω] |y(t)| + 1 for all t ∈ [0, ω + ε], ψ ∈ Uy.

• F (ty, ψ) ∈ S for all ψ ∈ Uy.

• τ(Uy) ⊂ (ω − εy, ω + εy).

• |η| ∩ (Hy ∩ Uy) = {y0}.

• ψ′ 6∈ Cy for all ψ ∈ Hy ∩ Uy ∩A.

• F (s, ψ) 6∈ Hy for all ψ ∈ Hy ∩ Uy ∩A and all s ∈ (0, 2εy).

P r o o f. 1. For ω 6= s ∈ (ω − ε, ω + ε), F (s, y0) 6∈ Hy. By periodicity, F (s, y0) 6∈ Hy

for 0 < s < ε. The set η([ε, ω − ε]) is compact and does not contain y0. Choose an open

neighbourhood Uy1 of y0 in U so small that Uy1 ∩ η([ε, ω − ε]) = ∅. Then

|η| ∩ (Hy ∩ Uy1) = {y0}.

2. Recall y′0 = y′ω 6∈ Cy . Proposition 2.3.3 yields an open neighbourhood Uy2 of y0 in

Uy1 so that ψ′ 6∈ Cy for all ψ ∈ Uy ∩A.

3. The closed hyperplane Cy is the nullspace of a continuous linear functional φ∗ :

C → R. For every ψ ∈ Uy2 ∩A and s ∈ R,

FA(s, ψ) ∈ Hy is equivalent to hψ(s) = 0

where hψ : R → R is defined by

hψ(s) = φ∗(FA(s, ψ) − y0).

Proposition 2.3.3 shows that each hψ, ψ ∈ Uy2 ∩A, is C1-smooth, with

h′ψ(s) = φ∗(x(ψ)′s) for all s ∈ R,

and that the map R × (Uy2 ∩ A) ∋ (s, ψ) 7→ h′ψ(s) ∈ R is continuous. Observe h′y0(0) =

φ∗(y′0) = φ∗(y′ω) 6= 0 since y′ω ∈ C \Cy. It follows that there exist an open neighbourhood
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Uy3 of y0 in Uy2 and εy ∈ (0, ε) so that

h′ψ(s) 6= 0 for all s ∈ [0, 2εy), ψ ∈ Uy3 ∩A.

Consequently,

hψ(s) = hψ(s) − hψ(0) =

s\
0

h′ψ(s̃) ds̃ 6= 0,

or FA(s, ψ) 6∈ Hy, for 0 < s < 2εy and ψ ∈ Uy3 ∩A.

3. There exists t ∈ [0, ω) so that yt has no zero. Choose an open neighbourhood Uy
of y0 in Uy3 so that

|xψ(s) − y(s)| < 1 for all ψ ∈ Uy, s ∈ [−1, ω + ε],

F (t, ψ)(s) 6= 0 for all ψ ∈ Uy, s ∈ [−1, 0],

and τ(Uy) ⊂ (ω − εy, ω + εy). Set ty = t.

Set Ny = Hy ∩ Uy, τy = τ |Uy, and consider the C1-map

Py : Ny ∋ ψ 7→ F (τy(ψ), ψ) ∈ Hy.

Corollary 2. The restriction Py|Ny ∩ A and all derivatives DPy(ψ), ψ ∈ Ny ∩ A,

are injective.

P r o o f. 1. Suppose Py(ψ) = Py(χ) for ψ and χ in Ny ∩A. In case τy(χ) < τy(ψ) the

injectivity of the maps F (t, ·), t ≥ 0, yields

F (τy(ψ) − τy(χ), ψ) = χ ∈ Hy.

contrary to 0 < τy(ψ) − τy(χ) < 2εy. In the same way the inequality τy(ψ) < τy(χ) is

excluded. Therefore τy(χ) = τy(ψ), and the injectivity of F (τy(ψ), ·) implies ψ = χ.

2. Let ψ∈Ny∩A. Suppose 0 = DPy(ψ)χ for some χ∈Cy . Then 0=pξD2F (τy(ψ), ψ)χ

where pξ : C → C is the projection onto Cy along Rξ,

ξ = D1F (τy(ψ), ψ)1 = x(ψ)′τy(ψ) = D2F (τy(ψ), ψ)ψ′.

The formula for pξ in Subsection 2.1 gives

D2F (τy(ψ), ψ)χ ∈ RD2F (τy(ψ), ψ)ψ′.

The injectivity of D2F (τy(ψ), ψ) yields χ ∈ Rψ′. It follows that χ ∈ Rψ′ ∩ Cy = {0}.

The choice of the hyperplane Cy = C< ⊕ C∗ and the formula

DPy(y0)χ ∈ pξY χ

with the projection pξ : C → C onto Cy along Rξ, ξ = D1F (ω, y0)1 = y′ω = y′0, yield

DPy(y0)χ = Y χ for all χ ∈ C< ⊂ Cy .

In particular, DPy(y0)C< ⊂ C<, and the spectrum of the map A< : C< ∋ χ 7→

DPy(y0)χ ∈ C< coincides with the spectral set σ< ⊂ Σ.

Proposition 5. (i) In the hyperbolic case (5),

DPy(y0)φ∗ = λ∗φ∗ and σ< = {λ ∈ Σ : |λ| < min{1, λ∗}}.

(ii) If (4) holds then

DPy(y0)φ∗ = φ∗ and σ< = {λ ∈ Σ : |λ| < 1}.



26 H.-O. Walther and M. Yebdri

P r o o f. 1. If (5) holds then DPy(y0)φ∗ = pξY φ∗ = pξλ∗φ∗ = λ∗φ∗, as λ∗φ∗ ∈ Cy.

2. Suppose (4) holds. Then 1 is the only point in the spectrum of the map Y> : C> ∋

χ 7→ Y χ ∈ C>.

Claim: Y φ∗ = φ∗ + ry′0 for some r ∈ R.

Proof : Y φ∗ = sφ∗ + ry′0 with real r, s implies

(Y − s · id)(Y − id)φ∗ = (Y − id)(Y − s · id)φ∗ = (Y − id)ry′0 = 0.

Either (Y − id)φ∗ = 0, or (Y − id)φ∗ 6= 0. In the second case s is an eigenvalue of Y>,

therefore s = 1.

3. It follows that DPy(y0)φ∗ = pξY φ∗ = pξ(φ∗ + y′0) = pξφ∗ = φ∗ since φ∗ ∈ Cy .

Proposition 6 (Trajectories of Py and solutions of equation (1.1.1)). (i) If x :

R → R is a solution of equation (1.1.1) so that xt → |η| as t → −∞ then there exists

a strictly increasing sequence (tj)
0
j=−∞ with tj → −∞ as j → −∞ so that xtj ∈ Ny,

Py(xtj ) = xtj+1 for all integers j ≤ −1, and xtj → y0 as j → −∞.

(ii) If (φj)
0
j=−∞ is a trajectory of Py then there exist a bounded slowly oscillating

solution x : R → R of equation (1.1.1) and a strictly increasing sequence (tj)
0
j=−∞ with

tj → −∞ as j → −∞ and φj = xtj for all integers j ≤ 0.

P r o o f. 1. Claim: There exist δ ∈ (0, ω/3) and an open neighbourhood Nδ of y0 in

Ny ⊂ Hy such that F (t, ψ) 6∈ Nδ for all ψ ∈ Nδ and t ∈ (δ, ω + 3δ) \ {τy(ψ)}.

Proof : Set δ = εy/5. The properties of Ny and εy imply yt 6∈ Hy for t ∈ (ω − 3δ,

ω + 3δ) \ {ω}. By periodicity, yt 6∈ Hy for t ∈ (0, δ). The relation

{y0} ∩ {yt : δ ≤ t ≤ ω − 3δ} = ∅

yields disjoint open neighbourhoods U ′ of y0 in Uy and V of {yt : δ ≤ t ≤ ω − 3δ} in C.

The compactness of [δ, ω− 3δ] gives an open neighbourhood Uδ of y0 in U ′ so small that

F (t, ψ) ∈ V for every ψ ∈ Uδ and t ∈ [δ, ω − 3δ]. Set Nδ = Uδ ∩Hy. For ψ ∈ Nδ and

δ < t ≤ ω − 3δ, F (t, ψ) ∈ V ⊂ C \ U ′ ⊂ C \Nδ. The inclusion Nδ ⊂ Ny and the choice

of δ yield F (t, ψ) ∈ C \Hy ⊂ C \Nδ for ψ ∈ Nδ, ω − 3δ < t < ω + 3δ, t 6= τy(ψ).

2. Proof of (i): Choose an open neighbourhood U ′ of y0 in Uy so small that F (τy(ψ), ψ)

∈ Nδ and ω − δ < τy(ψ) < ω + δ for all ψ ∈ U ′. For every t ∈ [0, ω) there exists an open

neighbourhood Ut of yt in C so that F (ω − t, Ut) ⊂ U ′. Set V =
⋃

[0,ω) Ut. Observe that

for every ψ ∈ V there exists s ∈ [0, ω) so that F (τy(F (s, ψ)) + s, ψ) ∈ Nδ. Choose u ∈ R

so that for t ≤ u, xt belongs to the neighbourhood V of |η|. It follows that for every

t ≤ u there exists s ∈ (ω − δ, 2ω + δ) with xt+s ∈ Nδ. Choose t−1 ≤ u with xt−1 ∈ Nδ,

set u−2 = t−1 − 2ω − 2δ, and choose s ∈ (ω − δ, 2ω + δ) with xu−2+s ∈ Nδ. Observe

δ < t−1 − (u−2 + s) < ω + 3δ. The last inequalities and the relations Nδ ∋ xt−1 =

F (t−1 − (u−2 + s), xu−2+s), xu−2+s ∈ Nδ yield

t−1 − (u−2 + s) = τy(xu−2+s),

hence Py(xu−2+s) = xt−1 . Set t−2 = u−2 + s. Proceed by induction.

3. Proof of (ii): Set t0 = 0 and consider the sequence given by tj = tj−1 + τy(φj−1)

for integers j≤0. By Proposition 4, 0 < ω− εy < τy(φj) < ω+ εy for all j ≤ 0. It follows
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that there is a solution x : R → R of equation (1.1.1) with

xtj = φj for all j ≤ 0,

and

‖xtj+t‖ = ‖F (t, φj)‖ ≤ sup
s∈R

|y(s)| + 1 for all t ∈ [0, ω + ε], j ≤ 0,

so that the restriction x|(−∞, 0] is bounded. Moreover,

xtj+ty = F (ty , φj) ∈ S for all j ≤ 0.

Use Corollary 2.2.1 to show that x is slowly oscillating. Use Proposition 2.2.2 and the

boundedness property of f to show that the restriction x|[0,∞) is bounded.

The invariance property of A yields

(11) Py(Ny ∩A) ⊂ A.

Proposition 2.3.5 implies that for every slowly oscillating periodic solution ỹ of eq. (1.1.1)

with orbit parametrization η̃ and

(12) for every φ ∈ Ny ∩A with pφ ∈ int(p ◦ η̃) [∈ ext(p ◦ η̃)],

pPy(φ) ∈ int(p ◦ η̃) [∈ ext(p ◦ η̃)].

It is convenient to restate Proposition 3.5 of [8] on derivatives of iterates of Py. If (φj)
n
j=0

is a finite trajectory of Py and if χ ∈ Tφ0Hy = Cy then

(13) DPn(φ0)χ = pξD2F
( n−1∑

j=0

τy(φj), φ0

)
χ

with the projection pξ : C → C onto Cy along Rξ, ξ = D1F (
∑n−1

j=0 τy(φj), φ0)1.

2.5. Local invariant manifolds. This subsection contains the results on local stable,

center, and unstable manifolds for the semiflow F at the stationary point 0 and for the

adapted Poincaré maps Py of the preceding subsection at the fixed point y0 which will

be used in the proof of Theorem 2.3.1.

Proposition 1. (i) In case u0 < 0 there exist an open neighbourhood W s of 0 in C

and constants c ≥ 1, k ∈ [0, 1) so that for all φ ∈W s and all integers n ≥ 0,

‖F (n, φ)‖ ≤ ckn‖φ‖.

(ii) In case u0 = 0 there exist a C1-map wc : L→ Q with wc(0) = 0 and Dwc(0) = 0,

and an open neighbourhood N of 0 in C so that W c = {χ + wc(χ) : χ ∈ L} has the

following properties :

(1) If x : R → R is a solution of equation (1.1.1) with xt∈ N for all t≤ 0 then x0∈W
c.

(2) If φ ∈ W c, t ≥ 0, and F (s, φ) ∈ N for all s ∈ [0, t], then F (t, φ) ∈ W c.
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P r o o f. 1. Part (i) is a standard result on linearized stability for the map F (1, ·).

2. Let u0 = 0. We recall the description of the construction of W c in Section 6 of

[20], which is based on [4], and indicate the modifications which are needed to derive

assertion (ii).

2.1 (Dual semigroups). The elements φ⊙ ∈ C∗ for which the adjoints of the operators

T (t) define a continuous curve

[0,∞) ∋ t 7→ T (t)∗φ⊙ ∈ C⊙

form a positively invariant subspace C⊙, which is called the sun subspace. The operators

T⊙(t) : C⊙ ∋ φ⊙ → T (t)∗φ⊙ ∈ C⊙, t ≥ 0,

constitute a C0-semigroup on C⊙. Using this last semigroup one defines the space

C⊙⊙⊂C⊙∗. The space C is sun-reflexive with respect to the original C0-semigroup in

the sense that there exists a norm-preserving isomorphism of C onto C⊙⊙.

There is an isomorphism between C⊙∗ and R ×L∞(−1, 0; R). Let r⊙∗ ∈ C⊙∗ denote

the preimage of (1, 0).

For a given continuous function g̃ : R → C⊙∗ and real a ≤ b the weak-star integral

b\
a

T⊙(b− t)∗g̃(t) dt ∈ C⊙∗

is defined by

( b\
a

T⊙(b − t)∗g̃(t) dt
)
(x⊙) =

b\
a

(T⊙(b− t)∗g̃(t))(x⊙) dt

for x⊙ ∈ X⊙.

If g : R → R is a continuous function and if x : R → R is a solution of the equation

(3) x′(t) = −µx(t) − αx(t− 1) + g(t)

with α = −f ′(0), then the curve u : R ∋ t 7→ xt ∈ C is a solution of the integral equation

(4) u(t) = T (t− s)u(s) +

t\
s

T⊙(t− τ)∗(g(τ)r⊙∗) dτ, t ≥ s;

this last equation is in fact an equation between elements of C⊙∗ where the isomorphism

C ∼= C⊙⊙ and the inclusion map C⊙⊙ → C⊙∗ are omitted. Conversely, if u : R → C

satisfies (4) then x : R ∋ t 7→ u(t)(0) ∈ R is a solution of equation (3), and xt = u(t) for

all t ∈ R.

2.2 (Solutions slowly growing at infinity). Fix η > 0 with u1 < −η < 0 = u0. For

a given Banach space E over R, let BCη(R, E) denote the space of continuous maps

u : R → E so that

sup
t∈R

e−η|t|‖u(t)‖ <∞,

and consider the norm ‖ · ‖η on BCη(R, E) which is given by the last expression. For

each F̂ ∈ BCη(R, C⊙∗) there exists a unique solution

u = K̂(F̂ ) ∈ BCη(R, C)
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of the integral equation

(5) u(t) = T (t− s)u(s) +

t\
s

T⊙(t− τ)∗F̂ (τ) dτ, t ≥ s,

with pu(0) = 0. The solution map K̂ : BCη(R, C⊙∗) → BCη(R, C) is linear and continu-

ous.

2.3 (Modified equations, center manifold). There are sequences of open intervals In
and C1-functions rn : R → R with compact supports, n ∈ N, such that for every n ∈ N,

0 ∈ In,

(6)
f(ξ) = f ′(0)ξ + rn(ξ) for all ξ ∈ In,

|rn(ξ) − rn(ξ
′)| ≤

1

n
|ξ − ξ′| for all ξ, ξ′ in R.

The equations

Rn(u)(t) = rn(u(t)(−1))r⊙∗

define substitution operators

Rn : BCη(R, C) → BCη(R, C⊙∗), n ∈ N,

with Lipschitz constants Ln so that Ln → 0 as n → ∞. The hypothesis u0 = 0 implies

that there is a constant M ≥ 1 with ‖T (t)‖ ≤ M for all t ≥ 0. Fix an integer n ≥ 1 so

that
M

n
‖r⊙∗‖ < η, Ln‖K̂‖ <

1

2
.

The operators T (t), t ≥ 0, induce a group of isomorphisms TL(t) : L→ L, t ∈ R, which

are uniformly bounded. For every χ ∈ L there is a unique solution u = u(χ) ∈ BCη(R, C)

of the equation

u = TL(·)χ+ K̂(Rn(u)).

Define

W c = {u(χ)(0) : χ ∈ L}.

There exists a C1-map wc : L→ Q with wc(0) = 0 and Dwc(0) = 0 so that

W c = {χ+ wc(χ) : χ ∈ L}.

Choose an open neighbourhood N of 0 in C so small that φ(t) ∈ In for every φ ∈ N and

for all t ∈ [−1, 0].

2.4. Now (1) follows by arguments as in the proof of Proposition 6.4 in [20].

2.5. Proof of (2): Let φ ∈ W c, t ≥ 0, and F (s, φ) ∈ N for all s ∈ [0, t]. There exist

u ∈ BCη(R, C) and χ ∈ L so that

u(0) = φ and u = TL(·)χ+ K̂(Rn(u)).

For all real t̃ ≥ s,

u(t̃ ) = TL(t̃ )χ+ (u(t̃ ) − TL(t̃ )χ)

= TL(t̃ )χ+ T (t̃− s)(u(s) − TL(s)χ) +

t̃\
s

T⊙(t̃− τ)∗Rn(u)(τ) dτ
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= T (t̃− s)u(s) +

t̃\
s

T⊙(t̃− τ)∗Rn(u)(τ) dτ

= T (t̃− s)u(s) +

t̃\
s

T⊙(t̃− τ)∗rn(u(τ)(−1))r⊙∗ dτ.

The remarks in part 2.1 show that x : R ∋ s 7→ u(s)(0) ∈ R is a solution of the modified

equation

(7) x′(s) = −µx(s) − αx(s − 1) + rn(x(s− 1)),

with xs = u(s) for all s ∈ R. Recall (6) and the choice of N . It follows that xs = F (s, φ)

for s∈ [0, t]. In particular, xt = F (t, φ). Consider the solution x̃ = x(t+ ·) of eq. (7), and

ũ : R ∋ s 7→ x̃s ∈ C. It remains to show that ũ(0) ∈ W c. Now, ũ is in BCη(R, C) since

for every s ∈ R,

e−η|s|‖ũ(s)‖ = e−η|t+s−t|‖u(t+ s)‖ ≤ eηte−η|t+s|‖u(t+ s)‖ ≤ eηt‖u‖η.

The remarks in parts 2.1 and 2.4 yield

ũ(t̃ ) = T (t̃− s)ũ(s) +

t̃\
s

T⊙(t̃− s)∗rn(ũ(τ)(−1))r⊙∗ dτ

= T (t̃− s)ũ(s) +

t̃\
s

T⊙(t̃− τ)∗Rn(ũ)(τ) dτ

for t̃ ≥ s. The function ũ−TL(·)pũ(0) belongs to BCη(R, C) since TL(·)pũ(0) is bounded.

Note p[ũ(0) − TL(0)pũ(0)] = 0. For t̃ ≥ s,

ũ(t̃ ) − TL(t̃ )pũ(0) = T (t̃− s)[ũ(s) − TL(s)pũ(0)] +

t̃\
s

T⊙(t̃− τ)∗Rn(ũ)(τ) dτ.

It follows that ũ− TL(·)pũ(0) = K̂(Rn(ũ)), or ũ(0) ∈W c.

Corollary 1. If there exists a solution x : R → R of eq. (1.1.1) with x0 6= 0 and

xt → 0 as t→ −∞ then u0 ≥ 0.

P r o o f. Assume u0 < 0. There exists t ≤ 0 with xs ∈W s and ‖xs‖ ≤ 1 for all s ≤ t.

For every integer n ≥ 0,

‖xt‖ = ‖F (n, xt−n)‖ ≤ ckn‖xt−n‖ ≤ ckn.

Therefore xt = 0, and x0 = F (−t, xt) = 0 contrary to the hypothesis x0 6= 0.

Proposition 2. Let u0 = 0, and consider W c as in Proposition 1(ii). There exists an

open neighbourhood U of 0 in C so that the set X = W c ∩H ∩ U is a one-dimensional

submanifold of C with

T0X = L ∩H, X ⊂ K ∪ {0} ∪ (−K), P (X) ⊂W c,

and P |X is injective.

P r o o f. 1. As in the proof of Proposition 9.1 in [17] one finds that the inclusion map

iH : H ∋ φ 7→ φ ∈ C is transversal to W c at φ = 0, and dimH ∩L = 1. Corollary 17.2 of
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[1] shows that there is an open neighbourhood U1 of 0 in C so that X1 = W c ∩H ∩U1 =

i−1
H (W c)∩U1 is a one-dimensional C1-submanifold of C, with T0X1 ⊂ T0W

c∩H = L∩H .

It follows that T0X1 = L ∩H .

2. As in the proof of Proposition 6.4 in [17] one finds an open neighbourhood U2 of 0

in U1 so that for every φ ∈ U2 ∩W c with φ 6= 0 there exists t ∈ [0, 2] so that F (t, φ) has

no zero.

3. By Proposition 2.2.2(v) the zeros of each xφ, φ ∈ K ∪ (−K), are unbounded, and

there exists b ≥ 2 with z2(φ) + 1 < b for all φ ∈ K ∪ (−K) with 0 < ‖φ‖ < 1.

4. Continuous dependence on initial data close to the stationary point and pro-

perty (2) (local positive invariance of W c) yield an open neighbourhood U3 of 0 in

U2 ∩ {φ ∈ C : ‖φ‖ < 1} with

F (t, φ) ∈W c for all φ ∈ U3 ∩W
c, t ∈ [0, b].

5. The linear map D2F (2, 0) = T (2) defines an isomorphism of L = T0W
c onto itself,

and F ({2} × (U3 ∩W c)) ⊂W c. It follows that there exist open neighbourhoods U4 of 0

in U3 and U5 of 0 in U1 so that F (2, ·) maps U4 ∩W c onto U5 ∩W c.

Claim: X1∩U5 ⊂ K∪{0}∪ (−K), and 0 6= φ(s) for all φ ∈ X1∩U5 \{0}, s ∈ (−1, 0].

Proof : Let φ ∈ X1∩U5 ⊂ U5∩W c with φ 6= 0. There exist ψ ∈ U4∩W c and t ∈ [0, 2]

with φ = F (2, ψ) so that F (t, ψ) has no zero. Since φ ∈ H , or φ(−1) = 0, each F (s, ψ)

with 1 ≤ s ≤ 2 has a zero. Therefore 0 ≤ t < 1. Proposition 2.2.2(ii) gives φ ∈ K∪(−K),

and φ(s) 6= 0 for −1 < s ≤ 0.

6. Parts 3, 4 and 5 combined yield

P (φ) = F (z2(φ) + 1, φ) ∈W c

for all φ ∈ X1 ∩ U5 ∩ U3 with φ 6= 0. Proposition 2.2.3, applied to J = X1 ∩ U5, shows

that P |X1 ∩ U5 is injective. Set U = U5 ∩ U3.

Let y : R → R be a slowly oscillating periodic solution of equation (1.1.1), and consider

C<, C∗, Hy, Ny, and the adapted Poincaré map Py : Ny → Hy with fixed point y0 as in

Subsection 2.4.

Proposition 3. (i) In case (2.4.5) holds with λ∗ < 1 there exists an open neighbour-

hood Ws of y0 in Ny so that for every φ ∈ Ws there is a trajectory (φn)∞n=0 of Py with

φ0 = φ and

φn → y0 as n→ ∞.

(ii) In case (2.4.5) holds with λ∗ > 1 there exist an open neighbourhood C∗u of 0 in

C∗ and a C1-map wu : C∗u → C< with wu(0) = 0 and Dwu(0) = 0 so that for every

φ ∈Wu = y0 + {χ+wu(χ) : χ ∈ C∗u} there is a trajectory (φn)0n=−∞ of Py with φ0 = φ

and

φn → y0 as n→ −∞.

There exists an open neighbourhood Nu of y0 in Ny so that Py(Wu ∩ Nu) ⊂ Wu, and

φ0 ∈Wu for every trajectory (φn)0n=−∞ of Py in Nu.

(iii) In case (2.4.4) holds there exist an open neighbourhood C∗c of 0 in C∗, a C1-map

wc : C∗c → C< with wc(0) = 0 and Dwc(0) = 0, and an open neighbourhood Nc of y0 in
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Ny so that Py(φ) ∈Wc for every φ ∈ Wc = y0 + {χ+wc(χ) : χ ∈ C∗c} with Py(φ) ∈ Nc,

and φ0 ∈Wc for every trajectory (φn)0n=−∞ of Py in Nc.

P r o o f. Assertion (i) is a standard result on linearized stability. For (ii), see the

standard result on local unstable manifolds at hyperbolic fixed points for C1-maps in

Banach spaces, e.g. Theorem 3.1 in [6] and Theorem 2.7 in [13]. Assertion (iii) can be

shown modifying the proof of Theorem 2 in Chapter V of [7] on existence of and attraction

to local center manifolds, and using the arguments in Section 4 of [2] on smoothness. For

details, see the report [9].

Corollary 2. (i) If there is a trajectory (φn)0n=−∞ of Py in Ny \ {y0} with φn → y0
as n→ −∞ then (2.4.4) holds , or (2.4.5) holds with λ∗ > 1.

(ii) If (2.4.5) holds with λ∗ > 1 then Wu ⊂ A.

P r o o f. 1. Proof of (i): In case (2.4.5) holds with λ∗ < 1, the spectrum of Ay =

DPy(y0) is contained in the closed disk with radius λ∗ = supn∈N0
‖Anyφ‖

1/n and center

0 ∈ C. The norm on Cy given by ‖φ‖y = supn∈N0
‖Anyφ‖

1/n is equivalent to the restriction

of ‖ · ‖ to Cy, and for all φ ∈ Cy , ‖Ayφ‖y ≤ λ∗‖φ‖y. It follows that there is a bounded

neighbourhood N of y0 in Ny so that for every φ ∈ N , Py(φ) ∈ N and ‖Py(φ) − y0‖y ≤
λ∗+1

2 ‖φ− y0‖. Choose an integer n ≤ 0 with φj ∈ N for all integers j ≤ n. Then

0 < ‖φn − y0‖y ≤

(
λ∗ + 1

2

)k

‖φn−k − y0‖

for all integers k ≥ 0, which yields a contradiction.

2. Proof of (ii): Use Proposition 3(ii), Proposition 2.4.6(ii), and Proposition 2.3.1(i).

The next result concerns continuous maps in Banach spaces and trajectories in one-

dimensional graphs.

Lemma 1. Let h : U → X be a continuous map on a subset U of a Banach space X ,

with fixed point z. Suppose there are closed subspaces E,Ec of X with X = E ⊕

Ec, dimE = 1, and there are an open neighbourhood Ew of 0 in E and a continuous

map w : Ew → Ec so that

W = z + {x+ w(x) : x ∈ Ew} ⊂ U.

Assume that h|W is injective. Let xe ∈ E \ {0}, ε > 0 with (−ε, ε)xe ⊂ Ew, and δ > 0

be such that the injective curve

c : (−ε, ε) ∋ t 7→ z + txe + w(txe) ∈ X

and h satisfy h(c((−δ, δ))) ⊂ c((−ε, ε)). Suppose there exists a trajectory (xn)
0
n=−∞ of

h in c((−δ, δ)). Then for each s0 ∈ R with |s0| ≤ |c−1(x0)| and sign(s0) = sign(c−1(x0))

there is a trajectory (yn)0n=−∞ of h in c((−δ, δ)) with y0 = c(s0) and |c−1(yn)| ≤

|c−1(xn)| for all integers n ≤ 0.

R e m a r k. The curve c defines a homeomorphism onto the open subset c((−ε, ε))

of W .

P r o o f. Let pr : X → X denote the projection onto E along Ec. Then c((−ε, ε)) =

{x ∈W : pr(x−z) ∈ (−ε, ε)xe} is an open subset of W , and the inverse c−1 : c((−ε, ε)) →
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R of c is continuous since it is given by

c−1(x)xe = pr(x− z) for all x ∈ c((−ε, ε)).

The transformed map

hc : (−δ, δ) ∋ t 7→ c−1(h(c(t))) ∈ R

with hc(0) = 0 is continuous and injective, hence strictly increasing or strictly decreasing.

The equations xn = c(tn), n ∈ N0, define intervals

In = [min{tn, 0},max{tn, 0}] ⊂ (−δ, δ)

with hc(In−1) = In for all integers n ≤ 0. It follows that for every s0 ∈ I0 there is a

trajectory (sn)
0
n=−∞ of hc with sn ∈ In for all integers n ≤ 0. Set yn = c(sn), for all

integers n ≤ 0.

3. A-priori estimates

3.1. Nonautonomous equations. Consider t0 ∈ R and continuous functions

g : [t0,∞) × R → R which satisfy the negative feedback condition (2.2.2) for all t ≥ t0
and δ 6= 0. The aim of this subsection is an a-priori estimate which expresses that certain

slowly oscillating solutions of equation (2.1.1) do not decay too fast, for g in a set of

functions given by a growth condition.

Set

K0 = {φ ∈ C : φ(−1) = 0, φ increasing, 0 < φ(t) for all t ∈ (−1, 0]},

M = K0 ∪ {φ ∈ C : φ decreasing, 0 < φ(t) for all t ∈ [−1, 0]},

Sm = M ∪ (−M).

Obviously, the set Sm of monotone data is contained in S.

Proposition 1 (Entering Sm, starting in Sm). Let t0 ∈ R and g : [t0,∞)×R → R be a

continuous function which satisfies (2.2.2) for all t ≥ t0 and δ 6= 0. Let x : [t0−1,∞) → R

be a solution of equation (2.1.1). Set φ = xt0 .

(i) If φ ∈ S then xt ∈ S for all t ≥ 0, and there exists t ∈ [t0, t0 + 3] with xt ∈ Sm.

(ii) If φ ∈ Sm then either sign(x(t)) = sign(x(t0)) = − sign(x′(t)) for all t > 0, or

there exists a zero z > t0 of x with sign(x′(t)) = − sign(x(t0)) for all t ∈ (t0, z + 1),

and x′(z + 1) = 0. The solution x is slowly oscillating. If z ∈ (t0,∞) is a zero then

sign(x′(t)) = sign(x(z + 1)) for all t ∈ [z, z + 1).

P r o o f. 1. For the first assertion in (i), see Proposition 2.2.1. The assertion (ii) is a

consequence of (2.2.2) for all t ≥ t0 and δ 6= 0.

2. Proof of the second assertion in (i): Let φ ∈ S. Suppose 0≤x(t) for all t∈ [t0−1, t0].

Then x′(t) ≤ 0 in (t0, t0 + 1], and x′(s) < 0 for some s ∈ (t0, t0 + 1]. If 0 < x(t0 +1) then

xt0+1 ∈M . If x(t0 + 1) ≤ 0 then there exist zeros z′ ≤ z in [t0, t0 + 1] so that

z′ = t0, z < t0 + 1, x(t) < 0 in (z, t0 + 1),

or

t0 < z′, 0 < x(t) in (t0, z
′), z = t0 + 1,
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or

t0 < z′, 0 < x(t) in (t0, z
′), z < t0 + 1, x(t) < 0 in (z, t0 + 1].

It follows that xz+1 ∈ −K0.

If there exists z ∈ (−1, 0) with 0 ≤ x(t) for all t ∈ [z, t0] and x(t) ≤ 0 for all

t ∈ [t0 − 1, z] then 0 ≤ x(t) for all t ∈ [z, z + 1], and as above one finds t ∈ [z + 1, z + 3]

with xt ∈ Sm. Now it is obvious how to proceed in the remaining cases.

Let real a ∈ (0, 1), b > 1 be given, and set

I = [−1 − 1/(2b), 0].

Observe I ⊂ (−2, 0]. Consider the set D1 of continuous functions ψ : I → R so that

(1) ψ|[−1/(2b), 0] is differentiable with |ψ′(t)| ≥ a|ψ(t− 1)| for −1/(2b) ≤ t ≤ 0,

(2) ψ is strictly decreasing with 0 < ψ(−1 − 1/(2b)).

Let D2 denote the set of continuous functions ψ : I → R with property (1) so that there

exists m ∈ I◦ with

(3) 0 < ψ(m),

(4) ψ|(m− 1 − 1/b,m] ∩ I is strictly increasing and ψ|[m, 0] is strictly decreasing,

(5) m < −1/(2b) and 0 < ψ(t) for all t ∈ [−1 − 1/(2b),m), or −1/(2b) ≤ m and

ψ(m− 1) = 0,

(6) ψ(t) ≥ ψ(m)(1 − b(t−m)) for all t ∈ [m,m+ 1/b] ∩ I.

Set D> = D1 ∪D2, and D = D> ∪ (−D>). Observe that ψ0 ∈ S for every ψ ∈ D.

For a map x : M → R and t ∈ R with [t − 1 − 1/(2b), t] ⊂ M define xt : I → R by

xt(s) = x(t+ s) for all s ∈ I.

Proposition 2 (Entering D). Let t0 ∈ R and g : [t0,∞) × R → R be a continuous

function which satisfies (2.2.2) for all t ≥ t0 and δ 6= 0, and assume

(7) a|δ| ≤ |g(t, δ)| ≤ b|δ| for all t ≥ t0, δ ∈ R.

Let x : [t0 − 1,∞) → R be a solution of equation (2.1.1) with xt0 ∈ Sm. Then all the

shifted restrictions xt, t ≥ t0 + 2, belong to the set D.

P r o o f. 1. Let t ≥ t0 + 2. Set ψ = xt. The restriction ψ|[−1/(2b), 0] is differentiable

with

|ψ′(s)| = |x′(t+ s)| = |g(t+ s, x(t+ s− 1))| ≥ a|x(t+ s− 1)| = a|ψ(s− 1)|

for −1/(2b) ≤ t ≤ 0, so that (1) holds.

2. Suppose x(t − 1 − 1/(2b))=0. Set z = t − 1 − 1/(2b). Then z > t0, and Proposi-

tion 1(ii) yields x′(z) 6= 0. If 0 < x′(z) then 0 < x′(s) for all s ∈ [z, z + 1) and x′(s) < 0

for z + 1 < s < z + 2. For s ∈ [z + 1, z + 1 + 1/b],

|x′(s)| ≤ b|x(s− 1)| ≤ b|x(z + 1)|,

hence

x(s) ≥ x(z + 1)(1 − b(s− (z + 1))).

Therefore ψ ∈ D2 ⊂ D. In case x′(z) < 0 one finds ψ ∈ −D2 ⊂ D.
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3. In case x(t − 1 − 1/(2b)) > 0 and x′(s) < 0 for all s ∈ (t − 1 − 1/(2b), t) one has

ψ ∈ D1 ⊂ D.

4. Suppose x(t−1−1/(2b)) > 0 and 0 ≤ x′(s0) for some s0 ∈ (t−1−1/(2b), t). Then

x′(t− 1/(2b)) = g(t, x(t− 1/(2b)− 1)) < 0, and there is a zero m of x′ between t− 1/(2b)

and s0. Using (2.2.2) one gets x(m− 1) = 0. Observe that

m− 1 > t− 1 − 1/(2b)− 1 ≥ t0 − 1/(2b) > t0 − 1.

The hypothesis xt0 ∈ Sm yields 0 < m− 1.

4.1. We prove x′(s) 6= 0 for all s ∈ (t − 1 − 1/(2b),m): Suppose x′(m0) = 0 and

t−1−1/(2b)<m0<m. As above one finds x(m0−1) = 0 and 0 < m0−1. Proposition 1(ii)

implies

0 < |x(s)| ≤ |x(m0)| for m0 − 1 < s ≤ m0.

It follows that for m0 ≤ s ≤ m0 + 1/b,

|x′(s)| ≤ b|x(s− 1)| ≤ b|x(m0)|,

and therefore

|x(s)| ≥ |x(m0)|(1 − b(s−m0)).

Consequently, x(s) 6= 0 for m0 − 1 < s < m0 + 1/b. Condition (2.2.2) yields x′(s) 6= 0 for

m0 < s < m0 + 1 + 1/b, contrary to x′(m) = 0 and m0 < m < t < m0 + 1 + 1/(2b).

4.2. Suppose x′(s) < 0 for all s ∈ (t− 1 − 1/(2b),m). By Proposition 1(ii), x′(s) < 0

for all s ∈ [m− 1,m) and x(s) < 0 for m− 1 < s ≤ m. As before it follows that

x(s) ≤ x(m)(1 − b(s−m)) for m ≤ s ≤ m+ 1/b,

and x(s) < 0 for m− 1 < s < m+ 1/b. The last inequality implies

0 < x′(s) for m < s < m+ 1 + 1/b,

and one has ψ ∈ −D2 ⊂ D.

4.3. If x′(s) > 0 for all s ∈ (t− 1 − 1/(2b),m), then ψ ∈ D2 ⊂ D.

5. Now it is obvious how to proceed in the remaining case x(t− 1 − 1/(2b)) < 0.

Corollary 1. Let t0 ∈ R and g : [t0,∞) × R → R be a continuous function which

satisfies (2.2.2) for all t ≥ t0 and δ 6= 0, and assume (7). If x : [t0 − 1,∞) → R is a

solution of equation (2.1.1) with xt0 ∈ S then xt ∈ D for all t ≥ t0 + 5.

P r o o f. Use Propositions 1(i) and 2.

Proposition 3 (Invariance of D). Let t0 ∈ R and g : [t0,∞)×R → R be a continuous

function which satisfies (2.2.2) for all t ≥ t0 and δ 6= 0, and assume (7). If ψ ∈ D and

a solution x : [t0 − 1,∞) → R of equation (2.1.1) satisfy xt0 = ψ|[−1, 0] then xt0+1 ∈ D.

P r o o f. 1. The restriction xt0+1|[−1/(2b), 0] is differentiable with

|(xt0+1)′(t)| = |x′(t0 + 1 + t)| ≥ a|x(t0 + t)| = a|xt0+1(t− 1)|

for −1/(2b) ≤ t ≤ 0, so that (1) is satisfied.

2. Suppose ψ∈D1, 0 ≤ ψ(0). Then 0 < x(t0−1/(2b)), and x′(t) < 0 for t0 < t < t0+1,

therefore xt0+1 ∈ D1 ⊂ D.
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3. Suppose ψ ∈ D1, ψ(0) < 0. Let ζ denote the unique zero of ψ in I◦. If −1−1/(2b) <

ζ ≤ −1, then 0 < x′(t) for t0 < t ≤ t0 + 1, and x has a strict local minimum at t0. For

t0 < t ≤ t0 + 1/b,

|x′(t)| ≤ b|x(t− 1)| ≤ b|x(t0)|.

Hence

x(t) ≤ x(t0)(1 − b(t− t0)).

It follows that xt0+1 ∈ −D2 ⊂ D. If −1 < ζ < 0, then 0 < x(t) for t0 − 1 ≤ t < t0 + ζ

and x(t) < 0 for t0 + ζ < t ≤ t0. Therefore x′(t) < 0 for t0 < t < t0 + 1 + ζ, 0 < x′(t)

for t0 + 1 + ζ < t ≤ t0 + 1, and x has a strict local minimum at t0 + 1 + ζ ∈ (t0, t0 + 1].

Observe that x is strictly decreasing on [t0 − 1, t0 + 1 + ζ) and strictly increasing on

(t0 + 1 + ζ, t0 + 1], with x(t0 + 1 + ζ − 1) = ψ(ζ) = 0. As before one finds

x(t) ≤ x(t0 + 1 + ζ)(1 − b(t− (t0 + 1 + ζ))) for t0 + 1 + ζ ≤ t ≤ t0 + 1 + ζ + 1/b,

and it follows that xt0+1 ∈ −D2 ⊂ D.

4. Suppose ψ ∈ D2, 0 ≤ ψ(0). Consider m ∈ I◦ so that (3)–(6) hold. Then 0 < ψ(t)

for t ∈ (m− 1, 0) ∩ I, hence x′(t) < 0 for t0 < t < t0 + 1.

4.1. If m < −1/(2b) and 0 < ψ(t) for −1 − 1/(2b) ≤ t < m, then

x(t0 − 1/(2b)) = ψ(−1/(2b)) > 0,

and x is strictly decreasing on [t0 − 1/(2b), t0], hence xt0+1 ∈ D1 ⊂ D.

4.2. If −1/(2b) ≤ m and ψ(m − 1) = 0, then x is strictly increasing and positive on

[t0 − 1/(2b), t0 +m] and strictly decreasing on [t0 +m, t0 + 1]. For t0 +m ≤ t ≤ t0,

x(t) = ψ(t− t0) ≥ ψ(m)(1 − b(t− t0 −m)) = x(t0 +m)(1 − b(t− (t0 +m))).

For t0 < t ≤ t0 +m+ 1/b, we have t < t0 + 1 and

0 > x′(t) = g(t, x(t− 1)) = g(t, ψ(t− t0 − 1))

≥ −bψ(t− t0 − 1) ≥ −bψ(m) = −bx(t0 +m),

therefore

x(t) = x(t0) +

t\
t0

x′(s) ds ≥ x(t0) − bx(t0 +m)(t− t0)

≥ x(t0 +m){(1 − b(t0 − (t0 +m))) − b(t− t0)}

= x(t0 +m)(1 − b(t− (t0 +m))).

It follows that xt0+1 ∈ D2 ⊂ D.

5. Suppose ψ ∈ D2, ψ(0) < 0. Consider m∈I◦ as in part 4. There is a unique zero ζ

of ψ in (m, 0), and

ζ ≥ m+ 1/b > −1,

0 < ψ(t) for −1 ≤ t < ζ,

ψ(t) < 0 for ζ < t ≤ 0.

This implies x′(t) < 0 for t0 < t < t0 + 1 + ζ and 0 < x′(t) for t0 + 1 + ζ < t ≤ t0 + 1,

and mζ = t0 + 1 + ζ ∈ (t0, t0 + 1) is a strict local minimum of x. The solution x is



Smoothness of the attractor 37

negative and strictly decreasing in (mζ − 1,mζ ] and strictly increasing in [mζ ,mζ + 1].

For mζ ≤ t ≤ mζ + 1/b,

|x′(t)| ≤ b|x(t− 1)| ≤ b|x(mζ)|.

Therefore

x(t) ≤ x(mζ)(1 − b(t−mζ)).

The inequalitym+1/b ≤ ζ < 0 yieldsm < −1/(2b). It follows that x is strictly decreasing

on the interval [t0 − 1/(2b), t0], and one obtains xt0+1 ∈ −D2 ⊂ D.

6. It is now obvious how to proceed in the remaining case ψ ∈ −D<.

Set

c(a, b) =
a

8b
min

{
1

4
,
a(2b− 1)

2b

}
.

Proposition 4. Let t0∈R and g : [t0,∞)×R→R be a continuous function which sa-

tisfies (2.2.2) for all t ≥ t0 and δ 6= 0, and assume (7). Let ψ ∈ D and x : [t0 − 1,∞) → R

be a solution of equation (2.1.1) with xt0 = ψ|[−1, 0]. Then

c(a, b)‖xt0‖ ≤ ‖xt0+1‖.

P r o o f (Compare the proof of Lemma 5 in [16]). 1. If t0 ≤ t ≤ t′ ≤ t0 + 1 and if x

has no zero in [t− 1, t′ − 1] then

(8) 2‖xt0+1‖ ≥ a(t′ − t) min
[t−1,t′−1]

|x(s)|

since 0 < a|x(s− 1)| ≤ |g(s, x(s− 1))| for t ≤ s ≤ t′ and

2‖xt0+1‖ ≥ |x(t′) − x(t)| =
∣∣∣
t′\
t

g(s, x(s− 1)) ds
∣∣∣

=

t′\
t

|g(s, x(s− 1))| ds ≥ a

t′−1\
t−1

|x(s)| ds.

The following cases are possible.

A. There is a strict local extremum m of x in (t0 − 1, t0).

A.1. t0 ≤ m+ 1/(2b).

A.2. m+ 1/(2b) < t0 and |x(m)| = ‖xt0‖.

A.3. m+ 1/(2b) < t0 and |x(m)| < ‖xt0‖.

B. The solution x is strictly monotone on (t0 − 1, t0).

B.1. |x(t0)| = ‖xt0‖.

B.2. |x(t0)| < ‖xt0‖ = |x(t0−1)| = |ψ(−1)|, and there exists s ∈ (−1−1/(2b),−1)

with |ψ(−1)| > |ψ(s)|.

B.3. |x(t0)| < ‖xt0‖ = |x(t0 − 1)| = |ψ(−1)| ≤ |ψ(s)| for all s ∈ [−1 − 1/(2b),−1].

2. In case A.1 the properties of ψ yield |x(t0)| ≥ |x(m)|/2 = ‖xt0‖/2. Therefore

‖xt0+1‖ ≥ |x(t0)| ≥ ‖xt0‖/2. In case A.2 the properties of ψ imply

|x(m)|/2 ≤ |x(s)| for m ≤ s ≤ m+ 1/(2b),

and (8) yields
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2‖xt0+1‖ ≥
a

2b
min

[m,m+1/(2b)]
|x(s)| ≥

a

4b
|x(m)| =

a

4b
‖xt0‖.

In case A.3 the properties of ψ imply that there is a zero of x in (m, t0), and ‖xt0‖ =

|x(t0)|. Therefore ‖xt0+1‖ ≥ |x(t0)| = ‖xt0‖.

3. In case B.1, ‖xt0+1‖ ≥ |x(t0)| = ‖xt0‖.

4. In case B.2 and x(t0 − 1) > 0, it follows that x is strictly decreasing in (t0 − 1, t0).

Furthermore, there exists m ∈ (−1 − 1/(2b),−1] so that ψ(m) ≥ ψ(−1) > 0 and ψ(u) ≥

ψ(m)(1 − b(u −m)) for m ≤ u ≤ m+ 1/b. For t0 +m + 1/(2b) ≤ t ≤ t0 + m + 3/(4b),

one obtains t ∈ [t0 − 1, t0],

t− t0 ∈

[
m+

1

2b
,m+

3

4b

]
⊂ [t0 − 1, t0],

and

x(t) = ψ(t− t0) ≥
ψ(m)

4
≥
ψ(−1)

4
=
x(t0 − 1)

4
> 0.

Using (8) one finds

2‖xt0+1‖ ≥ a
1

4b
·
x(t0 − 1)

4
=

a

16b
‖xt0‖.

In case B.2 and x(t0 − 1) < 0 the same estimate holds.

5. In case B.3 and 0 < x(t0 −1), as before, x is strictly decreasing on (t0 −1, t0). The

function ψ has no zero in [−1 − 1/(2b),−1]. Using (1) one finds that ψ′ has no zero in

[−1/(2b), 0], and

∣∣∣∣x(t0) − x

(
t0 −

1

2b

)∣∣∣∣ =
∣∣∣

t0\
t0−1/(2b)

x′(t) dt
∣∣∣ =

∣∣∣
0\

−1/(2b)

ψ′(s) ds
∣∣∣ =

0\
−1/(2b)

|ψ′(s)| ds

≥ a

−1\
−1−1/(2b)

|ψ(s)| ds ≥
a

2b
|ψ(−1)| =

a

2b
|x(t0 − 1)| =

a

2b
‖xt0‖.

Therefore
a

4b
‖xt0‖ ≤ |x(t0)| (≤ ‖xt0+1‖),

or
a

4b
‖xt0‖ ≤

∣∣∣∣x
(
t0 −

1

2b

)∣∣∣∣.

If the last inequality and |x(t0)| < (a/(4b))‖xt0‖ hold then the fact that x is strictly

decreasing on (t0 − 1, t0) implies x(t0 − 1/(2b)) > 0, and

x(t) ≥ x

(
t0 −

1

2b

)
≥

a

4b
‖xt0‖ for t0 − 1 ≤ t ≤ t0 −

1

2b
.

Using (8) one finds

2‖xt0+1‖ ≥ a

(
1 −

1

2b

)
a

4b
‖xt0‖.

Altogether,

‖xt0+1‖ ≥ a

(
1 −

1

2b

)
a

8b
‖xt0‖

in case B.3 with 0 < x(t0 − 1). The same estimate holds in case B.3 with x(t0 − 1) < 0.
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6. Observe that

c(a, b) = min

{
1

2
,
a

8b
, 1,

a

32b
,
a2

8b

(
1 −

1

2b

)}
.

It is also convenient to state here the following simple result.

Proposition 5. Let t0 ∈ R and g : [t0,∞) × R → R be a continuous function

which satisfies (2.2.2) for all t ≥ t0 and δ 6= 0, and assume (7). For every solution

x : [t0 − 1,∞) → R of equation (2.1.1) and for every t ∈ [t0, t0 + 1],

‖xt‖ ≤ (b+ 1)‖xt0‖.

P r o o f. Use

|x(t)| =
∣∣∣x(t0) +

t\
t0

g(s, x(s− 1)) ds
∣∣∣

≤ ‖xt0‖ + b(t− t0) max
[t0−1,t−1]

|x(s)| for t0 ≤ t ≤ t0 + 1.

3.2. Vectors tangent to the attractor and to domains of adapted Poincaré

maps. Let y : R → R be a slowly oscillating periodic solution of equation (1.1.1) with

minimal period ω > 2, monodromy operator Y and adapted Poincaré map Py : Ny → Hy

as in Subsection 2.4. The main result of the present subsection says that certain vectors

in the sets TφA ∩ TφNy, for φ close to y0, belong to a cone which contains the subspace

C∗ ⊂ Cy = TφNy and is disjoint from C< \ {0}. Fix reals a ∈ (0, 1), b > 1, so that

−b < eµmin f ′ ◦ y ≤ eµmax f ′ ◦ y < −a,

and let D denote the set of functions ψ : [−1 − 1/(2b), 0] → C associated with a and b

as in the preceding section. Recall the decomposition C = C< ⊕ C> and the projection

p> : C → C onto C> along C<.

Proposition 1. There exists a constant c(y) > 0 so that for every ψ ∈ D and φ ∈ C

with

(1) ψ(t) = eµtφ(t) for −1 ≤ t ≤ 0,

we have

c(y)‖φ‖ ≤ ‖p>φ‖.

P r o o f. 1. Let n denote the smallest integer in [ω,∞). We prove

e−µ(1+ω) c(a, b)
n

1 + b
‖φ‖ ≤ ‖Y φ‖

for all ψ ∈ D and φ ∈ C satisfying (1). Recall Y φ = vω where v : [−1,∞) → R is the

solution of the variational equation along y with v0 = φ. The function x : [−1,∞) ∋ t 7→

eµtv(t) ∈ R is a solution of equation (2.1.1) with

g(t, δ) = eµf ′(y(t− 1))δ for t ≥ 0 and δ ∈ R,

so that

δg(t, δ) < 0 for all t ≥ 0 and δ 6= 0,
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and

a|δ| ≤ |g(t, δ)| ≤ b|δ| for all t ≥ 0 and δ ∈ R.

Proposition 3.1.3 yields xj ∈ D for all j ∈ {1, . . . , n}. Proposition 3.1.4 yields

c(a, b)‖xj‖ ≤ ‖xj+1‖ for all j ∈ {0, . . . , n− 1}.

Therefore c(a, b)n‖x0‖ ≤ ‖xn‖. By Proposition 3.1.5,

‖xn‖ ≤ (b+ 1)‖xω‖.

Use e−µ‖φ‖ ≤ ‖x0‖ and ‖xω‖ ≤ eµω‖vω‖ to complete the proof.

2. The set M = {Y φ : ‖φ‖ = 1, and there exists ψ ∈ D with (1)} is contained in S,

according to Corollary 2.2.1, and M is compact. Part 1 of the proof shows that M is

bounded away from 0. Therefore M ⊂ S \ {0} = S. By (2.4.8),

0 < min
M

‖p>φ‖

≤ inf{‖p>Y φ‖ : ‖φ‖ = 1, and there exists ψ ∈ D with (1)}

= inf{‖Y p>φ‖ : ‖φ‖ = 1, and there exists ψ ∈ D with (1)}

≤ ‖Y ‖ inf{‖p>φ‖ : ‖φ‖ = 1, and there exists ψ ∈ D with (1)}.

Set

c(y) =
1

‖Y ‖
min
M

‖p>φ‖.

Recall the projection p∗ : Cy → Cy onto C∗ along C<.

Proposition 2. There exists an open neighbourhood Ny of y0 in Ny so that for every

differentiable curve γ : J → C with |γ| ⊂ A ∩Hy and for every s ∈ J with γ(s) ∈ Ny

one has

Py(γ(s)) ∈ Ny, Py(Py(γ(s))) ∈ Ny,

and the vector χ = DP 3
y (γ(s))γ′(s) ∈ TP 3

y (γ(s))A ∩ Cy satisfies c(y)‖χ‖ ≤ ‖p∗χ‖.

P r o o f. Choose an open neighbourhoodNy of y0 in Ny so small that for every φ∈Ny ,

one has

Py(φ) ∈ Ny, Py(Py(φ)) ∈ Ny,

2 < τy(P
j
y (φ)) < ω + 1 for j = 0, 1, 2,

−b < eµf ′(xφ(t− 1)) < −a for 0 ≤ t ≤ 3ω + 3.

Set

u =

2∑

j=0

τy(P
j
y (γ(s))) ∈ (6, 3ω + 3).

Consider a differentiable curve γ : J → C with |γ| ⊂ A ∩Hy, and s ∈ J with γ(s) ∈ Ny.

Then

γ′(s) ∈ Tγ(s)A ∩ Tγ(s)N
y = Tγ(s)A ∩ Cy.

Using (2.4.11) one finds that χ = DP 3
y (γ(s))γ′(s) belongs to TP 3

y (γ(s))A ∩ Cy. Set x =

x(γ(s)). According to (2.4.13) there exists r ∈ R so that

χ = D2F (u, γ(s))γ′(s) − rx′u,
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or χ = vu, with the solution v : [−1,∞) → R of the variational equation (2.1.2) along x

given by the initial condition v0 = γ′(s) − rx′0. Proposition 2.3.4 yields v0 ∈ S.

Assume χ 6= 0. Then vu 6= 0, hence v0 6= 0, and consequently v0 ∈ S \ {0} = S. The

function z : [−1,∞) ∋ t 7→ eµtv(t) ∈ R is a solution of the equation

z′(t) = eµf ′(x(t− 1))z(t− 1)

with z0 ∈ S. Define g : [0,∞) × R → R by

g(t, δ) =

{
eµf ′(x(t − 1))δ for 0 ≤ t ≤ 3ω + 3 and δ ∈ R,
eµf ′(x(3ω + 3 − 1))δ for 3ω + 3 < t and δ ∈ R.

Then g is continuous, and (2.2.2) for t ≥ 0 and δ 6= 0 and (3.1.7) are satisfied. The

solution d : [−1,∞) → R of equation (2.1.1) with d0 = z0 ∈ S satisfies du ∈ D, according

to Corollary 3.1.1. For −1 ≤ t ≤ 3ω+3, d(t) = z(t). In particular, zu ∈ D. Proposition 1

gives

c(y)‖vu‖ ≤ ‖p>vu‖.

Use (2.4.10) and χ = vu.

4. Transversals on the attractor and smoothness

4.1. A sufficient condition for smoothness

Proposition 1. Let φ ∈ A.

(i) If there exist t > 1 and a C1-curve α : (−1, 1) → C with |α| ⊂ A, α(0) = x(φ)−t
so that α′(0) and x(φ)′−t are linearly independent then pφ ∈ (pA)◦, and

(1) there is an open neighbourhood N of pφ in (pA)◦ so that a|N is C1-smooth.

(ii) If φ = ybs for some s ∈ R, and if there exist t > 1 and a C1-curve α : (−1, 1) → C

with α([0, 1)) ⊂ A,α(0) = ybs−t so that α′(0) and (ybs−t)
′ are linearly independent then

(2) there are an open neighbourhood N of pφ in L and a C1-map aN : N → Q with

a|N ∩ pA = aN |N ∩ pA.

P r o o f. 1. Proof of (i): Set x = x(φ). Let ε ∈ (0, t− 1). The C1-map

h : (−ε, ε) × (−1, 1) ∋ (s, u) 7→ pF (t+ s, α(u)) ∈ C

satisfies

Dh(0, 0)(s, r) = pD1F (t, x−t)s+ pD2F (t, x−t)Dα(0)r = pD2F (t, x−t)[sx
′
−t + rα′(0)]

for all real s, r. Using Proposition 2.3.4, the inclusion D2F (t, x−t)S ⊂ S=S∪{0}, 0 6∈pS,

and linear independence of x′−t and α′(0) one finds that Dh(0, 0) is injective. It follows

that there exist δ ∈ (0, ε) and an open neighbourhood N of pφ = h(0, 0) in L with

h((−δ, δ)× (−δ, δ)) = N so that there is a C1-inverse h−1
N : N → R2 of h|(−δ, δ)× (−δ, δ).

The relation |α| ⊂ A and the invariance properties of A yield N ⊂ pA. For every χ ∈ N ,

χ = h(h−1
N (χ)) = pF (t+ (h−1

N (χ))1, α((h−1
N (χ))2)),
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and F (. . .) ∈ A. Consequently,

a(χ) = qF (t+ (h−1
N (χ))1, α((h−1

N (χ))2)),

and it becomes obvious that a|N is C1-smooth.

2. The proof of (ii) is analogous and leads to a C1-map

aN : N ∋ χ 7→ qF (t+ (h−1
N (χ))1, α((h−1

N (χ))2)) ∈ Q

which coincides with a on N ∩ pA.

Corollary 1. Let φ ∈ A \ {0}. If there exist t > 1 with px(φ)−t ∈ (pA)◦ and an

open neighbourhood N0 of px(φ)−t in (pA)◦ so that a|N0 is C1-smooth then pφ ∈ (pA)◦,

and there is an open neighbourhood N of pφ in (pA)◦ so that a|N is C1-smooth.

P r o o f. Set ψ = x(φ)−t. Observe ψ∈A\{0}. By (2.3.2), pψ′ 6=0. Choose χ ∈ L\Rpψ′

and δ > 0 with pψ + (−δ, δ)χ ⊂ N0. Consider the curve

α : (−1, 1) ∋ r 7→ pψ + rδχ+ a(pψ + rδχ) ∈ C.

Apply Proposition 1.

4.2. Smoothness at wandering points

Theorem 1. Let φ∈A \ {0} be such that x(φ) is not periodic. Then pφ ∈ (pA)◦, and

there exists an open neighbourhood N of pφ in (pA)◦ so that a|N is C1-smooth.

P r o o f. 1. Set x = x(φ).

2. Supposee α(x) is the orbit in C of a slowly oscillating periodic solution y : R → R.

Recall the space Cy = C∗⊕C< and the hyperplane Hy = y0 +Cy. Consider the Poincaré

map Py : Ny → Hy associated with y. Proposition 2.4.6 shows that there is a strictly

increasing sequence (tj)
0
j=−∞ in (−∞,−1) with tj → −∞ as j → −∞ so that the points

φj = xtj , j ∈ −N0, form a trajectory of Py which converges to the fixed point y0 as

j → −∞. Corollary 2.5.2 yields that either (2.4.4) holds, or (2.4.5) holds with λ∗ > 1.

Proposition 2.5.3(ii), (iii) implies that there exist an open neighbourhood C∗∗ of 0 in C∗,

a C1-map w : C∗∗ → C< with w(0) = 0, Dw(0) = 0, and

W = y0 + {χ+ w(χ) : χ ∈ C∗∗} ⊂ Ny,

and an integer k ≤ 0 with φj ∈ W for all integers j ≤ k. Furthermore, there is an open

neighbourhood N0 of y0 in Ny so that

Py(W ∩N0) ⊂W.

Corollary 2.4.2 yields ε > 0 with (−ε, ε)φ∗ ⊂ C∗∗ so that the restriction of Py to the open

subset Wε = {φ ∈ W : ‖p∗(φ− y0)‖ < ε} of W is injective. The C1-curve

ζ : (−ε, ε) ∋ s 7→ y0 + sφ∗ + w(sφ∗) ∈ C

defines a homeomorphism onto Wε. There exists δ > 0 with

Py(ζ((−δ, δ))) ⊂Wε = ζ((−ε, ε)),

and there is an integer k1 ≤ k with φj ∈ ζ((−δ, δ)) for all integers j ≤ k1. Observe that

ζ−1(φj) → 0 as j → −∞, and φj 6= y0 for all integers j ≤ 0, since x is not periodic.
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There are integers j ≤ k1 and n < j so that the preimages

sj = ζ−1(φj), sn = ζ−1(φn) in (−δ, δ)

satisfy

sign(sn) = sign(sj) and 0 < |sn| < |sj |;

Lemma 2.5.1 guarantees that for each s ∈ [min{sj, 0},max{sj , 0}] = I there is a trajec-

tory (ψm)0m=−∞ of Py with ψ0 = ζ(s) and ψm → y0 as m → −∞. Choose δ1 > 0 with

(sn − δ1, sn + δ1) ⊂ I. The C1-curve

α : (−1, 1) ∋ s 7→ ζ(sn + sδ1) ∈ C

satisfies

α(0) = ζ(sn) = φn = xtn .

Recall tn < −1. Propositions 2.4.6 and 2.3.1(i) combined yield |α| ⊂ A. The vectors

α′(0) = δ1φ∗ +Dw(snφ∗)δ1φ∗ ∈ (C∗ \ {0}) + C< ⊂ Cy

and

x′tn = D1F (τy(xtn−1), xtn−1)1 ∈ C \ Cy

are linearly independent. Apply Proposition 1.

3. If α(x) is not the orbit in C of a slowly oscillating periodic solution then α(x) = 0.

Corollary 2.5.1 gives u0 ≥ 0 in this case.

4. In case α(x) = {0} and u0 > 0, Proposition 6.3 of [20] shows that φ is contained in

the submanifold W = F ([0,∞)×W0) of Theorem 8.1 of [17]. W \{0} consists of segments

of bounded slowly oscillating solutions x̃ : R → R, hence W ⊂ A. The set pW is open in

L, and there exists a C1-map w : pW → Q with

W = {χ+ w(χ) : χ ∈ pW}.

Consequently, pφ ∈ pW ⊂ pA, and the restriction a|pW = w is C1-smooth.

5. In case α(x) = {0} and u0 = 0, consider the center manifold W c of Proposi-

tion 2.5.1(ii) and the neighbourhood U of 0 in C, and the one-dimensionalC1-submanifold

X = W c ∩H ∩ U ⊂ K ∪ {0} ∪ (−K)

of Proposition 2.5.2. The equation T0X = L ∩H implies that there exist a complemen-

tary subspace Ec in C, ε > 0, an open neighbourhood V of 0 in U , and a C1-map

v : {χ ∈ L ∩H : ‖χ‖ < ε} → Ec with v(0) = 0, Dv(0) = 0, so that

X ∩ V = {χ+ v(χ) : χ ∈ L ∩H, ‖χ‖ < ε}.

Choose a unit vector ψ ∈ L ∩H . The C1-curve

ζ : (−ε, ε) ∋ r 7→ rψ + v(rψ) ∈ C

defines a homeomorphism onto X ∩ V . The restriction P |X ∩ V is injective, and there

exists δ ∈ (0, ε) so that

P (ζ((−δ, δ))) ⊂W c ∩ (K ∪ {0} ∪ (−K)) ∩ V ⊂ X ∩ V = ζ((−ε, ε));

there is an open neighbourhood Vδ of 0 in V with ζ((−δ, δ)) = X ∩ Vδ. The property

(2.5.1) of W c yields t ≤ 0 with xs ∈ W c for all s ≤ t. Proposition 2.2.4(ii) shows that
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there is a strictly increasing sequence (tn)0n=−∞ in R with tn → −∞ as n→ −∞ so that

the sequence (xtn)0n=−∞ is a trajectory of P in K. Of course, xtn → 0 as n → −∞. It

follows that there is an integer n ≤ 0 with tn < −1 and

xtj ∈ W c ∩K ∩ Vδ ⊂ X ∩ Vδ = ζ((−δ, δ))

for all integers j ≤ n. Set rj = ζ−1(xtj ) for all integers j ≤ n. Recall that xs 6= 0

for all s ∈ R. There exist integers j ≤ n and k < j with sign(rk) = sign(rj) and

0 < |rk| < |rj | < δ. Lemma 2.5.1 shows that for every

r ∈ I = [min{rj , 0},max{rj , 0}] ⊂ (−δ, δ)

there exists a trajectory (ψm)jm=−∞ of P with ψj = ζ(r) and ψm → 0 as m → −∞.

Choose δ1 > 0 with (rk − δ1, rk + δ1) ⊂ I. The C1-curve

α : (−1, 1) ∋ r 7→ ζ(rk + rδ1) ∈ C

satisfies α(0) = ζ(rk) = xtk . Recall tk < tn < −1. Propositions 2.2.4(ii) and 2.3.1(i)

combined yield |α| ⊂ A. Since |α| ⊂ X ⊂ H , we have α′(0) ∈ H . The relations

α′(0) = Dζ(rk)δ1 = δ1ψ +Dv(rkψ)δ1ψ, 0 6= δ1ψ ∈ L ∩H,Dv(rkψ)δ1ψ ∈ Ec

yield α′(0) 6= 0. The simplicity of the zeros of the bounded slowly oscillating solution x

(see Proposition 2.2.3) and xtk ∈ K give x′tk(−1) = x′(tk − 1) 6= 0, or x′tk 6∈ H . It follows

that α′(0) and x′tk are linearly independent. Apply Proposition 1.

Corollary 1. Let y be a slowly oscillating periodic solution of equation (1), with

orbit parametrization η.

(i) If for every χ ∈ int(p ◦ η) \ {0} the solution x(χ + a(χ)) is not periodic then the

restriction a|(int(p ◦ η) \ {0}) is C1-smooth.

(ii) If ỹ is another slowly oscillating periodic solution of equation (1), with orbit

parametrization η̃ and |p ◦ η̃| ⊂ int(p ◦ η), and if for every χ ∈ ext(p ◦ η̃) ∩ int(p ◦ η)

the solution x(χ + a(χ)) is not periodic then the restriction a|(ext(p ◦ η̃) ∩ int(p ◦ η)) is

C1-smooth.

5. Curves on the attractor emanating from periodic orbits
and connecting the stationary point to a periodic orbit

5.1. From lines in the plane L to curves on the graph A which are transver-

sal to the flow. This subsection contains minor modifications of results from Chapter 8

of [20] which prepare the construction of curves on A in the next subsections. The curves

will pass through or begin at periodic orbits, or connect the stationary point to a periodic

orbit. They will be needed for the application of Theorem 4.2.1 and Corollary 4.2.1.

Proposition 1. (i) Let ̺ ∈ pA\{0}, t ∈ R, and let Z be a closed hyperplane in C. If

FA(t, ̺+ a(̺))′ ∈ C \Z then there exist an open neighbourhood N of ̺ in L, ε > 0, and

a continuous map σ : N ∩pA→ (t−ε, t+ε) with σ(̺) = t such that for every ˜̺∈ N ∩pA

and s ∈ (t− ε, t+ ε),

FA(s, ˜̺+ a(˜̺)) ∈ FA(t, ̺+ a(̺)) + Z is equivalent to s = σ(˜̺).
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If in addition t > 1 then there exist N, ε, and σ as before, and there are an open neigh-

bourhood V of ̺+ a(̺) in C and a C1-map σ̂ : V → (t − ε, t+ ε) with σ̂(̺ + a(̺)) = t

so that

σ(˜̺) = σ̂(˜̺+ a(˜̺)) for every ˜̺∈ N ∩ pA.

(ii) Let φ ∈ A \ {0}, t ∈ R, and χ ∈ L \ {0}. If p[FA(t, φ)′] ∈ L \Rχ then there exist

an open neighbourhood U of φ in C, ε > 0, and a continuous map σ : U∩A→ (t−ε, t+ε)

with σ(φ) = t so that for every φ̃ ∈ U∩A and s ∈ (t−ε, t+ε), pFA(s, φ̃) ∈ pFA(t, φ)+Rχ

is equivalent to s = σ(φ̃).

P r o o f. Proceed as in the proof of Proposition 8.2 of [20]. In case F (t, ̺+a(̺))′ ∈ C\Z

and t > 1, construct σ as the composition of a C1-map σ̂ from an open neighbourhood

V of ̺+ a(̺) into (t− ε, t+ ε) for which

φ̃ ∈ V, |s− t| < ε, FA(s, φ̃) ∈ FA(t, ̺+ a(̺)) + Z

is equivalent to s = σ̂(φ̃), with the homeomorphism p(A∩ V ) ∋ ˜̺ 7→ ˜̺+ a(˜̺) ∈ A∩ V .

Corollary 1. Let ̺ ∈ pA \ {0}, t ∈ R, χ ∈ L \ {0}, and let Z be a closed hyperplane

in C such that

p[(̺+ a(̺))′] ∈ L \ Rχ and FA(t, ̺+ a(̺))′ ∈ C \ Z.

Then there exist open neighbourhoods N of ̺ in L and U of FA(t, ̺+ a(̺)) in C, ε > 0,

and a continuous map σ : N ∩ pA→ (t− ε, t+ ε) with σ(̺) = t such that the map

h : N ∩ pA ∩ (̺+ Rχ) ∋ ˜̺ 7→ FA(σ(˜̺), ˜̺+ a(˜̺)) ∈ C

defines a homeomorphism onto U ∩ A ∩ (FA(t, ̺+ a(̺)) + Z). If in addition t > 1 then

there exist N,U, ε, and σ as before, and there are an open neighbourhood V of ̺+ a(̺)

in C and a C1-map σ̂ : V → (t− ε, t+ ε) with

σ(˜̺) = σ̂(˜̺+ a(˜̺)) for every ˜̺∈ N ∩ pA.

5.2. Arcs emanating from periodic orbits. Let y : R → R be a slowly oscillating

periodic solution of equation (1.1.1) with minimal period ω > 2 and orbit parametrization

η : [0, ω] ∋ t 7→ yt ∈ C. This subsection contains the construction of curves on A which

begin or end at the periodic orbit |η| and which are C1-smooth provided they do not

intersect other periodic orbits. Consider a closed hyperplane Z in C with y′0 ∈ C \Z. By

(2.3.2), py′0 6= 0. Recall Proposition 2.1.1. Choose χ ∈ L so that χ and py′0 are linearly

independent, and

py′0 + (0, s)χ ⊂ int(p ◦ η) \ {0} for some s > 0.

An application of Corollary 5.1.1 to ̺ = py0, t = ω, and Z yields open neighbourhoods

N of py0 in L, U of y0 = yω in C, a map σ̂, and a homeomorphism h mapping the set

N ∩pA∩ (py0 +Rχ) onto the subset U ∩A∩ (y0 +Z) of A. For s ∈ R with py0 + sχ ∈ pA

define

φs = py0 + sχ+ a(py0 + sχ) and x(s) = x(φs).

There exists δi > 0 so that
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py0 + (0, δi]χ ⊂ (int(p ◦ η) \ {0}) ∩N, py0 + [−δi, 0)χ ⊂ ext(p ◦ η),

χ and pφ′s are linearly independent for every s ∈ (0, δi]

(use the continuity of the map A ∋ φ 7→ φ′ ∈ C guaranteed by Proposition 2.3.3), and

D1F (σ̂(φs), φs)1 = h(py0 + sχ)′ ∈ C \ Z for every s ∈ (0, δi].

The continuous map d : [0, δi) → C given by

d(s) = h(py0 + sχ) = FA(σ̂(φs), φs)

is injective and has a continuous inverse d−1 : d([0, δi)) → R. In case

(1) |η| ∩ |ηb| = ∅,

or equivalently, |p ◦ η| ⊂ int(p ◦ ηb), there exists δe > 0 so that

py0 + (−δe, 0)χ ⊂ ext(p ◦ η) ∩ int(p ◦ ηb), py0 + (0, δe)χ ⊂ int(p ◦ η),

χ and pφ′s are linearly independent for every s ∈ (−δe, 0),

and

D1F (σ̂(φs), φs)1 = h(py0 + sχ)′ ∈ C \ Z for every s ∈ (−δe, 0).

The continuous map de : (−δe, 0] → C given by

de(s) = h(py0 + sχ) = FA(σ̂(φs), φs)

is injective and has a continuous inverse d−1
e : d((−δe, 0]) → R.

Proposition 1. (i) For every δ ∈ (0, δi] there exists an open neighbourhood Uδ of y0
in C with

d((0, δ)) = {φ ∈ Uδ ∩A ∩ (y0 + Z) : pφ ∈ int(p ◦ η)}.

If no solution x(s), 0 < s < δ, is periodic then the restriction d|(0, δ) is C1-smooth, and

Dd(s) 6= 0 for all s ∈ (0, δ).

(ii) Suppose (1) holds , and δ ∈ (0, δe]. Then there exists an open neighbourhood Uδ of

y0 in C with

de((−δ, 0)) = {φ ∈ Uδ ∩A ∩ (y0 + Z) : pφ ∈ ext(p ◦ η)}.

If no solution x(s),−δ < s < 0, is periodic then the restriction d|(−δ, 0) is C1-smooth,

and Dde(s) 6= 0 for all s ∈ (−δ, 0).

P r o o f. 1. Let δ ∈ (0, δi]. There is an open neighbourhood Uδ of y0 in U with

h(N ∩ pA ∩ (py0 + (−δ, δ)χ)) = Uδ ∩A ∩ (y0 + Z).

Let φ ∈ Uδ ∩A ∩ (y0 + Z) with pφ ∈ int(p ◦ η). By Proposition 2.3.5, px(φ)t ∈ int(p ◦ η)

for all t ∈ R. There exists s ∈ (−δ, δ) with

φ = h(py0 + sχ) = FA(σ̂(φs), φs).

It follows that y0 + sχ = pφs ∈ int(p ◦ η). Consequently, s ∈ (0, δ).

Conversely, let s ∈ (0, δ). Then pφs = y0 + sχ ∈ int(p ◦ η), and therefore pd(s) =

pFA(σ̂(φs), φs) ∈ int(p ◦ η), with

d(s) = h(py0 + sχ) ∈ Uδ ∩A ∩ (y0 + Z)
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2. Let δ ∈ (0, δi] and suppose no solution x(s), 0 < s < δ, is periodic. Theorem 4.2.1

and the last statement in Corollary 5.1.1 combined imply that d|(0, δ) is C1-smooth.

Assume Dd(s) = 0 for some s ∈ (0, δ). The chain rule and the formula for the derivatives

of intersection maps in Subsection 2.1 give

0 = pξD2F (σ̂(φs), φs)[χ+Da(py0 + sχ)χ]

where pξ : C → C is the projection onto Z along ξ = D1F (σ̂(φs), φs)1. The formula for

pξ yields

D2F (σ̂(φs), φs)[χ+Da(py0 + sχ)χ] ∈ Rξ = RD2F (σ̂(φs), φs)φ
′
s.

Because of the injectivity of D2F (σ̂(φs, φs) one finds χ + Da(py0 + sχ)χ ∈ Rφ′s, which

implies a contradiction to the fact that χ and pφ′s are linearly independent.

3. The proof of (ii) is analogous.

5.3. Smooth ends at periodic orbits. This subsection prepares the proof that

the map a is smooth at projected periodic orbits. Let y : R → R be a slowly oscillating

periodic solution of equation (1.1.1) with minimal period ω > 2 and orbit parametrization

η as in the preceding subsection. For

Z = Cy = C< ⊕ C∗

consider the maps d and de constructed in Subsection 5.2, and recall the properties of

the adapted Poincaré map Py : Ny → Hy, Hy = y0 + Cy.

Proposition 1. There exists δj ∈ (0, δi] with Py(d((0, δj))) ⊂ d((0, δi)). If (5.2.1)

holds then there exists δf ∈ (0, δe) with

Py(de((−δf , 0))) ⊂ de((−δe, 0)).

P r o o f. Let δ = δi. Consider a neighbourhood Uδ of y0 in C as in Proposition 5.2.1(i).

There exist an open neighbourhood U of y0 in Uδ with Py(U ∩Hy) ⊂ Uδ, and δj ∈ (0, δi)

so that d([0, δj)) ⊂ U . For 0 < s < δj , d(s) ∈ U ∩ A ∩ Hy and pd(s) ∈ int(p ◦ η).

Therefore Py(d(s)) ∈ Uδ ∩A ∩Hy and pPy(d(s)) ∈ int(p ◦ η). Proposition 5.2.1(i) yields

Py(d(s)) ∈ d((0, δi)). The proof of the second statement is analogous.

The transformed map

Pj : (0, δj) ∋ s 7→ d−1(Py(d(s))) ∈ (0, δi)

is continuous. Corollary 2.4.2 imples that it is injective. Note that Pj(s) → 0 as s → 0.

It follows that Pj is strictly increasing.

If (5.2.1) holds then also the transformed map

Pf : (−δf , 0) ∋ s 7→ d−1
e (Py(de(s))) ∈ (−δe, 0)

is continuous, injective, and strictly increasing, with Pf (s) → 0 as s→ 0.

The next two propositions relate the attraction and repulsion properties of 0 ∈ R for

the interval maps Pj and Pf to the smoothness of d and de and to the stability properties

of the fixed point y0 of Py . Attraction implies smoothness for restrictions of d and de to

open intervals with endpoint 0.
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The main result of the present subsection is that in the cases of attraction the nor-

malized tangent vectors

1

‖d′(s)‖
d′(s) and

1

‖d′e(s)‖
d′e(s)

have limits at s = 0, i.e., at the periodic orbit.

Proposition 2. (i) If

(1) δ ∈ (0, δj) and Pj(s) < s for all s ∈ (0, δ)

then the restriction d|(0, δ) is C1-smooth, and Dd(s) 6= 0 for all s ∈ (0, δ).

(ii) If

(2) for every s ∈ (0, δj) there exists s̃ ∈ (0, s) with s̃ ≤ Pj(s̃)

then every neighbourhood of y0 in Ny contains a trajectory (ψn)0n=−∞ of Py with pψn ∈

int(p ◦ η) for all integers n ≤ 0.

(iii) If there are s ∈ (0, δi) and a trajectory (ψn)
∞
n=0 of Py with ψ0 = d(s) and

ψn → y0 as n→ ∞ then there exists δ > 0 with property (1).

P r o o f. 1. Proof of (i): In view of Proposition 5.2.1(i) it remains to exclude the

possibility that for some s ∈ (0, δ) the solution x(s) is periodic. Assume the periodicity.

The solution x(d(s)) is a translate of x(s), hence periodic. Property (1) implies that there

is a trajectory (sn)
∞
n=0 of Pj with s0 = s and sn → 0 as n→ ∞. The trajectory (d(sn))∞n=0

of Py tends to y0 as n→ ∞, and all d(sn) belong to the compact orbit {x(d(s))t : t ∈ R}.

It follows that y0 = x(d(s))t for some t ∈ R, and y = x(d(s))(t + ·). In particular,

d(s) = y−t ∈ |η|. As 0 < s < δj , d(s) ∈ Ny. Proposition 2.4.4 yields d(s) = y0, and one

arrives at s = d−1(y0) = 0, contrary to s ∈ (0, δ).

2. Proof of (ii): Let N be a neighbourhood of y0 in Ny. Choose δ ∈ (0, δj) with

d((0, δ)) ⊂ N . If there is a fixed point s ∈ (0, δ) of Pj then the fixed point d(s) of Py
in N determines the desired trajectory. In the remaining case one obtains s < Pj(s) for

all s ∈ (0, δ), and each s ∈ (0, δ) determines a trajectory (sn)0n=−∞ of Pj in (0, δ) with

s0 = s and sn → 0 as n → −∞. The points d(sn) form a trajectory of Py in N with

pd(sn) ∈ int(p ◦ η) for all integers n ≤ 0.

3. Proof of (iii): The hypothesis implies pψn ∈ int(p ◦ η) for all integers n ≥ 0.

According to Proposition 5.2.1(i) there is an open neighbourhood Uδj
of y0 in C with

d((0, δj)) = {ψ ∈ Uδj
∩A ∩Hy : pψ ∈ int(p ◦ η)}.

It follows that there exists k ∈ N so that ψn ∈ d((0, δj)) for all integers n ≥ k. The

preimages sn = d−1(ψn), n ≥ k, form a trajectory of Pj with sn → 0 as n → ∞.

Furthermore, sn+1 < sn for all integers n ≥ k since otherwise the fact that Pj is increasing

would contradict limn→∞ sn = 0.

Set δ = sk. Let s ∈ (0, δ) be given. There is an integer n ≥ k with sn+1 ≤ s < sn.

Consequently, Pj(s) < Pj(sn) = sn+1 ≤ s.

Proposition 3. Suppose (5.2.1) holds.

(i) If

(3) δ ∈ (0, δf) and s < Pf (s) for all s ∈ (−δ, 0)
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then the restriction de|(−δ, 0) is C1-smooth, with Dde(s) 6= 0 for all s ∈ (−δ, 0).

(ii) If

(4) for every s ∈ (−δf , 0) there exists s̃ ∈ (s, 0) with Pj(s̃) ≤ s̃

then every neighbourhood of y0 in Ny contains a trajectory (ψn)0n=−∞ of Py with pψn ∈

ext(p ◦ η) for all integers n ≤ 0.

(iii) If there are s ∈ (−δe, 0) and a trajectory (ψn)
∞
n=0 of Py with ψ0 = de(s) and

ψn → y0 as n→ ∞ then there exists δ > 0 with property (3).

P r o o f. Analogous to the proof of the preceding proposition.

The result on convergence of tangent vectors mentioned before is based on the a-priori

estimate c(y)‖χ‖ ≤ ‖p∗χ‖ of Proposition 3.2.2.

Proposition 4. (i) Suppose (1) holds for some δ > 0. Then

(5) d′(Pj(s)) ∈ RDPy(d(s))d
′(s) for all s ∈ (0, δ),

and there exists δ∗ ∈ (0, δ) with

(6) c(y)‖d′(s)‖ ≤ ‖p∗d
′(s)‖ for all s ∈ (0, δ∗).

(ii) If (5.2.1) holds and if (3) holds for some δ > 0 then

d′e(Pj(s)) ∈ RDPy(de(s))d
′
e(s) for all s ∈ (−δ, 0),

and there exists δ∗ ∈ (0, δ) with

(7) c(y)‖d′e(s)‖ ≤ ‖p∗d
′
e(s)‖ for all s ∈ (−δ∗, 0).

P r o o f. 1. Suppose (1) holds for some δ > 0.

1.1. Let s ∈ (0, δ). Set s1 = Pj(s). Then 0 < s1 < s < δ. There exists ε > 0 so

that ∆ = d((s1 − ε, s1 + ε)) is a one-dimensional C1-submanifold of C, with Td(s1)∆ =

Rd′(s1). Pj maps a neighbourhood I of s into (s1− ε, s1 + ε). Therefore (Py ◦ (d|I))(I) ⊂

∆,Py(d(s)) = d(s1), and DPy(d(s))d
′(s) ∈ Td(s1)∆. Using d′(s) 6= 0 and Corollary 2.4.2

one finds DPy(d(s))d
′(s) 6= 0, and (5) follows.

1.2. Proof of (6): Choose a neighbourhood Ny of y0 in Ny as in Proposition 3.2.2,

and ε ∈ (0, δ) with d((0, ε)) ⊂ Ny. By (1), Pj((0, ε)) ⊂ (0, ε), and P 3
y ((0, ε)) = (0, δ∗)

with δ∗ = P 3
j (ε) ∈ (0, δ).

Let s ∈ (0, δ∗). There exist s0, s1, s2, s3 in (0, ε) with s = s3 and sk+1 = Pj(sk) for

k ∈ {0, 1, 2}. Property (5) shows that there are r0, r1, r2 in R \ {0} so that

d′(sk+1) = rkDPy(d(sk))d
′(sk) for k ∈ {0, 1, 2}.

The chain rule yields

d′(s) = d′(s3) = r2r1r0D(Py)
3(d(s0))d

′(s0).

Set r = r2r1r0. Proposition 3.2.2 gives

c(y)‖d′(s)‖ = |r|c(y)‖D(Py)
3(d(s0))d

′(s0)‖ ≤ |r| · ‖p∗D(Py)
3(d(s0))d

′(s0)‖ = ‖p∗d
′(s)‖.

2. The proof of assertion (ii) is analogous.
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For φ ∈ Cy \C<, i.e., p∗φ 6= 0, define the inclination with respect to the decomposition

Cy = C< ⊕ C∗ by

ι(φ) = ‖p<φ‖/‖p∗φ‖.

Note that in case (1) holds for some δ > 0, Proposition 2(i) and (6) combined imply

0 6= p∗d
′(s) for 0 < s < δ∗.

If (5.2.1) holds and if there exists δ > 0 with property (3) then Proposition 3(i) and (5)

combined yield

0 6= p∗d
′
e(s) for − δ∗ < s < 0.

Proposition 5 (Inclination lemma). (i) Suppose (1) holds for some δ > 0. Then

there exists δ∗ ∈ (0, δ) with

ι(d′(sk)) → 0 as n→ ∞

for every sequence (sn)
∞
n=0 in (0, δ∗) with sn → 0 as n→ ∞.

(ii) Suppose (5.2.1) holds , and there exists δ > 0 with property (3). Then there is

δ∗ ∈ (0, δ) so that

ι(d′e(sn)) → 0 as n→ ∞

for every sequence (sn)
∞
n=0 in (−δ∗, 0) with sn → 0 as n→ ∞.

P r o o f. 1. Suppose (1) holds for some δ > 0.

1.1. Consider δ∗ ∈ (0, δ) as in Proposition 4(i). Let (sn)
∞
n=0 be a sequence in (0, δ∗)

with sn → 0 as n→ ∞.

1.2. Set Ay = DPy(y0). Then AyC< ⊂ C<, and for all φ ∈ C∗, Ayφ = λ∗φ, with

λ∗ = 1 in case (2.4.4) holds. Proposition 2.4.5 shows that there exists β ∈ (0,min{1, λ∗})

with |λ| < β for all λ in the spectrum of the map Ay< : C< ∋ φ 7→ Ayφ ∈ C<. There

exist a norm ‖ · ‖y on Cy and c1 > 0, c2 > 0 with

c1‖φ‖y ≤ ‖φ‖ ≤ c2‖φ‖y and ‖Ayφ‖y ≤ β‖φ‖y

for all φ ∈ C<. For φ ∈ Cy with p∗φ 6= 0 set

ιy(φ) = ‖p<φ‖y/‖p∗φ‖y.

The nonlinear part

R : Ny − y0 ∋ φ 7→ Py(φ+ y0) −Ayφ− y0 ∈ Cy

of Py at y0 is C1-smooth and satisfies R(0) = 0, DR(0) = 0, and DPy(φ) = Ayφ+R(φ)

for all φ in the open neighbourhood Ny − y0 of 0 in Cy. Set

c =
‖p<‖y
c(y)

·
c2
c1

where ‖B‖y = sup‖φ‖y≤1 ‖Bφ‖y for every continuous linear map B : Cy → Cy. For

φ ∈ Ny − y0 and ψ ∈ Cy with p∗ψ 6= 0 and ιy(ψ) ≤ c one finds

‖p<DPy(φ + y0)ψ‖y ≤ ‖p<Ayψ‖y + ‖p<DR(φ)‖y(1 + c)‖p∗ψ‖y
= ‖Ayp

<ψ‖y + ‖p<DR(φ)‖y(1 + c)‖p∗ψ‖y
≤ β‖p<ψ‖y + ‖p<DR(φ)‖y(1 + c)‖p∗ψ‖y
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and

‖p∗DPy(φ+ y0)ψ‖y ≥ λ∗‖p∗ψ‖y − ‖p∗DR(φ)‖y(1 + c)‖p∗ψ‖y
= (λ∗ − ‖p∗DR(φ)‖y(1 + c))‖p∗ψ‖y.

1.3. Choose a0 ∈ (0, δ∗). Then Pj((0, a0)) ⊂ (0, a0), and there is a strictly decreasing

trajectory (an)
∞
n=0 of Pj in (0, δ∗) with an → 0 as n → ∞. Choose β0 ∈ (β/λ∗, 1) and

n0 ∈ N such that for all s ∈ (0, an0 ],

0 <
β

λ∗ − ‖p∗DR(d(s) − y0)‖y(1 + c)
< β0.

For integers n ≥ n0 set

εn = sup
(0,an]

‖p<DR(d(s) − y0)‖y(1 + c)

λ∗ − ‖p∗DR(d(s) − y0)‖y(1 + c)
.

Then 0 ≤ εn+1 ≤ εn for all integers n ≥ n0, and εn → 0 as n→ ∞.

1.4. Claim: For every ε > 0 there exists an integer nε ≥ n0 with

ιy(d
′(s)) < ε for all s ∈ [an+1, an], n ≥ nε

Proof : Let ε > 0. Choose integers mε ≥ n0 and kε ≥ 1 with

εm
1

1 − β0
<
ε

2
for all integers m ≥ mε,

βk0 c <
ε

2
for all integers k ≥ kε.

Set nε = mε + kε. Then nε ≥ 2. Let s ∈ [an+1, an], n ≥ nε. Recall that Pj is strictly

increasing, with [ak+2, ak+1] = Pj([ak+1, ak]) for all integers k ≥ 0. It follows that there

exist tν ∈ [aν+1, aν ] for ν ∈ {0, . . . , n} with s = tn and tν+1 = Pj(tν) for all ν ∈

{0, . . . , n− 1}. Hence

d(tν+1) = Py(d(tν) for all ν ∈ {0, . . . , n− 1}.

According to (5) there exist r0, . . . , rn−1 in R \ {0} with

d′(tν+1) = rνDPy(d(tν))d
′(tν) for all ν ∈ {0, . . . , n− 1}.

The inequality (6) yields p∗d
′(tν) 6= 0 and

ιy(d
′(tν)) =

‖p<d′(tν)‖y
‖p∗d′(tν)‖y

≤
‖p<‖‖d′(tν)‖

‖p∗d′(tν)‖
·
c2
c1

≤ c

for all ν ∈ {0, . . . , n}. For every ν ∈ {mε, . . . , n − 1}, sν ≤ aν ≤ amε
≤ an0 , and the

estimates in part 1.2 of the proof yield

ιy(d
′(tν+1)) = ιy(DPy(d(tν ))d

′(tν)) ≤ β0ιy(d
′(tν)) + εν .

It follows that

ιy(d
′(s)) = ιy(d

′(tn)) ≤ βn−mε

0 ιy(d
′(tmε

)) + εn−1 + εn−2β0 + . . .+ εmε
βn−1−mε

0

≤ βn−mε

0 c+ εmε

1

1 − β0
< ε.

1.5. Let ε > 0. Consider k = nc1ε/c2 as in the preceding claim. There exists ν ∈ N so

that for all integers n ≥ ν,

0 < sn ≤ ak, sn ∈ (aκ+1, aκ] for some κ ≥ k,
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and

ι(d′(sn)) ≤
c2
c1
ιy(d

′(sn)) < ε.

2. The proof of assertion (ii) is analogous.

Suppose now that (1) holds for some δ > 0. Then the trace d((0, δ)) is reparametrized

by arclength using the C1-transformation

v : (0, δ) ∋ s 7→

s\
δ/2

‖d′(u)‖ du ∈ R.

Obviously, v′(s) > 0 for all s ∈ (0, δ). The range R = v((0, δ)) is an open interval, and

the C1-curve

̺ : R ∋ r 7→ d(v−1(r)) ∈ C

has the following properties:

̺(R) = d((0, δ)) ⊂ {φ ∈ A : pφ ∈ int(p ◦ η)},

‖̺′(r)‖ = 1 for all r ∈ R,

p∗̺
′(r) 6= 0 for all r ∈ R with r < v(δ∗),

where δ∗ is given by Proposition 4(i), and

̺(r) → y0 and ι(̺′(r)) = ι(d′(v−1(r))) → 0 as r → inf R.

Corollary 1. There exists k ∈ {0, 1} with ̺′(r) → (−1)kφ∗ as r → inf R, and R is

bounded from below.

P r o o f. 1. The continuous map

(inf R, v(δ∗)) ∋ r 7→
1

‖p∗̺′(r)‖
p∗̺

′(r) ∈ {φ∗,−φ∗}

is constant. Let φ denote its value. For inf R < r < v(δ∗),

‖̺′(r) − φ‖ =

∥∥∥∥̺
′(r)−

1

‖p∗̺′(r)‖
p∗̺

′(r)

∥∥∥∥≤ ‖̺′(r) − p∗̺
′(r)‖ +

∣∣∣∣1−
1

‖p∗̺′(r)‖

∣∣∣∣‖p∗̺
′(r)‖

= ‖p<̺′(r)‖ + |‖p∗̺
′(r)‖ − ‖̺′(r)‖| ≤ 2‖p<̺′(r)‖

= 2ι(̺′(r))‖p∗̺
′(r)‖ ≤ 2ι(̺′(r))‖p∗‖,

and it follows that ̺′(r) → φ as r → inf R.

2. Choose r0 ∈ R such that for r ∈ (inf R, r0], ‖̺(r)− y0‖ ≤ 1 and ‖̺′(r)− φ‖ < 1/2.

For such r,

2 ≥ ‖̺(r) − ̺(r0)‖ =
∥∥∥
r\
r0

̺′(s) ds
∥∥∥ ≥

∥∥∥
r\
r0

φds
∥∥∥ −

∥∥∥
r\
r0

(̺′(s) − φ) ds
∥∥∥

= r0 − r −
∥∥∥
r\
r0

(̺′(s) − φ) ds
∥∥∥ ≥ r0 − r −

1

2
(r0 − r),

or r ≥ r0 − 4.
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If (5.2.1) holds and if there exists δ > 0 with property (3) then the trace de((−δ, 0))

is reparametrized using the C1-transformation

ve : (−δ, 0) ∋ s 7→

s\
−δ/2

‖d′e(u)‖ du ∈ R

and the open interval Re = ve((−δ, 0)); the C1-curve ̺e : Re ∋ r 7→ de(v
−1
e (r)) ∈ C

satisfies

̺e(Re) = de((−δ, 0)) ⊂ {φ ∈ A : pφ ∈ ext(p ◦ η)},

‖̺′e(r)‖ = 1 for all r ∈ Re,

p∗̺
′
e(r) 6= 0 for all r ∈ Re with ve(δ∗) < r,

δ∗ given by Proposition 4(ii),

̺e(r) → y0 and ι(̺′e(r)) = ι(d′e(v
−1
e (r))) → 0 as r → supRe.

Corollary 2. There exists m ∈ {0, 1} with ̺′e(r) → (−1)mφ∗ as r → supRe, and

Re is bounded from above.

P r o o f. Analogous to the proof of the preceding corollary.

5.4. A curve on A connecting 0 in K to a periodic orbit. The subsequent

construction will be used in the proof that the map a is smooth in a neighbourhood of

the projected stationary point 0 ∈ L. The general hypotheses throughout this subsection

are that there is a slowly oscillating periodic solution y : R → R of equation (1.1.1), with

minimal period ω > 2 and orbit parametrization η, so that

(1) y0 ∈ K, and no solution x(φ), 0 6= pφ ∈ int(p ◦ η), is periodic,

and that

(2) for each x(φ), 0 6= φ ∈ A, the zeros are not bounded from above.

Consider the set

X = {φ ∈ A ∩H : φ(0) ≥ 0, pφ ∈ int(p ◦ η) ∪ |p ◦ η|}.

Using Proposition 2.3.1(iii) and equations (2.3.3) one finds

X = {φ ∈ A ∩K : pφ ∈ int(p ◦ η) ∪ |p ◦ η|} ∪ {0}

= {φ ∈ A ∩K : pφ ∈ int(p ◦ η)} ∪ {0, y0},

and parts (iv) and (v) of Proposition 2.3.1 in combination with Proposition 2.3.5 show

that the return map P defines a homeomorphism of the compact set X onto itself.

For

Xi = {φ ∈ A ∩K : pφ ∈ int(p ◦ η)}

one finds

Xi = {φ ∈ A ∩H : 0 < φ(0), pφ ∈ int(p ◦ η)}

and

(3) P (Xi) = Xi.

Proposition 1. The set Xi is a one-dimensional C1-submanifold of C.
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P r o o f. Consider the inclusion map I : {φ ∈ H : 0 < φ(0)} ∋ φ 7→ φ ∈ C and the

set Ai = {φ ∈ A : 0 6= pφ ∈ int(p ◦ η)} = {χ + a(χ) : 0 6= χ ∈ int(p ◦ η)}, which is a

2-dimensional C1-submanifold of C by Corollary 4.2.1(i). Obviously,

Xi = {φ ∈ H : 0 < φ(0)} ∩Ai = I−1(Ai),

and in view of Corollary 17.2 of [1] it remains to show that I and Xi are transversal, i.e.,

for every φ ∈ Xi the preimage

DI(φ)−1TI(φ)Ai = H ∩ TφAi

has a closed complementary subspace in H , and the image

DI(φ)Tφ{ψ ∈ H : ψ(0) > 0} = H

contains a closed complementary subspace of TI(φ)Ai = TφAi in C.

To prove this, let φ ∈ H with φ(0) > 0 and I(φ) ∈ Ai be given. Then φ(−1) = 0,

FA(t, φ) ∈ Ai for all t ∈ R, and φ′(−1) = x(φ)′(−1) 6= 0. It follows that

φ′ = D1FA(0, φ)1 ∈ TφAi \H,

and therefore

(4) C = H ⊕ Rφ′.

Furthermore, there exists χ ∈ (H∩TφAi)\{0} since otherwise (4) would yield TφAi ⊂ Rφ′,

which contradicts dimTφAi = 2. Observe TφAi = Rχ⊕ Rφ′ and Rχ = H ∩ TφAi. There

is a closed subspace Hχ of H with

H = Hχ ⊕ Rχ = Hχ ⊕DI(φ)−1TI(φ)Ai,

Hχ ⊂ H = DI(φ)Tφ{ψ ∈ H : ψ(0) > 0}, C = Hχ ⊕ TφAi.

The main result of the present subsection is that the set X ⊃ Xi is the continuous

injective image of a compact interval. The construction of the desired parametrization

begins as in Subsection 5.2, with Z = H . Recall the relations yω ∈ H , y′ω = y′0 ∈ C \H ,

and py′0 6= 0. Choose χ ∈ L \ Rpy′0 with

py′0 + (0, s)χ ⊂ int(p ◦ η) \ {0}

for some s > 0. An application of Corollary 5.1.1 to ̺ = py0, t = ω, and H yields open

neighbourhoods N of py0 in L, U of y0 = yω in C, a map σ̂, and a homeomorphism h

mapping N∩pA∩(py0+Rχ) onto the subset U∩A∩H of A. For s ∈ R with py0+sχ ∈ pA

define φs = py0 + sχ + a(py0 + sχ) and x(s) = x(φs). There exist δi > 0 and an open

neighbourhood Ui of y0 in {φ ∈ U : φ(0) > 0} so that

py0 + (0, δi]χ ⊂ (int(p ◦ η) \ {0}) ∩N,

py0 + [−δi, 0)χ ⊂ ext(p ◦ η) ⊂ N,

h(pA ∩ (py0 + (−δi, δi)χ)) = Ui ∩A ∩H,

and for every s ∈ (0, δi], χ and pφ′s are linearly independent (use the continuity of the

map A ∋ φ 7→ φ′ ∈ C guaranteed by Proposition 2.3.3). Note that Ui∩A∩H = Ui∩A∩K.
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The continuous map d : [0, δi) → C given by

d(s) = h(φs) = FA(σ̂(φs), φs)

is injective, with d(0) = y0, and there is a continuous inverse d−1 : d([0, δi)) → R.

Corollary 1. The image d([0, δi)) equals

{φ ∈ Ui ∩A ∩H : pφ ∈ int(p ◦ η)},

and there exists δ ∈ (0, δi) with P (d((0, δ))) = d((0, δi)).

P r o o f. 1. The first assertion is shown as in part 1 of the proof of Proposition 5.2.1.

2. Choose a neighbourhood Uj of y0 in Ui with P (Uj ∩ K) ⊂ Ui, and δ ∈ (0, δi)

with d((0, δ)) ⊂ Uj . For 0 < s < δ, d(s) ∈ Uj ∩ A ∩ H = Uj ∩ A ∩ K. Consequently,

P (d(s)) ∈ Ui. Also,

P (d(s)) ∈ A, P (d(s)) ∈ K ⊂ H, pP (d(s)) ∈ int(p ◦ η).

It follows that P (d(s)) ∈ {φ ∈ Ui ∩A ∩H : pφ ∈ int(p ◦ η)} = d((0, δi)).

The transformed return map

Pt : (0, δ) ∋ s 7→ d−1(P (d(s))) ∈ (0, δi)

is continuous and injective, with Pt(s) → 0 as s → 0. It follows that Pt is strictly

increasing. The hypothesis (1) excludes fixed points of the map Pt. Therefore

(5) s < Pt(s) for all s ∈ (0, δ),

or

(6) Pt(s) < s for all s ∈ (0, δ).

Choose s0 ∈ (0, δ). If (5) holds then there is a strictly increasing trajectory (sj)
0
j=−∞ of Pt

with sj → 0 as j → −∞, and Pt maps each interval (sj−1, sj ], j < 0, homeomorphically

onto (sj , sj+1]. If (6) holds then there is a strictly decreasing trajectory (sj)
∞
j=0 of Pt with

sj → 0 as j → ∞, and Pt maps each interval (sj+1, sj ], j ≥ 0, homeomorphically onto

(sj+2, sj+1].

Proposition 2. Let φ ∈ A ∩K with pφ ∈ int(p ◦ η).

(i) If (5) holds then the trajectory (φj)
∞
j=−∞ of P given by φ0 = φ satisfies φj → y0

as j → −∞ and φj → 0 as j → ∞. There exist j ∈ Z and s ∈ (s−1, s0] with φj = d(s).

(ii) If (6) holds then the trajectory (φj)
∞
j=−∞ of P given by φ0 = φ satisfies φj → 0

as j → −∞ and φj → y0 as j → ∞. There exist j ∈ Z and s ∈ (s−1, s0] with φj = d(s).

P r o o f. 1. We have φ ∈ Xi ⊂ X . Suppose (5) holds. There is a trajectory (φj)
∞
j=−∞

of P in the compact set X , with φ0 = φ and pFA(t, φ) ∈ int(p◦ η) for all t ∈ R. It follows

that both sets α(x(φ)) and ω(φ) belong to the compact set

{φ ∈ A : pφ ∈ int(p ◦ η) ∪ |p ◦ η|}

which contains 0 and |η| but no other periodic orbit. Therefore

α(x(φ)) = |η| and ω(φ) = {0}, or α(x(φ)) = {0} and ω(φ) = |η|.

Suppose the last statement holds. Every subsequence of (φj)
∞
j=0 has a subsequence which

converges to a point ψ in A ∩H ∩ |η| with ψ(0) ≥ 0. Using (2.3.3) and y0 ∈ K one finds
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that φj → y0 as j → ∞. All φj belong to A ∩H , with 0 6= pφj ∈ int(p ◦ η). Corollary 1

shows that there exists an integer j0 with φj ∈ d((0, δi)) for all j ≥ j0. Consequently,

d−1(φj) → 0 as j → ∞, and there is an integer j1 ≥ j0 with 0 < d−1(φj) < δ for

all j ≥ j1. The points d−1(φj), j ≥ j1, form a trajectory of Pt, and one arrives at a

contradiction to s < Pt(s) for all s ∈ (0, δ).

2. It follows that α(x(φ)) = |η| and ω(φ) = {0}. The last equation gives φj → 0 as

j → ∞. As in part 1 one finds φj → y0 as j → −∞, and there exists an integer n so that

(d−1(φj))
n
j=−∞ is a trajectory of Pt which converges to 0 as j → −∞. There are integers

k ≤ n with

0 < d−1(φk) ≤ s0

and m ≤ 0 with

sm−1 < d−1(φk) ≤ sm.

Set s = P−m
t (d−1(φk)), j = k −m. Then s ∈ (s−1, s0] and d(s) = P−m(φk) = φj .

3. The proof of assertion (ii) is analogous.

In case (5) holds the restriction d|[0, s0] is extended to a map γ from a compact

interval into C as follows. For j ∈ N set

sj = s0 +

j∑

ι=1

2−ι,

and consider the affine map aj : R → R given by

aj(sj−1) = s−1, aj(sj) = s0.

Define g = s0 + 1, G = [0, g], and set

γ(s) = d(s) for 0 ≤ s ≤ s0,

γ(s) = P j(d(aj(s))) for sj−1 < s ≤ sj , j ∈ N,

γ(g) = 0.

Then

P (γ(sj)) = P j+1(d(s0)) = P j+1(d(aj+1(sj+1))) = γ(sj+1) for all j ≥ 0,

and Proposition 2 yields

(7) γ(sj) → 0 as j → ∞.

Proposition 3. The map γ is injective, and

γ(G) = X, γ((0, g)) = Xi, γ([0, g)) = {φ ∈ A ∩K : pφ ∈ int(p ◦ η) ∪ |p ◦ η|}.

P r o o f. 1. Proof of the equations : Let φ∈X . Then either φ = 0 = γ(g), or φ = y0 =

d(0) = γ(0), or pφ ∈ int(p ◦ η). In the last case there is a trajectory (φj)
∞
j=−∞ of P in X

with φ0 = φ. Proposition 2(i) gives an integer j and s ∈ (s−1, s0] with φj = d(s). In case

j < 0,

φ = φ0 = P−j(φj) = P−j(d(s)) = P−j(d(a−j(a
−1
−j (s)))) = γ(a−1

−j(s)) ∈ γ((0, g))

In case j ≥ 0 there exists r ∈ (s−j−1, s−j ] with P jt (r) = s, and the equations

P j(γ(r)) = P j(d(r)) = d(P jt (r)) = d(s) = φj = P j(φ0)

imply φ = φ0 = γ(r) ∈ γ((0, g)).
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Conversely, let φ ∈ γ(G). Then either φ = γ(0) = y0 ∈ X , or φ = γ(g) = 0 ∈ X , or

φ ∈ γ((0, g)). In the last case, either φ = γ(s) with s ∈ (0, s0], and therefore

φ = d(s) ∈ {ψ ∈ Ui ∩A ∩H : pψ ∈ int(p ◦ η)} (see Corollary 1)

⊂ Xi,

or there are j ∈ N and s ∈ (sj−1, sj ] with

φ = γ(s) = P j(d(aj(s))) ∈ P j(d(0, s0]) ⊂ P j(Xi) ⊂ Xi.

2. Proof of injectivity: The restrictions of γ to the intervals [0, s0] and (sj−1, sj ],

j ∈ N, are all injective, and

γ(g) = 0 6∈ {φ ∈ A ∩K : pφ ∈ int(p ◦ η) ∪ |p ◦ η|} = γ([0, g)).

Also,

γ(0) = y0 6∈ {φ ∈ A ∩K : pφ ∈ int(p ◦ η)} ∪ {0}

= Xi ∪ {0} = γ((0, g)) ∪ {γ(g)} = γ((0, g]).

Next, consider s ∈ (0, s0] and t ∈ (sj−1, sj ], with j ∈ N. Then γ(s) = d(s), γ(t) =

P j(d(aj(t))), and aj(t) ∈ (s−1, s0] ⊂ (0, s0]. There is an integer k ≤ 0 with sk−1 < s ≤ sk,

and there exists r ∈ (sk−1−j , sk−j ] ⊂ (0, s0] with

s = P jt (r), d(s) = P j(d(r)).

Observe that r ≤ sk−j ≤ s−1 < aj(t). The injectivity of d and of P |X now yield

γ(s) = d(s) = P j(d(r)) 6= P j(d(aj(t))) = γ(t).

Finally, consider arguments s ∈ (sk−1, sk] and t ∈ (sj−1, sj ] with 0 < k ≤ j. Then

γ(s) = P k(d(ak(s))), γ(t) = P j(d(aj(t))),

and

ak(s) ∈ (s−1, s0], aj(t) ∈ (s−1, s0].

There exists r ∈ (sk−j−1, sk−j ] with P j−kt (r) = ak(s). Observe that 0 < r ≤ sk−j ≤

s−1 < aj(t) ≤ s0. The injectivity of d and of P |X now yield

γ(s) = P k(d(ak(s))) = P k(d(P j−kt (r))) = P j(d(r)) 6= P j(d(aj(t))) = γ(t).

Proposition 4. The map γ is continuous.

P r o o f. 1. Continuity at points in [0, s0) and (sj , sj+1), j ≥ 0, is obvious.

2. Let j≥0 be an integer. Continuity at sj from the left is obvious. To show continuity

from the right, let (tk)
∞
k=1 be a sequence in (sj , sj+1] with tk→ sj as k→ ∞. Set a0 =idR.

For every positive integer k,

γ(tk) = P j+1(d(aj+1(tk))) = P j(P (d(aj(a
−1
j (aj+1(tk)))))).

The points rk = a−1
j (aj+1(tk)) ∈ (sj−1, sj ], k ∈ N, converge to sj−1 as k → ∞. Therefore

aj(rk) → s−1 as k → ∞, and

γ(tk) = P j(P (aj(rk))) → P j(P (d(s−1))) = P j(d(s0)) = P j(d(aj(sj))) = γ(sj).
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3. Proof that γ is continuous at g:

3.1. By the previous proposition, γ is injective, and γ((0, g)) = Xi. Parts 1 and 2 of

the proof imply that the map

γi : (0, g) ∋ s 7→ γ(s) ∈ Xi

is continuous.

Claim: The map γi is a homeomorphism.

Proof : The set Xi = γ((0, g)) is connected. It is not compact since γ(sj) → γ(0) = y0
as j → −∞ and y0 6∈ Xi. Consequently, there exists a homeomorphism h from an

open interval (a, b) ⊂ R onto the one-dimensional C1-submanifold Xi (see e.g. 23.19 in

Chapter VI of [14]). It follows that h−1 ◦ γi is a homeomorphism onto the interval (a, b),

and

γ−1
i = (γ−1

i ◦ h) ◦ h−1 = (h−1 ◦ γi)
−1 ◦ h−1

is continuous.

3.2. Assume γ is not continuous at g. Then there are a sequence (tk)
∞
k=1 in G and

ε > 0 so that tk → g as k → ∞ and ‖γ(tk)‖ ≥ ε for k ∈ N. The compactness of X = γ(G)

permits extracting a subsequence of points uj = tkj
, j ∈ N, so that (γ(uj))

∞
j=1 converges

to a point φ ∈ γ(G) with ‖φ‖ ≥ ε.

3.2.1. Claim: There exist a sequence (rm)∞m=1 in (0, g) and s ∈ (0, g) so that rm → g

and γ(rm) → γ(s) as m→ ∞.

Proof : Observe that φ 6=0 = γ(g). Assume φ = γ(0) = y0. Let ε = ‖y0‖. There exists

j0 ∈ N so that

‖γ(uj) − y0‖ < ε/3 and ‖γ(sj)‖ < ε/3 for all j ≥ j0.

The compact interval Ij with endpoints uj , sj is contained in (0, g). The continuity of

γ|(0, g) implies that there is a point wj ∈ Ij with

‖γ(wj) − y0‖ ≥ ε/3 and ‖γ(wj)‖ ≥ ε/3.

Note wj → g as j → ∞. As above one finds a subsequence (wjm )∞m=1 and a point ψ ∈ X

so that γ(wjm) → ψ as m→ ∞, with

‖ψ − y0‖ ≥ ε/3 and ‖ψ‖ ≥ ε/3.

Therefore ψ ∈ X \ {0, y0} = γ((0, g)).

3.2.2. Recall P (Xi) = Xi, and Xi = γ((0, g)). It follows that there exists t ∈ (0, g)

with P (γ(s)) = γ(t). Fix ε ∈ (0,min{t, g − t}). Part 3.1 of the proof implies that there

is an open neighbourhood Ut of γ(t) in C with γ((t− ε, t+ ε)) = Ut ∩ γ((0, g)). By the

continuity of P , there is an open neighbourhood Us of γ(s) in C with

P (Us ∩ γ((0, g))) ⊂ Ut ∩ P (γ((0, g))) ⊂ Ut ∩ γ((0, g)).

Choose j ∈ N so large that t+ ε < rj and γ(rj) ∈ Us. Choose k ∈ N with sk > rj . The

map

Pi : (0, g) ∋ r 7→ γ−1
i (P (γ(r))) ∈ R

is continuous, and

Pi(sk) = sk+1 > sk, Pi(rj) ∈ (t− ε, t+ ε) ⊂ (−∞, rj).
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It follows that there is a fixed point of Pi in (rj , sk), and P has a fixed point in γ((0, g)) =

Xi. This implies a contradiction to the hypothesis (1) that no solution x(φ) with 0 6=

pφ ∈ int(p ◦ η) is periodic.

Corollary 2. Assume (1) and (2). If (5) holds then there exist g > 0 and a conti-

nuous injective map γ : [0, g] → C with

γ([0, g]) = {φ ∈ A ∩H : 0 ≤ φ(0), pφ ∈ int(p ◦ η) ∪ |p ◦ η|}

and γ(0) = y0, γ(g) = 0.

R e m a r k 1. If (1), (2) and (6) hold then a construction analogous to the one above

yields the same existence result as in Corollary 2.

6. Smoothness at periodic orbits

6.1. Interior periodic orbits. Let φ ∈ A\({0}∪|ηb|) be such that x(φ) is periodic.

Then pφ ∈ (pA)◦. The aim of the present subsection is to prove that (4.1.1) holds. Choose

t > 1 and consider the slowly oscillating periodic solution

y : R ∋ s 7→ x(φ)(s − t) ∈ R

of equation (1.1.1), with minimal period ω > 2 and orbit parametrization η : [0, ω] → C.

Consider the closed hyperplane Cy = C< ⊕ C∗, its translate Hy = y0 + Cy, the adapted

Poincaré map Py : Ny → Hy, and recall Proposition 2.4.5.

Proposition 1 (y hyperbolic and unstable). If (2.4.5) is satisfied and if λ∗ > 1 then

(4.1.1) holds.

P r o o f. Recall Proposition 2.5.3(ii). Choose ε>0 with (−ε, ε)φ∗⊂C∗u. The C1-curve

α : (−1, 1) → C given by

α(s) = y0 + sεφ∗ + wu(sεφ∗)

has range in A (see Corollary 2.5.2(ii)), and α(0) = y0. The vectors α′(0) = εφ∗ ∈ Cy
and x(φ)′−t = y′0 ∈ C \ Cy are linearly independent. Apply Proposition 4.1.1(i).

The proofs of property (4.1.1) in the remaining cases make use of the constructions

in Subsection 5.3. The hypothesis φ ∈ C \ |ηb| implies that equation (5.2.1) holds. Recall

the continuous maps d : [0, δi) → C and de : (−δe, 0] → C from Subsection 5.3, with

values in A and d(0) = y0 = de(0).

Proposition 2 (y hyperbolic and stable). If (2.4.5) is satisfied and if λ∗ < 1 then

(4.1.1) holds.

P r o o f. Consider a neighbourhood Ws of y0 in Ny as in Proposition 2.5.3(i). There

exist s ∈ (0, δi) and se ∈ (−δe, 0) so that d(s) ∈ Ws and de(se) ∈ Ws. Proposi-

tions 5.3.2(iii) and 5.3.3(iii) show that there exists δ ∈ (0,min{δi, δe}) so that the con-

ditions (5.3.1) and (5.3.3) are satisfied. Propositions 5.3.2(i) and 5.3.3(i) yield that the

restrictions d|(0, δ) and de|(−δ, 0) are C1-smooth with all derivatives injective. The re-

parametrizations ̺ : R → C and ̺e : Re → C of d|(0, δ) and de|(−δ, 0), respectively,

which are constructed in the last part of Subsection 5.3, are C1-smooth and have the
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following properties: R is bounded from below, Re is bounded from above, |̺| ∪ |̺e| ⊂ A,

|p◦̺| ⊂ int(p◦η), |p◦̺e| ⊂ ext(p◦η), ̺(r) → y0 as r → inf R, ̺e(r) → y0 as r → supRe;

there exist j and k in {0, 1} so that

̺′(r) → (−1)jφ∗ as r → inf R

and

̺′e(r) → (−1)kφ∗ as t→ supRe.

Set ri = inf R, re = supRe. Then the set

I = (Re − re) ∪ {0} ∪ (R− ri)

is an open interval, and the map αI : I → C given by

αI(r) = ̺e(r + re) for 0 > r ∈ I,

αI(0) = y0,

αI(r) = ̺(r + ri) for 0 < r ∈ I,

is continuous and has range in A. The restrictions αI |I ∩ (−∞, 0) and αI |I ∩ (0,∞) are

C1-smooth, with α′
I(r) → (−1)kφ∗ as 0 > r → 0 and α′

I(r) → (−1)jφ∗ as 0 < r → 0.

Moreover,

pαI(r) ∈ ext(p ◦ η) for 0 > r ∈ I,

pαI(r) ∈ int(p ◦ η) for 0 < r ∈ I.

Proposition 2.4.3 says that pφ∗ and (p ◦ η)′(0) = py′0 are linearly independent. An appli-

cation of Proposition 2.1.1 to p ◦ η and p ◦ αI yields k = j, and αI is C1-smooth, with

α′
I(0) = (−1)jφ∗. Choose ε > 0 with (−ε, ε) ⊂ I and define a C1-curve α : (−1, 1) → C

by α(s) = αI(εs). Then |α| ⊂ A, α(0) = y0 = x(φ)−t, and α′(0) = ε(−1)jφ∗ and

x(φ)′−t = y′0 are linearly independent. Apply Proposition 4.1.1(i).

Proposition 3 (y not hyperbolic). If (2.4.4) is satisfied then (4.1.1) holds.

P r o o f. 1 (A center manifold). Consider a C1-map wc : C∗c → C<, the set Wc =

y0 + {χ + wc(χ) : χ ∈ C∗c}, and an open neighbourhood Nc of y0 in Ny as in Proposi-

tion 2.5.3(iii). In the sequel an application of Lemma 2.5.1 is prepared. The continuity of

Py at y0 and the local invariance property of Wc yield an open neighbourhood Ncc of y0
in Nc with Py(Wc∩Ncc) ⊂Wc. Corollary 2.4.2 implies that the derivative of the C1-map

Wc ∩Ncc ∋ φ 7→ Py(φ) ∈ Wc

at y0 is an isomorphism of Ty0Wc. It follows that there is a neighbourhood Ni of y0 in

Ncc so that the restriction Py|Wc ∩Ni is injective. Choose εi > 0 with (−εi, εi)φ∗ ⊂ C∗c

and

y0 + sφ∗ + wc(sφ∗) ∈ Ni for |s| < εi.

Recall again that pφ∗ and py′0 are linearly independent (Proposition 2.4.3). Proposi-

tion 2.1.1 applies, and there exist s > 0 and ψ ∈ {−φ∗, φ∗} with

py0 + (0, s)pψ ⊂ int(p ◦ η), py0 + (−s, 0)pψ ⊂ ext(p ◦ η),

and ε ∈ (0, εi) so that the C1-curve

ζ : (−ε, ε) ∋ s 7→ y0 + sψ + wc(sψ) ∈ C
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with ζ(0) = y0 and ζ′(0) = ψ, (p ◦ ζ)′(0) = pψ, satisfies

(p ◦ ζ)((0, ε)) ⊂ int(p ◦ η), (p ◦ ζ)((−ε, 0)) ⊂ ext(p ◦ η).

The map ζ defines a homeomorphism onto |ζ|, and there exists an open neighbourhood

Nε of y0 in Ny with ζ((−ε, ε)) = Wc ∩ Nε. The continuity of Py at y0 gives ε′ ∈ (0, ε)

with

Py(ζ((−ε
′, ε′))) ⊂Wc ∩Nε = ζ((−ε, ε)),

and there is an open neighbourhood N ′ of y0 in Nε with ζ((−ε′, ε′)) = Wc ∩N ′.

2 (Branches of the center manifold on A). Recall the transformed return maps Pj :

(0, δj) → (0, δi) and Pf : (−δf , 0) → (−δe, 0) of Subsection 5.3.

2.1. If (5.3.2) holds then Proposition 5.3.2(ii) guarantees a trajectory (ψn)0n=−∞ of

Py in N ′ ∩ Nc with pψn ∈ int(p ◦ η) for all integers n ≤ 0. Proposition 2.5.3(iii) yields

ψn ∈ Wc for all n ≤ 0. Hence

ψn ∈Wc ∩N
′ ∩ p−1(int(p ◦ η)) = ζ((0, ε′)) for all n ≤ 0.

In particular,

ψ0 = ζ(s+) for some s+ ∈ (0, ε′).

Lemma 2.5.1 shows that for every s ∈ (0, s+] there is a trajectory (χn)0n=−∞ of Py in

ζ((−ε′, ε′)) with χ0 = ζ(s) and |ζ−1(χn)| ≤ |ζ−1(ψn)| for all n ≤ 0. Propositions 2.4.6(ii)

and 2.3.1(i) combined yield ζ((0, s+))⊂A. The restriction α+ = ζ|(0, s+) satisfies |α+|⊂

A, α+(s) → y0 as s→ 0, α′
+(s) → ψ as s→ 0.

2.2. If (5.3.4) holds then arguments analogous to those in part 2.1 show that there

exist ε− > 0 and a C1-curve α− : (−ε, 0) → C with |α−| ⊂ A, α−(s) → y0 as s → 0,

α′
−(s) → ψ as s→ 0.

2.3. If (5.3.1) holds then the arguments used in the proof of the preceding proposition

yield an open interval R which is bounded from below, a C1-curve ̺ : R → C, and

χ ∈ {−φ∗, φ∗}, with the properties

|̺| ⊂ A, |p ◦ ̺| ⊂ int(p ◦ η), ̺(r) → y0 and ̺′(r) → χ as r → inf R.

Set ri = inf R, I+ = R− ri, and consider the C1-curve

α+ : I+ ∋ r 7→ ̺(r + ri) ∈ C.

Then |α+| ⊂ A, |p ◦ α+| ⊂ int(p ◦ η), α+(r) → y0 and α′
+(r) → χ as r → 0. Recall from

part 1 of the proof that there exists δ > 0 so that the C1-curve

β : (−δ, 0) ∋ r 7→ py0 + rpψ ∈ L

with ψ ∈ {−φ∗, φ∗} satisfies |β| ⊂ ext(p ◦ η). An application of Proposition 2.1.2 to p ◦ η

and to the curve θ : (−δ, r) → L given by

r ∈ I+, θ|(−δ, 0) = β, θ(0) = py0, θ|(0, r) = (p ◦ α+)|(0, r),

yields pχ = pψ(6= 0), and consequently the unit vectors χ and ψ in {−φ∗, φ∗} coincide.

Hence α′
+(r) → ψ as r → 0.

2.4. If (5.3.3) holds then arguments as in part 2.3 show that there exist an open

interval I− with sup I− = 0 and a C1-curve α− : I− → C with |α−| ⊂ A, α−(r) → y0
and α′

−(r) → ψ as r → 0.
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3. In every combination of one of the cases (5.3.1), (5.3.2) with one of the cases (5.3.3),

(5.3.4) one obtains an open interval I ∋ 0 and a C1-curve αI : I → C with |αI | ⊂ A

and αI(0) = y0 so that the unit vector α′
I(0) = ψ ∈ Cy and x(φ)′−t = y′0 ∈ C \ Cy

are linearly independent. Complete the proof of property (4.1.1) as in the proof of the

preceding proposition.

Corollary 1. Let φ ∈ A \ ({0} ∪ |ηb|). If x(φ) is periodic then pφ ∈ (pA)◦, and

there is an open neighbourhood N of pφ in (pA)◦ so that a|N is C1-smooth.

6.2. Smoothness at the boundary. Let φ ∈ |ηb|. Choose t > 1. There is a slowly

oscillating periodic solution y : R → R of equation (1.1.1) with φ = yt. Let ω > 2 denote

the minimal period of y. Consider the orbit parametrization η : [0, ω] → C, the closed

hyperplane Cy = C< ⊕ C∗, its translate Hy = y0 + Cy, and the adapted Poincaré map

Py : Ny → Hy as in the preceding subsection.

Proposition 1. Either (2.4.4) holds , or (2.4.5) holds with λ∗ < 1.

P r o o f. Assume (2.4.5) and 1 < λ∗. An application of Proposition 4.1.1(i) as in the

proof of Proposition 6.1.1 yields pφ ∈ (pA)◦, which contradicts to the equation

pA = int(p ◦ ηb) ∪ |p ◦ ηb|.

Proposition 2. There exist an open neighbourhood N of pφ in L and a C1-map

aN : N → Q with a|N ∩ pA = aN |N ∩ pA.

P r o o f. 1. Recall the continuous map d : [0, δi) → C of Subsection 5.3, with d(0) = y0
and range in A ∩Hy.

2. Suppose (2.4.5) holds with λ∗ < 1. Consider a neighbourhood Ws of y0 in Ny as in

Proposition 2.5.3(ii). There exists s ∈ (0, δi) with d(s) ∈Ws. Proposition 5.3.2(iii) shows

that there exists δ ∈ (0, δi) so that (5.3.1) is satisfied. Proposition 5.3.2(i) yields that

the restriction d|(0, δ) is C1-smooth, with all derivatives injective. The reparametrization

̺ : R → C of d|(0, δ) constructed in the last part of Subsection 5.3 is C1-smooth and has

the following properties: R is bounded from below, |̺| ⊂ A, |p◦̺| ⊂ int(p◦ η), ̺(r) → y0
as r → inf R; there exists j ∈ {0, 1} so that

̺′(r) → (−1)jφ∗ as r → inf R.

Set ri = inf R, choose r0 ∈ R, and apply Proposition 4.1.1(ii) to the C1-curve

α : (−1, 1) → C given by

α(s) = ̺(ri + s(r0 − ri)) for 0 < s < 1,

α(0) = y0,

α(s) = y0 + s(r0 − ri)(−1)jφ∗ for −1 < s < 0,

which satisfies α′(0) = (r0 − ri)(−1)jφ∗ ∈ Cy \ {0}.

3. Suppose (2.4.4) holds. Consider a C1-map wc : C∗c → C<, the set Wc = y0 + {χ+

wc(χ) : χ ∈ C∗c}, and an open neighbourhood Nc of y0 in Ny as in Proposition 2.5.3(iii).

As in part 1 of the proof of Proposition 6.1.3 one obtains an open neighbourhood Ni of y0
in Nc so that Py|Wc ∩Ni is injective, and there exist a unit vector ψ ∈ {−φ∗, φ∗}, ε>0,
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and ε′ ∈ (0, ε) with the following properties: sψ ∈ C∗c for all s ∈ (−ε, ε); the C1-curve

ζ : (−ε, ε) ∋ s 7→ y0 + sψ + wc(sψ) ∈ C satisfies

ζ(0) = y0, |ζ| ⊂ Ni, (p ◦ ζ)((0, ε)) ⊂ int(p ◦ η), (p ◦ ζ)((−ε, 0)) ⊂ ext(p ◦ η);

ζ′(0) = ψ, (p ◦ ζ)′(0) = pψ, Py(ζ((−ε
′, ε′))) ⊂ ζ((−ε, ε)).

Furthermore, there are open neighbourhoods Nε of y0 in Ny and N ′ of y0 in Nε with

ζ((−ε, ε)) = Wc ∩Nε, ζ((−ε′, ε′)) = Wc ∩N
′.

Recall the transformed Poincaré map Pj : (0, δj) → (0, δi) of Subsection 5.3. If (5.3.2)

holds then one finds s+ ∈ (0, ε′) with ζ((0, s+)) ⊂ A as in part 2.1 of the proof of Propo-

sition 6.1.3, and an application of Proposition 4.1.1(ii) to the C1-curve α : (−1, 1) ∋ r 7→

ζ(rs+) ∈ C yields the assertion. If (5.3.1) holds then Proposition 5.3.2(i) is applicable,

and a curve α which satisfies the hypotheses of Proposition 4.1.1(ii) is constructed as in

part 2 above.

7. Smoothness at the stationary point

7.1. Cases of no attraction. Recall the leading real part u0 of the eigenvalues of

the generator of the linearization of the semiflow F at the stationary point 0 ∈ C.

Proposition 1. In case u0 > 0,

(1) there exists an open neighbourhood L0 of 0 in (pA)0 so that the restriction a|L0

is C1-smooth.

P r o o f. In [17] it is proved that there are an open neighbourhood L0 of 0 in L and

a C1-map w : L0 → Q with w(0) = 0 so that for every χ ∈ L0 \ {0} there is a bounded

slowly oscillating solution x : R → R of equation (1.1.1) with x0 = χ + w(χ). Therefore

χ+w(χ) ∈ A for every χ ∈ L0, or L0 ⊂ pA, and w(χ) = q(χ+w(χ)) = a(p(χ+w(χ))) =

a(χ) for all χ ∈ L0.

Set

I = inf{‖pyt‖ : t ∈ R, and y : R → R is a slowly oscillating

periodic solution of equation (1.1.1)}.

Proposition 2. If u0 = 0 and I = 0 then (1) holds.

P r o o f. Consider a C1-map wc : L → Q, the set W c = {χ+ wc(χ) : χ ∈ L}, and an

open neighbourhoodN of 0 in C as in Proposition 2.5.1(ii). Recall that, due to the general

assumption A 6= {0}, the stationary point 0 is an inner point of pA. The continuity of a

at 0 yields ε > 0 with χ ∈ pA and χ+a(χ) ∈ N for all χ ∈ L with ‖χ‖ < ε. According to

Propositions 2.3.1(iii) and 2.2.2(v) there exists b > 1 with z2(φ) < b for all φ ∈ A \ {0}

with φ(−1) = 0. By continuous dependence on initial data, there is a neighbourhood N ′

of 0 in N so that

‖pF (t, φ)‖ < ε for all φ ∈ N ′, t ∈ [0, b+ 1].

The hypothesis I = 0 and the continuity of a at 0 imply that there exist a slowly oscillating

periodic solution y : R → R of equation (1.1.1) and t ∈ R with yt = pyt + a(pyt) ∈ N ′.
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There exists s ∈ R with ys ∈ A∩K, and ω = z2(ys)+1 ∈ (2, b+1) is the minimal period

of y. Note that

‖pys‖ < ε for all s ∈ [t, t+ b + 1].

It follows that the orbit parametrization η : [0, ω] ∋ s 7→ ys ∈ C satisfies

|p ◦ η| ⊂ {χ ∈ L : ‖χ‖ < ε},

which in turn implies that the open neighbourhoodL0 = int(p◦η) of 0 in pA is contained in

the disk {χ ∈ L : ‖χ‖ < ε}. Let χ ∈ L0, x = x(χ+a(χ)). For every t ∈ R, pxt ∈ int(p◦η),

and therefore ‖pxt‖ < ε, xt = pxt + a(pxt) ∈ N . Hence x0 ∈W c, and

a(χ) = q(χ+ a(χ)) = qx0 = wc(px0) = w(χ).

The equation a|L0 = w|L0 yields the assertion.

The final result of this subsection concerns the case

(1) u0 = 0 and 0 < I.

The proof makes use of the curve constructed in Subsection 5.4 which connects 0 in

A ∩H to a periodic orbit. Recall first that in case 0 < I Proposition 2.3.6 guarantees

the existence of a slowly oscillating periodic solution yi : R → R of equation (1.1.1),

with minimal period w > 2 and orbit parametrization ηi : [0, ω] → C, so that for every

φ ∈ A \ {0} with pφ ∈ int(p ◦ ηi), x(φ) is not periodic, and either

α(x(φ)) = {0} and ω(φ) = |ηi|,(3)

or

α(x(φ)) = |ηi| and ω(φ) = {0}.(4)

Proposition 3. If u0 = 0, if 0 < I, and if there exists φ ∈ A\{0} with pφ ∈ int(p◦ηi)

and property (3) then (1) holds.

P r o o f. 1. There exists ti∈R with FA(ti, y
i
0)∈K. Consider the translate y : R∋ t 7→

yi(t + ti) ∈ R and its orbit parametrization η : [0, ω] → C. The remarks preceding the

proposition show that the general hypothesis (5.4.1) for the results of Subsection 5.4 is

satisfied. Propositions 2.3.1(i), 2.2.3, and 2.2.2(i), (v) combined imply that also hypothesis

(5.4.2) is satisfied. It follows that there exist a compact interval G = [0, g], g > 0, and a

continuous injective map γ : G→ C with

γ(0) = y0, γ(g) = 0, γ(G) = {ψ ∈ A ∩K : pψ ∈ int(p ◦ η)} ∪ {0, y0},

and the return map P defines a homeomorphism of the compact set γ(G) onto itself.

1.1. Claim: There is a trajectory (sn)
∞
n=−∞ of the homeomorphism

Pγ : G ∋ s 7→ γ−1(P (γ(s))) ∈ G

in (0, g) with sn → g as n→ −∞.

Proof : Propositions 2.2.3(i) and 2.3.5 applied to the solution x(φ) yield a sequence

(tn)
0
n=−∞ in R with tn → −∞ as n → −∞ so that the points φn = x(φ)tn , n ≤ 0, form

a trajectory of P in A∩K ∩p−1(int(p◦ η)) = γ((0, g)). Use (5.4.3) to obtain a trajectory

(φn)∞n=−∞ of P in γ((0, g)) with φn → 0 as n→ −∞. Set sn = γ−1(φn) for all integers n.

As α(x(φ)) = {0}, φn → 0 as n→ −∞. Consequently, sn → g as n→ −∞.
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1.2. Claim: For every s ∈ (0, g), Pγ(s) < s.

Proof : There are no fixed points of Pγ in (0, g) since otherwise, x = x(γ(s)) with

s ∈ (0, g) and P (γ(s)) = γ(s) would be a periodic solution with 0 6= x0 ∈ A and

px0 ∈ int(p ◦ η) = int(p ◦ ηi), contradicting the properties of yi. It follows that either the

assertion is correct, or s < Pγ(s) for all s ∈ (0, g). In the last case, sn < s0 < g for all

n ≤ 0, which contradicts limn→−∞ sn = g.

2. Consider a C1-map wc : L → Q, the set W c = {χ+ wc(χ) : χ ∈ L}, and an open

neighbourhood N of 0 in C as in Proposition 2.5.1(ii). Proposition 2.2.2(v) shows that

there exists b > 0 with

z2(ψ) < b for all ψ ∈ A ∩ (K ∪ (−K)).

By continuous dependence on initial data, there is an open neighbourhood N ′ of 0 in N

with F ([0, b+ 1] ×N ′) ⊂ N . Choose an integer n with γ((sn, g]) ⊂ N ′.

Claim: For every ψ ∈ γ((sn, g]) and all t ≤ 0, x(ψ)t ∈W c.

Proof : For every s ∈ (sn, g] there is a trajectory (rj)
∞
j=−∞ of Pγ with r0 = s and

sn < s = r0 ≤ rj ≤ g for all integers j ≤ 0.

It follows that for every ψ∈γ((sn, g]) there is a trajectory (ψj)
∞
j=−∞ of P in γ((sn, g])⊂N ′

with ψ0 = ψ. For each j ≤ −1,

ψj+1 = F (t, ψj) with 2 < t < b+ 1,

and one obtains x(ψ)t ∈ N for all t ≤ 0. Use property (2.5.1).

3. There is an open neighbourhoodNn of 0 inN ′ with γ((sn, g])=γ(G)∩Nn. The con-

tinuity of a at 0 and continuous dependence on initial data yields an open neighbourhood

L0 of 0 in int(p ◦ η) ⊂ pA with

F (t, χ+ a(χ)) ∈ Nn for all χ ∈ L0, t ∈ [0, b+ 1].

Let χ ∈ L0 \ {0}. Recall that the zeros of x = x(χ+ a(χ)) are not bounded from below.

Proposition 2.2.2(i), (v) imply that xs ∈ K for some s ∈ [0, b+ 1]. By Proposition 2.3.5,

pxs ∈ int(p ◦ η). It follows that

xs ∈ A ∩K ∩ p−1(int(p ◦ η)) ∩Nn ⊂ γ(G) ∩Nn = γ((sn, g]).

The last claim yields χ+ a(χ) = x0 ∈W c, or

a(χ) = q(χ+ a(χ)) = wc(p(χ+ a(χ))) = wc(χ).

Using also a(0) = 0 = wc(0), one arrives at a|L0 = wc|L0.

7.2. On the inclination of tangent spaces of the attractor close to the

stationary point. The investigation of the smoothness of the map a close to 0 ∈ (pA)◦ in

the remaining cases employs an inclination lemma which is derived below. For ψ ∈ C \Q

define the inclination with respect to the decomposition C = L⊕Q by

i(ψ) = ‖qψ‖/‖pψ‖.

Proposition 1. There exists cA > 0 with i(ψ) ≤ cA for all ψ ∈ TφA \ {0}, φ ∈ A.

P r o o f. Set r = maxφ∈A ‖φ‖. Consider the constant c(r)>0 of Proposition 2.2.5. Let

φ ∈ A, ψ ∈ TφA. There is a differentiable curve α : (−1, 1) → C with α(0) = φ, |α| ⊂ A,
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α′(0) = ψ. For |h| < 1, set x = x(α(h)), y = x(φ) = x(α(0)). Recall (2.3.1) and Corollary

2.2.1(i). Use Proposition 2.2.5 and deduce

c(r)‖α(h) − α(0)‖ ≤ ‖pα(h) − pα(0)‖.

For 0 < |h| < 1 it follows that
∥∥∥∥q

(
1

h
(α(h) − α(0))

)∥∥∥∥ ≤
‖q‖

c(r)

∥∥∥∥p
(

1

h
(α(h) − α(0))

)∥∥∥∥.

Consequently,

‖qψ‖ ≤
‖q‖

c(r)
‖pψ‖,

and the assertion becomes obvious.

For φ ∈ A define

i(TφA) = sup{i(ψ) : 0 6= ψ ∈ TφA} ≤ cA.

Proposition 2. Suppose L0 ⊂ pA is open in L, and the restriction a|L0 is C1-smooth.

Let χ ∈ L0. Then

Tχ+a(χ)A = {̺+Da(χ)̺ : ̺ ∈ L} and ‖Da(χ)‖ = i(Tχ+a(χ)A).

The proof is omitted.

For a set B ⊂ C and an integer n ≥ 0 define Bn = F ({n} ×B). The set B is said to

converge to 0 if for every ε > 0 there is an integer nε ≥ 0 so that

Bn ⊂ {φ ∈ C : ‖φ‖ < ε} for all integers n ≥ nε.

Proposition 3. Suppose B ⊂ A converges to 0, and for every integer n ≥ 0 there is

an open subset Ln of (pA)◦ so that a|Ln is C1-smooth and pBn ⊂ Ln. Then

sup
φ∈Bn

i(TφA) → 0 as n→ ∞.

P r o o f. 1. The derivative T (1) = D2F (1, 0) defines an isomorphism TL of L onto L

and a continuous linear map of Q into Q with spectra

σL = exp(σ ∩ (R + i[−2π, 2π])), σQ = {0} ∪ exp(σ \ (R + i[−2π, 2π])),

respectively. Choose s, t in R with

sup
λ∈σQ

|λ| < s < t < min
λ∈σL

|λ|.

Then σ(T−1
L ) ⊂ {λ ∈ C : |λ| ≤ 1/t}. There exist a norm ‖ ·‖0 on C and constants c1 > 0,

c2 ≥ c1 so that

c1‖φ‖0 ≤ ‖φ‖ ≤ c2‖φ‖0 for all φ ∈ C,

t‖φ‖0 ≤ ‖T (1)φ‖0 for all φ ∈ L,

‖T (1)φ‖0 ≤ s‖φ‖0 for all φ ∈ Q.

The remainder map R = F (1, ·)− T (1) is C1-smooth and satisfies R(0) = 0, DR(0) = 0.

Set

c = cA
c2
c1
.



Smoothness of the attractor 67

For all φ ∈ A and all ψ ∈ TφA,

‖qψ‖0 ≤ c‖pψ‖0,

due to Proposition 1, and

‖qD2F (1, φ)ψ‖0 ≤ ‖qT (1)ψ‖0 + ‖qDR(φ)‖0(1 + c)‖pψ‖0

= ‖T (1)qψ‖0 + ‖qDR(φ)‖0(1 + c)‖pψ‖0

≤ s‖qψ‖0 + ‖qDR(φ)‖0(1 + c)‖pψ‖0

and

‖pD2F (1, φ)ψ‖0 ≥ t‖pψ‖0 − ‖pDR(φ)‖0(1 + c)‖pψ‖0

= (t− ‖pDR(φ)‖0(1 + c))‖pψ‖0.

For ψ ∈ C \Q set

ι0(ψ) = ‖qψ‖0/‖pψ‖0.

Obviously, ι0(ψ) ≤ c for all ψ ∈ TφA \ {0}, φ ∈ A. Choose β ∈ (s/t, 1) There exists an

integer n0 > 0 such that for all integers n ≥ n0 and for all φ ∈ Bn,

0 <
s

t− ‖pDR(φ)‖0(1 + c)
< β,

and the sequence

εn = sup
φ∈Bn

‖qDR(φ)‖0(1 + c)

t− ‖pDR(φ)‖0(1 + c)
, n ≥ n0,

converges to 0 as n→ ∞.

2. Claim: For every ε > 0 there is an integer nε ≥ n0 so that

ι0(ψ) < ε for all ψ ∈ TφA \ {0}, φ ∈ Bn, n ≥ nε.

Proof : Let ε > 0. Choose an integer j ≥ n0 with

ει
1

1 − β
<
ε

2
for all ι ≥ j,

and choose an integer k ≥ 0 with βkc < ε/2. Set nε = j + k. Take an integer n ≥ nε,

φ ∈ Bn, and ψ ∈ TφA \ {0}. There exist φν ∈ Bν , ν ∈ {0, . . . , n}, with φ = φn and

φν+1 = F (1, φν) for all ν ∈ {0, . . . , n− 1}. Proposition 2 shows that each

Tφν
A = {χ+Da(φν)χ : χ ∈ L}, ν ∈ {0, . . . , n},

is a 2-dimensional linear space. Recall that all maps D2F (1, φν), ν ∈ {0, . . . , n}, are

injective, and

D2F (1, φν)Tφν
A ⊂ Tφν+1A for all ν ∈ {0, . . . , n− 1}.

It follows that there exist ψν ∈ Tφν
A \ {0}, ν ∈ {0, . . . , n}, so that ψn = ψ and ψν+1 =

D2F (1, φν)ψν for all ν ∈ {0, . . . , n− 1}. The estimates in part 1 of the proof yield

ι0(ψν+1) = ι0(D2F (1, φν)ψν) ≤ βι0(ψν) + εν

for all ν ∈ {j, . . . , n− 1}. Hence

ι0(ψ) = ι0(ψn) ≤ βn−jι0(ψj) +

n−1−j∑

ν=0

εn−1−νβ
ν ≤ βkc+ ( max

j≤ν≤n−1
εν)

1

1 − β
< ε.
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3. Use

ι(ψ) ≤
c2
c1
ι0(ψ) for all ψ ∈ C \Q

to complete the proof.

7.3. The cases of attraction. Recall from Subsection 7.1 that in case

0 < I = inf{‖pyt‖ : t ∈ R, and y : R → R is a slowly oscillating

periodic solution of equation (1.1.1)}

there exists a slowly oscillating periodic solution yi : R → R of equation (1.1.1), with

minimal period ω > 2 and orbit parametrization ηi : [0, ω] → C, so that for each φ ∈

A \ {0} with pφ ∈ int(p ◦ ηi) the solution x(φ) is not periodic, and either (7.1.3) holds,

or (7.1.4) holds.

Proposition 1. If u0 = 0, if 0 < I, and if there exists φ ∈ A\{0} with pφ ∈ int(p◦ηi)

and property (7.1.4), then (7.1.1) holds.

P r o o f. 1. As in part 1 of the proof of Proposition 7.1.3, there is a translate y : R → R

of yi so that the orbit parametrization η : [0, ω] → C of y satisfies η(0) = y0 ∈ K. There

exist a compact interval G = [0, g], g > 0, and a continuous injective map γ : G → C

with γ(0) = y0, γ(g) = 0,

γ(G) = {ψ ∈ A ∩K : pψ ∈ int(p ◦ η)} ∪ {0, y0},

and the return map P defines a homeomorphism of the compact set γ(G) onto itself.

1.1. Claim: There is a trajectory (sn)
∞
n=−∞ of the homeomorphism

Pγ : G ∋ S 7→ γ−1(P (γ(s))) ∈ G

in (0, g) with sn → g as n→ ∞.

Proof : As in part 1.1 of the proof of Proposition 7.1.3 one finds a trajectory (φn)∞n=−∞

of P in γ((0, g)) and a sequence (tn)∞n=−∞ in R so that φn = xtn for all integers n. In

particular, φn 6= 0 for all n, and therefore tn+1 > tn + 2 for all n. Now ω(φ) = {0} yields

φn → 0 as n → ∞, and the sequence sn = γ−1(φn), n ∈ Z, converges to g = γ−1(0) as

n→ ∞.

1.2 Arguing as in part 1.2 of the proof of Proposition 7.1.3 one obtains s < Pγ(s)

for every s ∈ (0, g). In particular, 0 < sn < sn+1 < g and Pγ((sn, g]) = (sn+1, g] for all

integers n.

2. Proposition 2.2.2(v) shows that there exists b > 1 with

z2(ψ) + 1 < b for all ψ ∈ A ∩ (K ∪ (−K)).

Set B = F ([0, b] × γ([s0, s1])) and Bn = F ({n} × B) for all integers n ≥ 0 as in the

preceding subsection.

2.1. Claim: B converges to 0.

Proof : Let ε > 0. Choose δ > 0 so that ‖F (t, ψ)‖ < ε for all t ∈ [0, b] and all ψ ∈ C

with ‖ψ‖ < δ. Choose an integer nδ > 0 with ‖γ(s)‖ < δ for all s ∈ [snδ
, g]. For every

ψ ∈ Bn = F ({n} ×B) with n ≥ (nδ + 1)b there exist t ∈ [0, b] and s ∈ [s0, s1] so that

ψ = F (n, F (t, γ(s))) = F (n+ t, γ(s)),
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and there is a unique integer j > 0 with

j−1∑

k=0

[z2(P
k(γ(s))) + 1] ≤ n+ t <

j∑

k=0

[z2(P
k(γ(s))) + 1].

It follows that for some r ∈ [0, z2(P
j(γ(s))) + 1) ⊂ [0, b],

ψ = F (n+ t, γ(s)) = F (r, F (

j−1∑

k=0

[z2(P
k(γ(s))) + 1], γ(s))

= F (r, P j(γ(s))) ∈ F ([0, b]× γ(P jγ ([s0, s1]))) = F ([0, b] × γ([sj , sj+1])).

Using 2 ≤ z2(P
k(γ(s))) + 1 ≤ b for all k ∈ {0, . . . , j} one finds

(j + 1)b ≥ n+ t ≥ n ≥ (nδ + 1)b,

or j ≥ nδ. Therefore

ψ ∈ F ([0, b] × γ([sj , sj+1])) ⊂ F ([0, b] × γ([snδ
, g])),

and finally ‖ψ‖ < ε.

2.2. Claim: For every integer n≥0 there is an open neighbourhood Un of 0 in C with

(A ∩ Un) \ {0} ⊂
∞⋃

k=n

Bk.

Proof : Fix an integer n ≥ 0. There exist an integer j ≥ 1 with 2j−b−1 ≥ n, an open

neighbourhood U of 0 in C so that γ((sj , g]) = γ(G)∩U , and an open neighbourhood Un
of 0 in U so that F ([0, b]×Un) ⊂ U and pU ⊂ int(p◦ η). Let ψ ∈ (A∩Un)\ {0} be given.

Recall that the zeros of x(ψ) are not bounded from below. Use Proposition 2.2.2(i), (v)

to obtain t ∈ [0, b] with F (t, ψ) ∈ K. Proposition 2.3.5 yields pF (t, ψ) ∈ int(p ◦ η) since

pψ ∈ pU . It follows that

0 6= F (t, ψ) ∈ [A ∩K ∩ p−1(int(p ◦ η))] ∩ U ⊂ γ(G) ∩ U = γ((sj , g]),

and so F (t, ψ) ∈ γ((sj , g)). There exist an integer m ≥ j, r ∈ (sm, sm+1], and s ∈ (s0, s1]

so that

F (t, ψ) = γ(r) = γ(Pmγ (s)) = Pm(γ(s)) = F (tm, γ(s))

with

tm =

m−1∑

κ=0

[z2(P
κ(γ(s))) + 1] ≥ 2m ≥ 2j > b ≥ t.

The injectivity of F (t, ·) yields ψ = F (tm − t, γ(s)). There is an integer k ≥ 0 with

k ≤ tm − t < k + 1, and

ψ = F (k, F (tm − t− k, γ(s)) ∈ F ({k} × F ([0, 1) × γ([s0, s1]))) ⊂ Bk.

Observe that k > tm − t− 1 ≥ 2m− b− 1 ≥ 2j − b− 1 ≥ n.

3. Recall γ([s0, s1]) ⊂ A∩p−1(int(p◦η)). Proposition 2.3.5 yields pBn ⊂ int(p◦η) for

all integers n ≥ 0. Moreover,

pBn ⊂ int(p ◦ η) \ {0} for all n ≥ 0
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since 0 6∈ γ([s0, s1]), B ⊂ A \ {0}. Corollary 4.2.1(i) guarantees that the restriction of a

to the open subset L0 = int(p ◦ η) \ {0} of (pA)◦ is C1-smooth. Proposition 7.2.3 applies,

and

sup
ψ∈Bn

i(TψA) → 0 as n→ ∞.

Using Proposition 7.2.2 one finds

sup
χ∈pBn

‖Da(χ)‖ → 0 as n→ ∞.

3.1. Claim: Da(χ) → 0 as 0 6= χ→ 0.

Proof : Let ε > 0. There exists an integer n with ‖Da(χ)‖ < ε for all χ ∈ pBk,

k ≥ n. Consider an open neighbourhood Un of 0 in C as in claim 2.2. Choose an open

neighbourhood Lε of 0 in int(p◦η) with {χ+a(χ) : χ ∈ Lε} ⊂ Un. For every χ ∈ Lε \{0}

there exists an integer k ≥ n with

χ+ a(χ) ∈ Bk, χ = p(χ+ a(χ)) ∈ pBk, ‖Da(χ)‖ < ε.

3.2. Claim: a is differentiable at 0 ∈ (pA)◦, and Da(0) = 0.

Proof : Let ε > 0. There exists δ > 0 with ‖Da(χ)‖ < ε for 0 < ‖χ‖ < δ. For such χ

and for every integer n ≥ 1,
∥∥∥∥a(χ) − a

(
1

n
χ

)∥∥∥∥ ≤ ε

∥∥∥∥χ−
1

n
χ

∥∥∥∥ = ε

(
1 −

1

n

)
‖χ‖.

As a
(

1
nχ

)
→ a(0) for n→ ∞,

‖a(χ) − a(0) − 0(χ− 0)‖ = ‖a(χ)‖ ≤ ε‖χ‖ = ε‖χ− 0‖.

4. Now it is obvious how to complete the proof that the restriction a|int(p ◦ η) is

C1-smooth.

Finally, the case of a stable hyperbolic stationary point remains to be considered.

Proposition 2. If u0 < 0 then (7.1.1) holds.

P r o o f. 1. According to Proposition 2.5.1(i) there are an open neighbourhood W s of

0 in C and constants c ≥ 1, k ∈ [0, 1) with

‖F (n, φ)‖ ≤ ckn‖φ‖ for all φ ∈W s and all integers n ≥ 0.

The continuity of a at 0 ∈ (pA)◦ yields ε > 0 so that χ+ a(χ) ∈W s and ‖χ+ a(χ)‖ < 1

for all χ ∈ L with ‖χ‖ < ε. Then no solution x(χ+ a(χ)), ‖χ‖ < ε, is periodic, and

ε ≤ inf{‖pyt‖ : t ∈ R, and y : R → R is a slowly oscillating

periodic solution of equation (1.1.1)}.

Proposition 2.3.6 shows that there exists a slowly oscillating periodic solution y : R → R

of equation (1.1.1), with minimal period ω > 2 and orbit parametrization η : [0, ω] → C,

so that no solution x(φ) with φ ∈ A \ {0} and pφ ∈ int(p ◦ η) is periodic. Corollary

4.2.1(i) guarantees that the restriction a|int(p ◦ η) \ {0} is C1-smooth. The relations

0 ∈ int(p ◦ η) and ε ≤ ‖pyt‖ for 0 ≤ t ≤ ω yield {χ ∈ L : ‖χ‖ < ε} ⊂ int(p ◦ η). Set

B = {χ + a(χ) : 0 < ‖χ‖ < ε} and Bn = F ({n} × B) for all integers n ≥ 0. Then
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B ⊂ W s ∩ {φ ∈ C : ‖φ‖ < 1} converges to 0. Using the inclusion pB ⊂ int(p ◦ η) and

Proposition 2.3.5 one finds

pBn ⊂ int(p ◦ η) for all n ≥ 0.

As B ⊂ A \ {0}, we have Bn ⊂ A \ {0}, and 0 6∈ pBn for all n ≥ 0.

Propositions 7.2.3 and 7.2.2 combined yield

sup
χ∈pBn

‖Da(χ)‖ → 0 as n→ ∞.

The set

pBn ∪ {0} = pFA({n} × {χ+ a(χ) : ‖χ‖ < ε})

is an open neighbourhood of 0 ∈ (pA)◦ in pA since the map

pA ∋ χ 7→ pFA(n, χ+ a(χ)) ∈ pA

is a homeomorphism.

2. Claim: Da(χ) → 0 as 0 6= χ→ 0.

Proof : Let ε > 0. There exists an integer n with ‖Da(χ)‖ < ε for all χ ∈ pBn =

(pBn ∪ {0}) \ {0}; pBn ∪ {0} is a neighbourhood of 0 in pA.

3. Complete the proof that the restriction a|int(p ◦ η) is C1-smooth as in parts 3.1

and 4 of the proof of the preceding proposition.
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