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Abstract

Let a Cl-function f : R — R be given which satisfies f(0) = 0, f/(£) < 0 for all £ € R, and
sup f < oo or —oco< inf f. Let C = C([-1,0],R). For an open-dense set of initial data the phase
curves [0, 00) — C given by the solutions [—1,00) — R to the negative feedback equation

a'(t) = —pa(t) + f(a(t — 1)), with u >0,
are absorbed into the positively invariant set S C C of data ¢ # 0 with at most one sign change.
The global attractor A of the semiflow restricted to S is either the singleton {0} or it is given
by a Lipschitz continuous map a with domain pA in a 2-dimensional subspace L C C' and range

in a complementary subspace @Q; pA is homeomorphic to the closed unit disk in R2. We show
that a is in fact C'-smooth.



1. Introduction

Result and method. The equation
(1) al(t) = —pa(t) + f(a(t — 1))

with ¢ > 0 and a function f : R — R is the simplest model for a system governed by
delayed feedback and decay. In case

f(0)=0 and &f(§) <0 forall#£0

there is a rest state given by & = 0, and the feedback is negative with respect to this rest
state. The hypothesis in the present paper is the stronger condition that

fis C'-smooth, f(0)=0 and f'(¢)<0 forall&#0,

and that f is bounded from below or bounded from above.
In [12] it is shown that in this case there is an open and dense set of initial data ¢ in
the phase space

C = C(-L0LR) with o] = max [o(t)

so that the solution z? : [~1,00) — R given by 2?|[~1,0] = ¢ is eventually slowly
oscillating in the sense that there exists ts > —1 so that all zeros of 2% in [ts,00) are
farther apart than the delay 1 in the equation. The phase curves

0,00) 3t — 2, €C, z4(s) =z(t + ),
of such solutions x = 2% enter the set
S={¢peC\{0}: thereare z € [-1,0] and j € {0,1}

with (—1)7¢(s) < 0 for s € [~1,2]

and 0 < (—1)7¢(s) for s € [2,0]}
of data with at most one sign change, which is positively invariant under the semiflow

F:[0,00) xC 5 (t,¢) — z € C
of equation (1). The position of S in C' can be described in terms of the linearization of
F at the stationary point 0 € C'. The generator of the Cy-semigroup of the operators
DyF(t,0), t>0,

has a leading pair of eigenvalues, and the associated reellified generalized eigenspace
L C C satisfies dim L = 2 and L C S while the reellified generalized eigenspace @ defined
by the remaining spectrum is disjoint from S.

The restricted semiflow on the closure S = S U {0} has a global attractor A C S.
Every ¢ € A\ {0} uniquely determines a solution = z(¢) which is defined on R, satisfies
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xo = ¢, is bounded, and slowly oscillating in the sense that all zeros are farther apart
than the delay 1. The attractor A consists of the segments x; of all solutions of this type,
and of the stationary point 0 € C. In [20] the inclusion A — A C S is derived and used to
show that the attractor A can be written as a map a from a subset L, C L into @,

A={x+a(x):x€ La}.

In case A # {0} the domain L, is a neighbourhood of 0 in L and homeomorphic to the
closed unit disk in R2, and 0L, is the projection of the orbit in C of a slowly oscillating
periodic solution. The periodic orbits on A project into simple closed curves in the plane
L which are nested and contain 0 € L in the interior. For the aperiodic solutions with
segments in A a Poincaré-Bendixson theorem holds. An a-priori estimate of the form

(2) cllg(é =)l < lp(é — )| for ¢,4p in A

with the projection p : C — C onto L along @ and g = id —p shows in [20] that the map
a is Lipschitz continuous.

The present paper proves that in case A # {0} the map a is continuously differentiable.
The precise result is stated as Theorem 2.3.1 below. The proof is long and involved. Partial
results were obtained earlier in [17, 19]. The main result of [17] implies that a is C'*-smooth
on an open neighbourhood of 0 € L provided the stationary point is linearly unstable,
i.e., the real parts of the leading pair of eigenvalues are positive. The results in [19] yield
that a is C'-smooth on open annuli given by unstable sets of unstable hyperbolic periodic
orbits in A. It is not hard to see, however, that there are cases where A is nontrivial with
the stationary point linearly stable. Furthermore, there is at least one periodic orbit in A
which is not hyperbolic and unstable, namely the orbit projecting onto the boundary 9L,.

The starting point of the smoothness proof is the simple fact that the phase curves
R >t +— z; € C of bounded slowly oscillating solutions = on R are C'-smooth. Using
this foliation of A into smooth curves it is not very difficult to show that a is C*-smooth
in a neighbourhood of a point pg, ¢ € A\ {0}, provided there exist ¢t > 1 and a C'-curve
a:(=1,1) — C on A so that o and the phase curve s — x(¢); intersect transversally at
a(0) = 2(¢)¢.

Such transversals are rather easily found for wandering points ¢ € A \ {0}, i.e., for
points ¢ so that the solution x(¢) is not periodic. Due to the Poincaré-Bendixson theorem
from [20] the a-limit set of z(¢) is either the stationary point or a periodic orbit. Suppose
it is a hyperbolic periodic orbit. Then ¢ belongs to an unstable set as studied in [19], and
a piece of a one-dimensional local unstable manifold of a Poincaré map on a hyperplane
transversal to the periodic orbit yields a suitable curve a.

More difficult is the construction of smooth curves on A which transversally intersect
periodic orbits which are attracting or stable. Consider a slowly oscillating periodic so-
lution y with minimal period w > 0. Set ¢ = yo. Let a closed hyperplane Z C C be given
so that ¢ 4+ Z is transversal to the phase curve t — y; at t = w, i.e.,

¢ =y, =DiF(w,¢)l ¢ Z

Assume for simplicity that the orbit {y; : ¢ € R} projects into the open kernel LS.
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A technique from [20] yields an injective continuous curve
d:(—=0d¢,0;) — C with d(0)=¢

which parametrizes the intersection A N (¢ + Z) in a neighbourhood of ¢ and has the
property that d((0,d;)) projects into the interior of the simple closed planar curve [0, w] 3
t — py; € L while d((—d.,0)) projects into the exterior. Suppose that no value d(s), s #
0, is on a periodic orbit. This can be achieved if the periodic orbit is attracting. The
smoothness of A at wandering points can then be used to show that both restrictions
d|(—6.,0), d|(0,5;) are C*-smooth, with d’(s) # 0 for s # 0. In order to have smoothness
of d at 0 and transversality one needs that the tangent vectors d'(s) € Z, s # 0, converge
to a nonzero limit vector as 0 # s — 0. The proof of convergence, in case of an attracting
periodic orbit and for a reparametrization of d, is based on the following considerations.

(i) The invariance properties of A imply that the trace of d is locally positively
invariant for the Poincaré map Pz defined in a neighbourhood of ¢ in ¢ + Z. Therefore,
if d'(0) exists, then necessarily

DPz(¢)d'(0) € Rd'(0),
and d’'(0) is an eigenvector or zero.
(ii) The inclusion A — A C S implies d'(s) € S for s # 0, and d’(0) € S if d is
differentiable at 0.
(iii) Floquet theory for slowly oscillating periodic solutions of equation (1) yields a

radius ¢ € (0,1) so that the reellified generalized eigenspace Cs given by the Floquet
multipliers A € C of the periodic solution y with || > o satisfies

dimCs =2 and C- C S

while the reellified generalized eigenspace C. of the remaining spectrum of the mon-
odromy operator Do F(w, ¢) satisfies

The fact that 1 is a Floquet multiplier with eigenvector D1 F(w, ¢)1 = y/, = ¢’ implies
C> =R¢’ ® Ry,

for some unit vector ¢, € Cs, and it is not hard to see that the choice Z = C. @ Ro.
yields a Poincaré map for which the nontrivial multiples of ¢, are the only eigenvectors
of DPz(¢) in S. Let A, be the eigenvalue of DPz(¢) associated with ¢.. Then |\, > o,
in fact,

A« € (0,0)
as will be shown in Subsection 2.4 below.

(iv) In case the fixed point ¢ of Pz is hyperbolic and attractive, i.e., o < A < 1,
trajectories (¢, )52 of Pz in, say, d((0,4;)) converge to d(0) as n — oo. Then ¢,, = d(sy)
with s, € (0,d;), and a special case of the desired convergence property would be that
the sequence of the tangent vectors d’'(s,) has a limit as n — oco. Observe that

d'(sp) €S\ {0} =S CcC\C<
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This suggests using an inclination lemma in order to show that at least the slopes of
d'(sn) with respect to the decomposition C' = Cs @& C« tend to 0, or equivalently, that

1
i d (sn) = {¢s, —h<}  asn — oo
[l (sn)l
An analysis of this approach shows that it requires a new a-priori estimate of the form
3) clld'(s)]| < [lp«d'(s)|| for s # 0

with the projection p. : Z — Z onto R¢, along C.. In other terms, the vectors d'(s),
which are tangent to the set A at d(s) and in Z, should belong to a certain cone which
contains the most unstable direction for DPz(¢) and is disjoint from the complementary
space C..

(v) An estimate of the form (3) follows rather easily from another a-priori estimate
which generalizes (2) in the sense that the projection p is replaced by the projection onto
C- along C associated with a slowly oscillating periodic solution, and ¢—1) € A—A C §
is replaced by elements from a larger subset of S.

Organization of the paper. Section 2 contains facts about slowly oscillating solutions,
the set S, the attractor A, Floquet multipliers of slowly oscillating periodic solutions,
Poincaré maps, local invariant manifolds, and curves in a plane. For proofs of results
which are presented without reference, see [17,20]. In addition to the local Poincaré
maps on the special hyperplanes

mentioned before, a global return map P as in [20] and in many earlier papers on slowly
oscillating periodic solutions is discussed; for data ¢ € C so that ¢(—1) = 0 < ¢(0),
[~1,0] > t — el'¢p(t) € R is increasing, and x% has a first and second zero z;(¢) and
z2(¢) in (0, 00), P is given by

P(¢) = F(z2(¢) + 1, 9).
The map P will be useful in the proof that the map a is smooth in a neighbourhood of
0e L.

In Section 3 the a-priori estimate of the form (3) is derived. The proof of the genera-
lization of (2) is modelled after the proofs of variants of (2) in [16,17,4]; it is technically
more complicated.

In Section 4 sufficient conditions for smoothness of a are given in terms of the existence
of smooth curves on A which are transversal to the semiflow. Furthermore, smoothness
at wandering points is established.

Section 5 deals with the construction of curves on A which intersect or end at periodic
orbits. In Subsection 5.3 smoothness at wandering points and the a-priori estimate of
Subsection 3.2 are used to obtain in certain cases C'-curves whose tangents have a limit
at the periodic orbit. In Subsection 5.4 a curve on A is constructed which connects the
stationary point to a periodic orbit and on which the global return map P is conjugate
to a strictly monotone interval map. Differentiability of this curve will not be needed.

Section 6 completes the proof that a is smooth at projected periodic orbits, using the
results of Subsection 5.3 and local invariant manifolds of Poincaré maps.
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In Section 7 it is shown that a is smooth at 0 € L, with Da(0) = 0. Ingredients
of the proof are local invariant manifolds of the semiflow at 0 € C, the curve from
Subsection 5.4, and a lemma on inclinations of tangent spaces T, ,(,)4 for x close to
0 € L and a smooth in a neighbourhood of x.

Related work. 1. Teresé¢ak announced a proof that attractors of certain semilinear
parabolic initial boundary value problems are contained in smooth finite-dimensional
manifolds [15]. Concerning Floquet theory and Poincaré-Bendixson theorems for delay
differential equations, see the work of J. Mallet-Paret and G. Sell [10, 11].

Terminology and notation. For a subset M of a topological space the closure, boun-
dary, and the set of inner points are denoted by M, M, M?°, respectively.

A curve 7y is a continuous map defined on an open interval in R. Its range, or trace, is
often written |y|. The interior and the exterior of a simple closed curve in a 2-dimensional
vector space over R are denoted by int(y) and ext(v), respectively.

If X and Y are Banach spaces over R or C then L.(X,Y") stands for the Banach space
of linear continuous maps from X into Y.

If M is a subset of a Banach space X over R and «x € M then T, M denotes the set of
all tangent vectors of M at x, i.e. the set of all v € X so that there exists a differentiable
curve v : (—1,1) — X with

10) ==z, hlcM, v=+(0)=Dy(0)1.
Observe that 0 € T,M, RT,.M C T, M, and that T,M + T, M ¢ T,M is possible. If

f is a differentiable map from an open subset U of X into a Banach space Y over R, if
M cU and f(M)C N CY then

Df(x)ToM C Ty;yN for all z € M,

by the chain rule.

The word “solution” (of a delay differential equation) always refers to a real- or
complex-valued function while the word “phase curve” is reserved for the associated
curves of the form ¢ — x; with values in the space of initial data. The word “trajectory”
is used if a set X, amap f: M — X, M C X, and a sequence

(z;)jes, J=ZNI, ICR an interval,
are given so that
zjt1 = f(z;) forall je Jwithj+1¢€J.

Reference in subsection (n.m) to equation (c) from another subsection (a.b) is made
using the label (a.b.c), analogously for propositions, lemmas, corollaries, and theorems.

2. The delay differential equation and
its attractor of almost all solutions

2.1. The delay differential equation. Let a C'-function f : R — R satisfy
f(0)=0, f'(x)<0 forallz€eR, and —oo <inff or supf < oo.
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Let p > 0. A solution of the equation (1.1.1)

' (t) = —pa(t) + f(ax(t - 1))
is either a continuous real function z which is defined on an interval [tg — 1,00),t9 € R,
and is differentiable and satisfies equation (1.1.1) for all ¢ > 0, or a differentiable real
function x which satisfies equation (1.1.1) for all ¢ € R. Solutions z : [to —1,¢1) — R with
to <ty orx:[tg —1,00) — R of more general equations

(1) a'(t) = g(t, x(t — 1))
given by functions g : [tg,00) X R = R, ¢y € R, or g : R x R — R are defined analogously.

Let C denote the space of continuous real functions on the interval [—1, 0], equipped
with the norm given by

o[l = max [e(t)].

te[—1,0]
Every ¢ € C extends to a uniquely determined solution 2% on the interval [—~1, 00). This
is most easily seen using the variation-of-constants formulae

t
2(t) = a(n) = e 0" a(n) + e 07 f(a(s — 1)) ds

for n € Ny, n <t <mn+ 1. Solutions depend continuously on the initial data in the sense
that given ¢ € C, ¢ > 0, and ty > 0, there exists 6 > 0 so that for all ¥ € C with
[l — ¢|l < ¢ and for all ¢t € [—1, ],

l2¥(t) — 2°(t)] < e.

For a function y : D — R and for t € R with [t—1,¢] C D, the segment y, : [-1,0] — R

is defined by
yi(s) = y(t + s).
The relations
F(t,)=z], ¢€C, t20,

define a continuous semiflow F' : [0,00) x R — R. Each map F(¢,) : C — C, t > 0, is
injective; if solutions z : [-1,00) — R and y : [-1,00) — R satisfy x; = y; for some ¢t > 0

then x4 = y, for all s > 0. All maps F'(t,-), t>1, are compact in the sense that for every
bounded set B C C the set F(t, B) is compact. For every ¢ € C the w-limit set

w(p) = {¢ € C : there exists a sequence (t,)oe in [0, c0)
so that ¢, — oo and F(t,,¢) — 1 as n — oo}
is nonempty, compact, connected; for each ¢ € w(¢) there exists a solution z = z(v))

which is defined on R and satisfies zg = 1. Note that due to injectivity of the maps
F(t,-), (¢) is uniquely determined. The set w(¢) is invariant in the sense that

z(Y); € w(p) for all Y € w(e), t € R.

Similarly, every solution z : R — R of equation (1.1.1) which is bounded at —oo has a
nonempty a-limit set



Smoothness of the attractor 11

in R

so that ¢, — —oo and x, — 1) as n — —oo},

a(r) = { € C : there exists a sequence (t,)"

n=—oo

which is compact and connected and has the same invariance properties as the w-limit
sets.

Each map F(t,-), t > 0, is C'-smooth, and for all t > 0, ¢ € C, ¢ € C,

DyF(t, ) = v’

where v = v¥ is the solution of the variational equation along x = z?,
(2) v'(t) = —p(t) + f(@(t = D)v(t — 1)
with initial condition vy = 1.

Each map Dy F(t,¢), t > 0 and ¢ € C, is injective, and all maps DoF(t,¢), t > 1

and ¢ € C, are compact. For t > 1 and ¢ € C the partial derivative D1F (¢, ¢) exists,
and

D F(t,$)1 =z} for z =a?
where x} = (z¢)’. Themap D1 F : (1,00) xC— L.(R, C) is continuous, and the restriction
F|(1,00) x C'is Cl-smooth. If = : [ty — 1,00) — R is a solution of equation (1.1.1) and
t>s>tyg+ 1 then

xy = DoF(t — s,14)7,.
Let ¢ € C, t > 1, and let Z be a closed hyperplane in C' such that
D F(t,$)1 & Z.
Z is the nullspace of a linear continuous functional ¢* : C — R. An application of the
Implicit Function Theorem to the equation ¢*(F(s,1) — F(t,¢)) = 0 with the solution
s =t, ¥ = ¢ shows that there exist an open neighbourhood U of ¢, ¢ > 0 with 1 <t —¢,
and a C'-map 7 : U — R so that
T(¢)=t, 7(U)C (t—-e,t+e¢),
F(r(¢),v) € F(t,¢) + Z forall ¢y € U,
and for all Y € U and s € (t —e,t+¢),
() =s ifand only if F(s,v) € F(t,¢) + Z.
Moreover,
DiF(r(y),v)1 ¢ Z for ally € U.
The map 7 is called a stopping time, and the C'-map
I:Us¢— F(r(¥),v) e’
is called an intersection map. Obviously, I(U) C F(t, ¢)+ Z. The derivatives of I satisfy

Df(w):pgngF(T(dJ),’t/J), Yev,
with the projection pe:C'— C along R, =D F(7(¢),¥)1, onto Z =Ty (F(t,¢) + Z);
for each linear continuous functional ¢* : C' — R with Z = (¢*)~1(0) and for all y € C,

9
PeX = X W@ﬁ'
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The linear operators T'(t) = D2 F(t,0), ¢t > 0, which are given by the solutions of the
linearization
(3) 2 (t) = —px(t) — az(t — 1),

a = —f'(0) > 0, of equation (1.1.1) at the zero solution R 3 ¢t — 0 € R, form a
strongly continuous semigroup. The spectrum o of its generator is discrete and consists
of eigenvalues; it is given by the characteristic equation

A p+ae =0.
There exists a leading pair Ay = {)\O,XO} C o, ie.,
Re(Xo) <Re(Xg) and  Re(Xg) > max{Re(A) : A € 0, Ao # A # Ao}
Furthermore,
Ag CR+i(—m,mw) and o\ Ag C{A € C:2x <|Im(N)|}.

The reellified generalized eigenspace L C C' given by the spectral set Ay has dimension 2.
Let @ denote the reellified generalized eigenspace given by the complementary spectral
set o\ Ag, and let p : C — C denote the projection along @ onto L; set ¢ = id —p.

Depending on « and p, either both Ay and Xo are real and \g < 0, or 0 < Im()g) and
XO =Xo. In particular,

0<Im(\o) and Ao =X in case0 < Re()o).
Set ug = Re(Ag), vo = Im(Ag).
The subsequent properties of curves in L are needed later.

PROPOSITION 1. Let g : [a,b] — L be a simple closed C'-curve. Suppose v = ¢'(a)
and x € L are linearly independent. Then there exist ¢ > 0, k € {0,1}, ¢ € (0,1) so that

g(a) + (0,)(=1)*x C int(g), g(a) + (0,8)(=1)"*"x C ext(g),
0 =lgln{g(a) + 27 +yx:lz| <qlyl, —e <y <0}
If h:(c,d) — L is a Cl-curve with ¢ < 0 < d, h(0) = g(a), h'(0) = (=1)*x then there
exists €' € (0,¢) with h((0,€")) C int(g), h((—¢’,0)) C ext(g).

PROPOSITION 2. Let g : [a,b] — L be a simple closed C-curve. Suppose v = g'(a)
and x € L are linearly independent. Let h : (¢,d) — L be a continuous curve with
c <0< d, h(0) = g(a). Assume that the restrictions h|(c,0),h|(0,d) are C'-smooth,
h((c,0)) C ext(g), h((0,d)) C int(g),

R'(s) —x as0>s—0 and h'(s)— (=1)x as0<s—0
for some j € {0,1}. Then j =0, and h is C*-smooth.

Proof. Choose ¢ and ¢ according to Proposition 1, and choose € € (0,1) with
/(1 —€) < q. Assume j = 1. The equations

h(s) —g(a) =t(s)y +u(s)x forec<s <0,
h(s) —g(a) = v(s)y+w(s)x for0<s<d,
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define real C*-functions t,u on (c,0) and v,w on (0, d) which satisfy
t(s) — 0, u(s) =0, t'(s) =0, u'(s) = 1 as 0> s — 0,
v(s) = 0, w(s) =0, v'(s) =0, w(s) = -1 as0<s—0.

It follows that there exists § € (0, min{d, —c}) so that

lu(s)| <e, |u(s)—s| <Els|, [t(s)] <E|s|] for —d <s<O,
lw(s)| <e, |w(s)+s| <Els|, |v(s)] <Els|] for0<s <.
Hence
[t(s)] < c lu(s)] and —e<u(s)<0 for —d<s<0,

1-%
|U(s)|§1Lg|w(s)| and —e<w(s) <0 for0<s<d.

The convex set {g(a) +zy+yx : |z] <qly|, —e < y < 0} is disjoint from |g| and contains
points of ext(g) as well as points of int(g), which implies a contradiction. m

2.2. Slowly oscillating solutions. A function z: D — M, D C R, is called slowly
oscillating if |z — 2’| > 1 for every pair of zeros z # z'. It is called eventually slowly
oscillating if there exists ¢t € R so that [t,c0) C D and z|[t, c0) is slowly oscillating. The
main result in [12] implies that the set

E = {¢ € C : 2% eventually slowly oscillating}

is open and dense in C.
Segments x; of slowly oscillating solutions belong to the set

S ={¢ e C\{0}: there exist n € {0,1} and z € [—1,0] so that
(=1)"(t) <0 on [-1,2],0 < (=1)"¢(t) on [2,0]}
of data with at most one sign change, which satisfies
(1) S—Suf0}, R§=5, Lc3 SnQ=0.

A useful observation is that the scaled differences t — e*!(x(t) — y(t)) of solutions x,y
of equation (1.1.1) which are defined on some interval [ty — 1,00), to € R, solve equation
(2.1.1) with g : [tg,00) X R — R given by
ef"(tfl)Jer(tfl)
g(t,0) = e (fe™ 05 +y(t — 1) = f(y(t — 1)) = e | F/(€) dg
y(t=1)
so that the negative feedback condition
(2) dg(t,6) <0

for t > tg, 0 # § € R, is satisfied. If ¢ € C and v : [-1,00) — R is a solution of
the variational equation along z® then the scaled function ¢t — e#tv(t) is a solution of
equation (2.1.1) with

g(t,8) = et f'(x?(t —1))§ fort >0, 6 € R,
and (2) holds for t >0, 0 # 6 € R.
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PROPOSITION 1. Let tg € R, t1 > tg. Suppose g : [to,t1) X R — R is continuous, (2)
holds for to <t <ty and 0 # 6 € R, and z : [tg — 1,t1) — R is a solution of equation
(2.1.1) with xy, € S. Then zy € S for all t € [to,t1). In case to + 4 < ¢, there exists
t € [to,to +4) so that x; has no zero, and x|[t — 1,t1) is slowly oscillating.

Proof. Compare the proofs of Remark 6.1 and Proposition 6.1 in [17]. =

COROLLARY 1. (i) Let tg € R. For every pair x : [to —1,00) = R, y : [tg —1,00) — R
of solutions of equation (1.1.1) with x¢, — yi, € S,

xr—y: €85 forall t >ty

and there exists t € [to, to+4] so that x, —y, has no zero. The restriction (x—y)|[t—1, 00)
is slowly oscillating.

(ii) Let ¢ € C. If v: [~1,00) — R is a solution of the variational equation along z®
with vo € S then vy € S for all t > 0, and there exists t € [0,4] so that v, has no zero;
the restriction v|[t — 1, 00) s slowly oscillating.

Proof. Compare the proofs of Remark 6.1 and Proposition 6.1 in [17]. =
The convex cone
K={pcC:¢(—1)=0, t+ e'¢(t) increasing, 0 < ¢(0)}
in the closed hyperplane
H={pcC:¢(-1)=0}=ev '(0) for ev:C 2 ¢+ ¢(—1)€R

satisfies K C S, K = K U {0}.

PROPOSITION 2. (i) Suppose ¢ € C has no zero, z > 0, x%(t) # 0 for 0 <t < z and
2%(2) = 0. Then :Ef+1 € KU (-K).

(ii) Suppose ¢ € K U (—K), or ¢ has no zero. Either z®(t) # 0 for all t > 0, |z?|
is decreasing on (0,00), and x%(t) — 0 as t — oo, or the zeros of % in (0,00) are all

simple and form a strictly increasing sequence of points z,(¢), n € I(¢) = NN [1,n(¢))
with n(¢) € NU{oco}. In the last case,
F(zn(¢) +1,¢) € (-1)"K  for all n € I(¢) if ¢ € K,
F(zn(¢) +1, ¢) € (=1)"T 'K for all n € I(¢) if ¢ € —K.

(iii) Let ¢ € K U (—K). Suppose % has positive zeros. In case ¢ € K, (z%)'(t) < 0
on (0,21(¢)) and 0 > x?(t) > miny 4 f for z1(¢) < t < z1(¢) + 1. In case ¢ € —K,
(z?)'(t) > 0 on (0,21(¢) and 0 < 2?(t) < max|_|g|,0 f for z1(8) <t < z1(¢) + 1.

(iv) Suppose ¢ € KU (—K), x® has zeros in (0,00), and n(¢) > 2. Then there exists

a neighbourhood N of ¢ in C so that each ¥, ¢ € NN (K U(=K)), has zeros in (0, 00)
with n(v) > 2, and the map

NN(KU(=K))2>¢+— z(y) €R

18 continuous.
(v) In case ug > 0, the zeros of each x*, ¢ € K U (—=K), in (0,00) are unbounded,
and for every bounded subset B C K U (—K) there exists b > 0 with

zo(¢p) < b for all ¢ € B.



Smoothness of the attractor 15

Proof. For (i) and (ii), compare the proof of Proposition 3.2 in [20]. Proof of (iii
in case ¢ € K and x® has positive zeros: For 0 < t < z1(¢), (29)'(t) = —uz®(t) +
fz?(t—1)) < —pa®(t) <0, and for z1(p) < t < z1(¢) + 1,
22V P+ _ i @ — mi
@?)'(t) > f(a®(t—1)) = [—1,12111(1¢)]f(x (s)) [Sfﬁf,ﬂuf
For (iv), compare part 1 of the proof of Proposition 9.2 in [17]. For (v), compare the
proof of Proposition 6.3 in [17]. =

Consider the return map P : K U{0} U (—-K) — K U {0} U (—K) given by

P(¢) = { F(z2(¢) +1,¢) in case ¢ # 0, and 2 has positive zeros with n(¢) > 2,
0 otherwise.

The domain of P is closed.

PROPOSITION 3. (i) P is continuous, and P(K U{0} U (—K)) is compact.
(ii) Suppose J C K U{0} U (—K) is a subset so that for every ¢ € J\ {0},

0#£¢(t) for—1<t<0,
and x® has positive zeros with n(¢) > 2. Then the restriction P|J is injective.

Proof. Assertion (i) follows by arguments as in the proof of Proposition 3.4 in [20].
Let ¢, in J be given with P(¢) = P(¢)). If ¢ = 0 then the equation 0 = P(¢) = P(v),
the properties of J and the definition of P altogether yield v» = 0. In case 0 # ¢ € K one
has K 5 P(¢) = P(¢). It follows that ¢ € K, and F(z2(¢) + 1, ¢) = F(z2(¢) + 1,%).

Proof of z2(¢) = z2(¢): In case z2(¢)) < z2(¢) the injectivity of the maps F(¢,-),
t >0, gives F(22(¢) — 22(¥), ) = ¢ € K. On the other hand, the hypothesis on J and
Proposition 2(ii) yield F(t,¢) € C'\ K for all t € (0, z2(¢) + 1), a contradiction.

The injectivity of F(z2(¢) + 1,-) = F(z2(¢)) + 1,-) implies ¢ = ). The proof in case
0 # ¢ € —K is analogous. m

The next results concern slowly oscillating solutions on R.

PROPOSITION 3. If z : R — R is a slowly oscillating solution of equation (1.1.1)
which is bounded on (—o0,0] then inf 2=1(0) = —occ. The zeros of x are all simple and
form a strictly increasing sequence (2n(T))ner(z), 1(x) = {n € Z : n < n(x)} with
n(x) € ZU{oo}, so that x., ()41 € KU (=K) for all n € I(z).

Proof. See Proposition 3.1(ii) in [20], and use Proposition 2. m

PROPOSITION 4. (i) For every slowly oscillating solution x : R — R of equation (1.1.1)

which is bounded on (—oo,0] there exists a strictly increasing sequence (t,)°_ . in R
with t, — —00 asn — —oo so that (v, )0___ is a trajectory of P in K.

(ii) For every bounded trajectory (¢n)0__ . of P in K U (—K) there exist a bounded
slowly oscillating solution z : R — R of eq. (1.1.1) and a strictly increasing sequence
(tn)__ . in R with t, — —00 as n — —o0 so that ¢, = x4, for all integers n < 0.

Proof. To prove (i) observe that for integers n with n+1 < n(z) and j € {0, 1} with
T, ()41 € (—1)7K, the simplicity of zn11(z) > 2z, (x) + 1 yields @, (z)+1 € (—1)" T K.
Fix some integer n < n(x) with 2, ;)41 € K, and set t; = 2z, 495(2) + 1, for integers
J<0.
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Proof of (ii): The hypothesis that (¢,)°____ is a trajectory of P in K U(—K) implies
that for every integer j < 0, x% has positive zeros, n(¢;) > 2, and ¢;4+1 = P(¢;) =
F(z2(¢j)+1,¢;). Consider the sequence in R given by top = 0 and t; = t;41 — (22(¢;) +1)
for integers j < 0. The equations z(t) = 2% (t —t;) for t; <t < t;;1, j € —N, determine
a solution z : R — R of equation (1.1.1) with z;, = ¢; € K U(=K) for all integers j <0,
and Proposition 2(ii) guarantees that x is slowly oscillating. It remains to show that x is
bounded. Observe that parts (iii) and (i) of Proposition 2 imply that in case inf f > —o0
each 2%, ¢ € K U (—K), with positive zeros and 2 < n(¢) is bounded on [22(¢),00) by
¢ = max(iyf s 0] f —inf f. For every ¢ € R there exists an integer j < 0 so that t; < ¢,
.I(t) = Iqu*l(t — tjfl), t— tj,1 > tj — tj,1 = ZQ((bj,l) + 1, and (bj*l e KU (—K)
Therefore |x(t)] < ¢. The proof in case sup f < oo is analogous. m

Proposition 4(ii) shows in particular that nonzero fixed points ¢ of P define slowly
oscillating periodic solutions of equation (1.1.1) with period w = z2(¢) + 1.

The next result generalizes the fact that phase curves of bounded slowly oscillating
solutions enter and remain in a cone containing the linear space L, which consists of
segments of slowly oscillating solutions of the linear equation (2.1.3), and 0.

PROPOSITION 5. Let r > 0. There exists ¢(r) > 0 with the following property. If
x:[to—1,00) = R, y:[to —1,00) — R are solutions of equation (1.1.1) so that xo — yo
has no zero and |x(t)] <, ly(t)] <r on [tg — 1,00), then

c(r)llze — yell < |lp(ze —we)|l  for all t > tg + 2.

Proof. See the proof of Proposition 7.1 in [17], and correct the argument in case B2
according to the arguments in case II, subcase 2, in the proof of Lemma 5 in [16], or see the
arguments in case (D)(iv) in the proof of Proposition XV.4.2 in [4] with |z(t—1)| > |=(t)]
instead of ... = ... in line 3, page 396, and “all” instead of “some” in line 7, page 396. m

2.3. The attractor of eventually slowly oscillating solutions. An attractor M,
of a continuous semiflow @ : [0,00) x M — M on a complete metric space M is a compact
set M, C M which is invariant in the sense that

D(t,Ms) =My, forallt >0

and which attracts all bounded sets in the sense that for every bounded set B C M and
for every neighbourhood N of M, there exists tgny > 0 with

&(t,B) C N forallt>tpn.

This definition is equivalent to the definition of compact global attractors used in [5];
see Chapter XVI in [4]. In case all maps &(t,-) : M — M, t > 0, are injective it is also
equivalent to the definition given in Chapter 4 of [20]. Attractors contain all w-limit sets,
in particular, all stationary points and periodic orbits. In Chapter 4 of [20] it is shown
that the restricted semiflow

Fs:[0,00) x §5 (t,¢) = F(t,¢) € S

has an attractor which is denoted by A.
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PROPOSITION 1. (i) ¢ € A if and only if either ¢ = 0, or there exist a bounded slowly
oscillating solution x : R — R of equation (1.1.1) and t € R with ¢ = x;.

(ii) If = : R — R is a solution of equation (1.1.1) so that z|(—o0,0] is bounded and
if there is a sequence (t,)9__
n <0 then x; € A for all t € R.

(iii) ANH =AnN(KU{0}U (—K)).

(iv) PANK)=ANnK,P(ANn(-K))=AN(-K),P(ANH)=ANH.

(v) Suppose that for every ¢ € AN (K U{0} U (=K)) the solution x® has positive
zeros, and n(¢) > 2. Then the map ANH > ¢ — P(p) € AN H is bijective.

with t, — —o00 asn — —oo and xy, € S for all integers

Proof. 1. Proof of (i): Proposition 4.1 of [20] yields that 0 and all segments z;
of bounded slowly oscillating solutions = : R — R of equation (1.1.1) belong to A.
Conversely, if ¢ € A then the same proposition shows that there are a bounded solution
z:R — R with , € S for all s € R, and t € R with ¢ = z;. In case ¢ # 0, the
injectivity of the maps F(t,-), t > 0, implies z; € S\ {0} = S for all s € R, and
Proposition 2.2.2(i), (ii) guarantees that x is slowly oscillating.

2. Proof of (ii): Suppose inf f > —o0. Corollary 2.2.1 yields that x is slowly oscillating.
Apply Proposition 2.2.3. In case n(z) < oo, Proposition 2.2.2(ii) implies z(t) — 0 as
t — oo. In case n(z) = oo, Proposition 2.2.2(iii) gives

0>a(t) >inf f for 2,(x) <t < zpy1(x), n € Z, ' (2,(x)) <O,
and consequently

0<z(t) < [ig}z})%] [ for zp(x) <t < zpy1(z), n €Z, 0<a'(z2n(z)).
It follows that x is bounded. Apply assertion (i). The proof in case sup f < co is analogous.

3. Proof of (iii): For 0 # ¢ € AN H, consider ¢t € R and a solution « according to
assertion (i), and apply Proposition 2.2.2(i) to x5 with s < ¢ —1 so that = has no zero on
[s —1,t—1). It follows that ¢ € K U (—K).

4. Proof of ANK CP(ANK): Let € AN K. Assertion (i) and Proposition 2.2.3
show that there exist ¢ € R and a bounded slowly oscillating solution x : R — R and
an integer n < n(x) with ¢ = x4 and t — 1 = 2,(z). It follows that ¢ = x. )41
belongs to ANK, z2(¢) +1 = z,(x) — zp—2(x), and P(@) = F(22(¢) + 1, ¢) = F(zn(z) —
Zn_g((E), :Ezn,g(z)Jrl) = ¢

5. Proof of (v): Part (i) and Proposition 2.2.3 combined guarantee that for ¢ €
AN(KU(=K))and for =1 <t <0, ¢(t) # 0. Apply Proposition 2.2.3(ii). m

For ¢ € A let z(¢) denote the uniquely determined solution of equation (1.1.1) which
is defined on R and satisfies z(¢)g = ¢.

PROPOSITION 2. The map Fa : R x A3 (¢,¢) — x(p), € A is a continuous flow.
Proof. See Proposition 4.3 in [20]. m

PROPOSITION 3. For every ¢ € A the curve R 3 t — x(¢); € C is C'-smooth, with
x(p); = D(s — z(¢)s)(t)1 for all t € R. The map A> ¢ — ¢ € C is continuous, and
for all p € A\ {0}, ¢/ #0. The map Rx A> (¢, ¢) — x(d); € C is continuous.
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Proof. The equations x(¢)i+n —2(P): = F(2+ h,z(p)i—2) — F(2,2(¢p)1—2) for t € R
and |h| < 1 yield the differentiability of the curve, and the formula
D(s +— z(¢)s)(t)1 = D1F(2,2(¢)1—2)1 = F(2,2(¢)i-2) = (x(9):)".
Continuity of the derivative of the curve follows from
2(¢); = —px(d) + foa(d)i—1 = —pFalt, ¢) + f o (Fa(t — 1,9)).

The last equation shows in case t = 0 that the map A 5 ¢ — ¢’ € C' is continuous. ¢’ =0

implies 0 = —pu¢ + f o #(¢)-1, hence up(0) = f(z(¢)(—1)) = f(¢(=1)) = f(¢(0)), and
therefore ¢(0) =0, and ¢ =0. =

In Chapter 7 of [20] it is shown that
(1) A—-ACS.

This inclusion and the relations SN Q = 0, or equivalently, 0 & pS, are used in [20] to
obtain a map a : pA — @ so that

A={x+a(x):x € pA}.

An a-priori estimate as in Proposition 2.2.5 yields that the map «a is Lipschitz continuous.
The next result is a first indication that a is even better.

PROPOSITION 4. For every pair of differentiable curvesy:(—=1,1)—C, o:(-1,1)—=C
with v(0) = 0(0) and ~([0,1)) U o| C A,

R~'(0) + Ro'(0) C S.
In particular, TyA +TpA C S.
Proof. Let r,s € R. Then

r'(0) = lim = (7(h) = 7(0)),  —s¢(0) = lim —=(o(h) - £(0)).
Incaser >0 # s,

im 2 [(9(rh) () ~ (o(—sh) ~ 0(0))] = lim 3 (3(rh) — o(~sh).

Recall (1) and RS C S. Tt follows that 77/(0) + s¢’(0) € S. In case r < 0 # s, use

77/(0) +50/(0) = Tim+[(7(rh) = (0) = (e(~sh) — o(O))]

' (0) +50'(0) =

The proof in case r = 0 or s = 0 is similar and simpler. m
Note that Propositions 4 and 3 combined yield
(2) ¢ €S and 0#pg forevery ¢ € A\ {0}.

In case the attractor A is nontrivial, i.e., A # {0}, there are periodic orbits in A. For
a slowly oscillating periodic solution y : R — R of equation (1.1.1) with zero sequence
(2n(¥))22_ o, the minimal period w = w(y) > 0 is given by z,42(y) — zn(y), and the

orbit parametrization n : [0,w] 3 t — y; € C is a simple closed C'-curve with |n| C A.
The projected parametrization p o i is a simple closed curve, with 0 € int(p o 7); for
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any other slowly oscillating periodic solution § : R — R of equation (1.1.1) with orbit
parametrization 7, either
y=y(t+-) forsometeR,
or
Inf [l =0, and [pon| Cint(pon) or [por| Cint(pon).
In case A # {0} there exists a slowly oscillating periodic solution 3° of equation (1.1.1),
with y°(—1) = 0 < (y°)'(=1), so that
pA=int(pon”)U|pon’|,
with the orbit parametrization n° of y°. For every ¢ € A\ {0} so that z(¢) is not periodic,

a(z(9)) Nw(g) =0,

and each limit set is either the singleton {0} or the orbit |n| of a slowly oscillating periodic
solution y : R — R of eq. (1.1.1). For proofs, see [20].
In the present paper we prove the following result on smoothness.

THEOREM 1. In case A # {0} the restriction alint(p o n°) is C-smooth, and for
every x € OpA = |ponP®| there exist an open neighbourhood N of x in L and a C*-map
an : N — Q with

alpANN =an|pANN.

Assume from now on A # {0}. The next propositions on periodic orbits in A are used
in parts of the proof of Theorem 1.

PROPOSITION 5. Let y : R — R be a slowly oscillating periodic solution with orbit
parametrization 1. Let ¢ € A. If pp € int(pon) [... € ext(p on)] then pFa(t,¢) €
int(pon) [... €ext(pon)] for allt € R.

Proof. Let ¢ € A, po € int(pon). Suppose pFa(t,¢) € L\ int(pon) for some t € R.
Then there exists s € R with pFa(s,¢) € d(int(p on)) = |[pon|, and pFa(s,¢) = py:
for some t € R. Hence Fa(s,¢) = pFa(s,¢) + a(pFa(s,d)) = py: + a(py:) = yi, and
consequently ¢ = Fa(—s,y:) = Yi—s, Or pd € |pon|, which yields a contradiction to
po € int(pon). m

Incidentally, note that for every slowly oscillating periodic solution y : R — R and for
all n € Z,

(3) HnN |77| = {yzn(y)-i—layzywl(y)-l-l} = (K U (_K)> N |77|
and
(4) Yoo ()41 € K ifand only if vy, . ()41 € —K.

PROPOSITION 6. Suppose
0 < I =inf{|lpyll : y is a slowly oscillating periodic solution of equation (1.1.1), ¢t € R}.

Then there exist a slowly oscillating periodic solution y of equation (1.1.1) and t € R so
that I = ||pys||. Let n denote the orbit parametrization of y. For every ¢ € A\ {0} with
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po € int(pomn), either
a(z(9)) = {0} and w(¢) = |n|

or
a(z(¢)) =[n| and w(¢) ={0}.

Proof. 1. There is a sequence of slowly oscillating periodic solutions 3™, n € N,
with minimal periods w,, and y(()n) € K for all integers n, and there is a sequence of reals
tn € [0,wn), n € N, so that

Ipyi | =1 asn— oc.

All yén) belong to the compact set ANK, and a subsequence (y(()nj ));?‘;1 converges to some

¢ € ANK, with ||pg|| = limj_eo [lpy$"|| > I > 0. It follows that ¢ € K \ {0} = K, and
the continuity of P gives

P(g) = P(lim w") = lim, P(y§™) = lim " =,

so that y = z(¢) is a slowly oscillating periodic solution, with minimal period
w=23(¢) +1 = z2( lim y(()"j)) +1= lim zz(y(()nj)) +1,
J—00 J—00
according to Proposition 2.2.2(iv). Hence w,; — w as j — oo, and the sequence (t,,)52,
is bounded. A subsequence of points s = tn,, , k € N, converges to some ¢ € [0, w + 1].
Using continuous dependence on initial data on the interval [0,w + 1] and the equations

(n]'k) (n]k)

Ys — Yt = (ysk - ysk) + (ysk - yt)7 k eN,

one finds

yg:jk) — Yy as k — o0, pygzjk) — py; as k — oo,

and consequently, I = ||py:|.

2. Let n denote the orbit parametrization of y. Let ¢ € A\ {0}, p¢p € int(p o n).

Claim: z(¢) is not periodic.

Proof: Suppose the slowly oscillating solution x(¢) is periodic. Let £ denote its orbit
parametrization. Then |p o £| C int(p o 1), according to Proposition 5. It follows that
ext(pon) C ext(po&), and

lpo &l N {pye} = 0.
Moreover,
lpo&lN[0,1)py: =0

since otherwise ||pzs|| < |lpy:|| = I, contrary to the definition of I. Choose a convex
open neighbourhood N of py; in L so that NN |po&| = . Then N contains points in
ext(pon) C ext(pog). It follows that 0 € int(p o &) can be connected by a continuous
curve in L\ |p o £| to points in ext(p o £), which yields a contradiction.

3. Suppose {0} #a(z(¢))#|n|. Then there exists a slowly oscillating periodic solution
Z of equation (1.1.1) with orbit parametrization 7 so that a(z(¢)) = |7j|. By Proposition 5,
px(@)s € int(pon) for all t € R. This yields

Ipo | =pa(x(p)) Cint(pon) =int(pon) U|pon|
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In case p o 7j(s) € int(p o n) for some s one obtains a contradiction to the result of the
claim in part 2. In case p o 7j(s) € |p on| for some s one obtains |n| = |7] = a(z(¢)),
contrary to the assumption. It follows that a(xz(¢)) = {0} or a(z(¢)) = |n|.

The proof for w(¢) is analogous. m

2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted
Poincaré maps. Let y : R — R be a slowly oscillating periodic solution of equation
(1.1.1) with minimal period w > 2 and orbit parametrization  : [0,w] 3 t +— y; € C. The
associated monodromy operator

Y = DQF(w7y0)

is compact. The nonzero points A in the spectrum X of Y are called Floquet multi-
pliers; each of them is an isolated point of X and an eigenvalue with finite-dimensional
generalized eigenspace in the complexification of the space C'. They are real or occur
in complex conjugate pairs. The derivative 3’ is a solution of the variational equation
along y|[—1, 00), with ¢'(t) # 0 for some ¢t € [—1,0] since otherwise y(—1) = y(0) and
0= —py(0)+ f(y(—1)) = —py(0) + f(y(0)), hence 0 = y(0) = y(—1) and y would not be
slowly oscillating. It follows that

Yy, =yo #0,

and 1 is a Floquet multiplier. The solution y is called hyperbolic if the generalized eigen-
space of the Floquet multiplier 1 has dimension 1, and if

[A| #1 for all Floquet multipliers A # 1.

The proofs of the results on slowly oscillating solutions and on the attractor A of the
restricted semiflow Fg which are recalled in Subsection 2.3 do not make use of Floquet
multipliers. The proof of Theorem 2.3.1 in the present paper, however, relies on a-priori
results about them. Such results were derived in [3, 18, 8] for equation (1.1.1) with = 0.
In the sequel they are extended to the case p > 0.

PROPOSITION 1. Let a : R—R be continuous, and b=eta. A function v : [to— 1,00)
— R (v:R — R) is a solution of the equation
(1) V' (t) = —po(t) + a(t)v(t — 1)
if and only if the function w given by w(t) = e*v(t) on the domain of v is a solution of
the equation
(2) w'(t) = b(t)w(t —1).
The zeros of v and w coincide, and a zero of v is simple if and only if the zero of w
is simple. The map I : C — C given by (I9)(t) = e*tp(t) is a topological isomorphism,
with 1S = S. For every s > 0 the maps As : C — C and By : C — C given by As¢ = v,

where v : [—1,00) — R is the solution of equation (1) with vy = ¢, and Bs) = ws where
w: [—1,00) — R is the solution of eq. (2) with wy = 1, satisfy
(3) B,ol =e"ToA, =ToelA,.

The proof is left as an exercise.
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Consider a : R — R given by a(t) = f'(y(t — 1)), s = w. Then the function b = ea
is continuous, negative, and has period w. Let B = B,,, and observe that Y = A,,. The
results in Section 5 of [8] show that there exists 8 > 0 so that the spectrum X'(B) of B
is disjoint from {\ € C : |A\| = (8}, and the reellified generalized eigenspaces Cp<, Cp>
associated with the spectral subsets X(B)< = {A € X(B) : |\ < 8}, X(B)s> =
{A € X(B) : 8 < |A|}, respectively, satisfy

C=Cpc®Cps, CpcnNS=0 CpsCS, dimCps =2.
The equations (3) imply that the spectra X'(B) and X(e#*Y’) coincide, and that for
every spectral subset the associated reellified generalized eigenspaces Cp and C), for B
and e*“Y | respectively, satisfy

Cp=1IC,.
Furthermore, X(e#“Y) = e#* X, and X, C X is a spectral subset if and only if e~ X,

is a spectral subset of X'(e#“Y"); given a spectral subset X, C X the associated reellified
generalized eigenspaces C, of Y, and Y, and C,, of e#*X, and e#“Y coincide. Set

o=¢e Hp.

COROLLARY 1. For all A € X |\ # o, and 0<1. The reellified generalized eigenspa-
ces C<,Cs associated with the spectral subsets {\ € X : |A\| < o} and {A € X : o < |\|},
respectively, satisfy

C:C<€BC>, C<ﬂS=@, C>C§, dlmC>:2

Proof. All assertions except the inequality for ¢ are immediate from the preceding
remarks. The inclusion A — A C § = RS yields S > limy—q 1 (y: — yo) = y # 0. Corol-
lary 2.2.1(ii) and periodicity imply that y’ is slowly oscillating. Therefore the reellified
generalized eigenspace of the Floquet multiplier 1 contains the element y{, € S, and the
assumption ¢ > 1 would imply a contradiction to C« NS =10. m

Note the analogy with the properties of the spaces @@ and L of Subsection 2.1. Corol-
lary 1 leaves the following possibilities.

(4)  The Floquet multiplier 1 has multiplicity 2, and |A| < 1 for all A € X'\ {1},
or

(5)  yishyperbolic, and there exists a real Floquet multiplier A, € X\ {1} with o < |A.|.
PROPOSITION 2. In case (5), 0 < ..

Proof. 1. Suppose (5) holds. There exists ¢ € Cs with Yo = A\.¢ # 0. It follows that
there is a solution v : R — R of equation (1) with v,, = A}¢ for all integers n. Observe
that for every t > 0,

Vo = DaF(t +w,y0)¢ = DaF(t, F(w,y0)) D2 F(w, yo)¢
= DgF(t, yQ)Y¢ = )\*DQF(t, yo)(b = )\*’Ut.
In particular,

(6) v(t +w) = Ao(t) forallt>—1.
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The solutions rv + sy’,r, s in R, of equation (1) form a linear subspace V of R® with
Cs ={xg:2€V}, dimV =2, x,, €CsCS forallintegers n.
Using Corollary 2.2.1(ii) one deduces that each z € V' \ {0} is slowly oscillating. For
0 # x € V all zeros are simple since otherwise,
0=2'(t) = —pzx(t) +a®)z(t —1) = a(t)z(t — 1)

for some zero ¢ gives x(t) = 0 = z(t — 1), which contradicts the fact that x is slowly
oscillating.

The properties of y imply that the zeros of 4’ € V are given by a strictly increasing
sequence (g, )% _ . Applications of Lemmas 1, 2 of [18] to the space of all solutions

w:R3t—ez(t) ER, z €V,

of equation (2) yield that for every z € V'\{0} the zeros form a strictly increasing sequence
(tn2)5 o, and that for  and w in V' \ {0} and for all n € Z with ¢, ; <ty < tnt1,2s

(7) tn—i—l,m < tn-l—l,u'

Set t,, = tpnv, for all integers n. Choose j € Z with —1 < ¢;. Set n = max{m € Z :
tm < gj}. There exists a positive integer k with ¢; + w=q,12x since y’ has period w, and
all zeros of 3/ are simple.

2. Suppose t,, < g;. Then v(g;) # 0, ¢; < tnt1, and consequently gjim < tnyitm <
Q54 (m+1) for all nonnegative integers m. In particular, ¢;jyor € (tnt2k, tnt2r+1), and the
equations

0 # sign(v(g;)) = sign(v'(tn)) = sign (v (bn-21))
(due to the simplicity of the zeros)
= sign(v(gj12x)) = sign(v(g; +w)),  v(g; +w) = Av(g;)
yield A, > 0.

3. Suppose ¢, = g;. Then v(g; + w) = Av(g;) =0 = y'(¢;) = ¥'(¢; + w). Suppose
v(t) = 0 for some t € (¢m, ¢m+1), m < j+2k—1. Then repeated application of (7) yields
v(g; +w) = v(gj+2x) # 0, a contradiction.

It follows that v=1(0) N (=00, ¢j +w] C {gm : m < j+2k} = (/)71 (0) N (—o0, ¢; +w].
Analogously one gets (y')~1(0) N (—o0,¢; +w] C v~1(0) N (—o0,q; + w]. Hence

010) Nlgg, 45 +] = {gyem : m =0, 2k},
and
0 # sign(v'(g; +w)) = sign(v'(gj+2¢)) = sign(v'(g;))  (by simplicity).
Now (6) yields 0 < A.. m

Let p« : C — C and ps : C — C denote the projections along Cs onto C., and

along C. onto C-, respectively. By C. NS = (),
(8) 0¢psS
in analogy to the relation 0 ¢ pS which follows from QNS =0 in (2.2.1).

In the second part of this section Floquet multipliers are used to construct adapted
Poincaré maps. In case (4) holds choose a unit vector ¢, € Cs \ Ry(; in case (5) holds
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choose a unit eigenvector ¢, € Cs of .. In both cases, ¢, and y(, are linearly independent,
and

PROPOSITION 3. pd. and py(, are linearly independent.
Proof. For real r,s with rpg. + spy, = 0, the relations 0 = p(r¢. + sy;) and

7o + syh € Cs C S yield r¢, + syy € QN S = {0}, and linear independence of ¢, and
yo givesr=0=s. m

Set Cy = R¢,, Cy = Cc @ C4, and let p, : Cy — Cy and p= : C,y — C, denote the
projections along C+ onto C, and along C onto C., respectively. Then
(10) for every ¢ € Gy, p>¢ = p.¢ and p¢p = p<¢.

Set H, = yo + Cy, and observe that F(w,yo) = Yo = yo € Hy,

Dy F(w,yo)l =y, =yy & Cy = Ty H.
For ¢ =yo, t =w, Z = Cy, consider an open neighbourhood U of yy in C, ¢ > 0, and a
stopping time 7 : U — R as in Subsection 2.1.

PROPOSITION 4. There exist an open neighbourhood U, of yo in U, €, € (0,¢), and
ty € [0,w) with the following properties:

o [|F(t,)|| < maxseqo,u [y(t)| +1 for all t € [0,w + €], ¥ € U,,.

o F(ty, ) €S for all € U,.

o T(Uy) C (w—ey,w+ey).

e [n[N(HyNUy) = {yo}

o) & C, forall v € HyNU, NA.

o F(s,) ¢ Hy for all v € HyNU,NA and all s € (0,2¢,).

Proof 1. Forw # s € (w—¢,w+¢), F(s,y0) ¢ Hy. By periodicity, F(s,yo) ¢ Hy
for 0 < s < e. The set n([e,w — €]) is compact and does not contain yo. Choose an open
neighbourhood Uy of yo in U so small that Uy N7(fe,w — ¢]) = 0. Then

Inl 0 (Hy NUy1) = {yo}-

2. Recall yj = y., ¢ Cy. Proposition 2.3.3 yields an open neighbourhood Uy of yo in
Uy so that ' & Cy, for all Y € U, N A.

3. The closed hyperplane C, is the nullspace of a continuous linear functional ¢* :
C — R. For every p € UjaoN A and s € R,

Fa(s,®) € Hy is equivalent to hy(s) =0
where hy : R — R is defined by
hy(s) = @™ (Fa(s,¥) — o).
Proposition 2.3.3 shows that each hy, ¢ € Uy N A, is Cl-smooth, with
iy (s) = ¢*(z(¢)y) for all s € R,

and that the map R x (Uy2 N A) 5 (s,9) = hy(s) € R is continuous. Observe hy, (0) =
&*(yo) = ¢*(y.,) # 0 since y/, € C'\ Cy. It follows that there exist an open neighbourhood
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Uys of yo in Uy and €, € (0,¢) so that
hy(s) #0 for all s € [0,2¢,), ¢ € Uy N A.

Consequently,
S

hy(s) = hy(s) = hy(0) = | () d5 #0,

0
or Fu(s,v) & Hy, for 0 < s < 2, and ¢ € Uyz N A.
3. There exists ¢ € [0,w) so that y; has no zero. Choose an open neighbourhood U,
of yg in Uy so that
|z¥(s) —y(s)| <1 forally € U, s€[—1,w+e],
F(t,¥)(s) #0 forally € Uy, s € [-1,0],
and 7(Uy) C (w —ey,w+¢ey). Set t, =t. m
Set N, = H,NU,, 7, = 7|U,, and consider the C'-map
P,:Ny>v¢— F(r,(¥),%) € Hy.
COROLLARY 2. The restriction Py|N, N A and all derivatives DP,(v), ¥ € Ny N A,
are injective.

Proof. 1. Suppose P,(¢) =
injectivity of the maps F(¢,-), ¢
F(ry () =1y (x),¥) = x € Hy.
contrary to 0 < 7,(¥) — 7y(x) < 2g,. In the same way the inequality 7,(¢)) < 7,(x) is

excluded. Therefore 7,(x) = 7, (%), and the injectivity of F(1,(¢),-) implies ¢ = x.

2. Let ¢ € NyNA. Suppose 0 = DP,(1))x for some x € Cy. Then 0=pe Do F(1,(¢), %) x
where pg : C' — C'is the projection onto C}, along R,

§=D1F(ry(¥), V)1 = 2(¥); () = D2F (7 (1), )¢
The formula for p¢ in Subsection 2.1 gives
Dy F(7y (), ) x € RDoF (7 (), ¥

The injectivity of DaF(1, (), ) yields x € Ry’. It follows that x € Ry’ NCy = {0}. m

The choice of the hyperplane Cy = C. ® C, and the formula

DPy(yo)x € peY'x
with the projection pg : C'— C onto Cy along R, £ = D1F(w,y0)l =y, =y}, yield
DPy(yo)x =Yx forall x e C. C C,.

P,(x) for ¢ and x in N, N A. In case 7,(x) < 7y(¥) the
> 0, yields

In particular, DPy(yo)C< C C., and the spectrum of the map A. : Cc 3 x —
DP,(yo)x € C< coincides with the spectral set o C X.

PROPOSITION 5. (i) In the hyperbolic case (5),
DP,(yo)¢« = Mt and o< ={\€ X :|A| <min{1,\.}}.
(i) If (4) holds then
DP,(yo)s = ¢ and o< ={\e X :|\ <1}.
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Proof. 1. If (5) holds then DP,(yo)p« = peY s = DeAubs = Aiths, a8 Ay € Cy.

2. Suppose (4) holds. Then 1 is the only point in the spectrum of the map Y~ : Cs >
x—Yxedls.

Claim: Y ¢, = ¢. + ry( for some r € R.

Proof: Y ¢, = s + ry|, with real r, s implies

YV — s id)(Y —id)ps = (Y —id)(Y — s - id)¢s = (Y — id)ry}, = 0.

Either (Y —id)¢. = 0, or (Y —id)¢« # 0. In the second case s is an eigenvalue of Y,
therefore s = 1.

3. It follows that DP,(yo)d« = peY ¢ = pe(ds + Y)) = Deps = ¢u since ¢y € Cyy. m

PROPOSITION 6 (Trajectories of P, and solutions of equation (1.1.1)). (i) If = :
R — R is a solution of equation (1.1.1) so that x4 — |n| as t — —oo then there exists

a strictly increasing sequence (t;)? with t; — —o0 as j — —oo so that xy; € Ny,

j=—o00
Py(xy;) = a4, for all integers j < —1, and x4, — yo as j — —o0.
(ii) If (qﬁj)?:f(m is a trajectory of P, then there exist a bounded slowly oscillating
solution x : R — R of equation (1.1.1) and a strictly increasing sequence (t;)}__ ., with

tj — —o00 as j — —o0 and ¢; = xy; for all integers j < 0.

Proof. 1. Claim: There exist § € (0,w/3) and an open neighbourhood Nj of yo in
N, C Hy, such that F(t,¢) ¢ Ns for all ¢» € N5 and t € (§,w + 30) \ {7, ()}

Proof: Set 6 = e,/5. The properties of N, and ¢, imply y, ¢ H, for t € (w — 39,
w + 36) \ {w}. By periodicity, y. ¢ H, for ¢t € (0,6). The relation

{fyoy N {y:0<t<w-36}=0

yields disjoint open neighbourhoods U’ of yo in U, and V of {y; : 6 <t <w —3d} in C.
The compactness of [§,w — 3] gives an open neighbourhood Uy of yo in U’ so small that
F(t,) € V for every ¢ € Us and t € [§,w — 3d]. Set N5 = Us N H,. For ¢ € N5 and
d<t<w-—364, F(t,yp) e V.Cc C\U' C C\ N;. The inclusion N5 C N, and the choice
of ¢ yield F(t,¢) € C\ H, C C\ Ns for ¢p € N5, w — 35 <t <w+ 30, t # 7, ().

2. Proof of (i): Choose an open neighbourhood U’ of yo in U, so small that F(7,(¢), )
€ Nsand w— 6 < 7,(¢) <w+ 6 for all ¢ € U’. For every t € [0,w) there exists an open
neighbourhood U; of y; in C so that F(w —¢,U;) CU’. Set V = U[O,w) U;. Observe that
for every ¢ € V there exists s € [0,w) so that F(r,(F(s,v))+ s,v¢) € N5. Choose u € R
so that for ¢t < wu, x; belongs to the neighbourhood V of |n|. It follows that for every
t < u there exists s € (w — §,2w + §) with x;,s € N5. Choose t_1 < u with z;_1 € Nj,
set u_g = t_1 — 2w — 24, and choose s € (w — §,2w + §) with z,_,+s € Ns. Observe
0 < t-1— (u—2+8) < w—+30. The last inequalities and the relations Ny > x;_, =
F(t—1 — (u—2+ 8),Zu_s+s), Tu_o+ts € Nj yield

t1—(u—2+8) = 7y(Tu_,+s),

hence Py(xy_,4+s) = T4 ,. Set t_o = u_y + s. Proceed by induction.
3. Proof of (ii): Set to = 0 and consider the sequence given by t; = t;_1 + 7,(¢j—-1)
for integers j <0. By Proposition 4, 0 < w —gy, < 7,(¢;) < w+¢, for all j < 0. It follows
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that there is a solution z : R — R of equation (1.1.1) with
x, = ¢; forall j <0,
and
o]l = It 6] < suply(s) + 1 for all ¢ € oo+ &l <0,
so that the restriction z|(—o0,0] is bounded. Moreover,
Ty 4t, = F(ty,¢;) € S forall j <O0.

Use Corollary 2.2.1 to show that x is slowly oscillating. Use Proposition 2.2.2 and the
boundedness property of f to show that the restriction z|[0, 00) is bounded. m

The invariance property of A yields
(11) P,(N,NA) CA.

Proposition 2.3.5 implies that for every slowly oscillating periodic solution g of eq. (1.1.1)
with orbit parametrization 77 and

(12) for every ¢ € N, N A with po € int(po7) [€ ext(pon)],
pPy(¢) € int(pon) [€ ext(pon)].

It is convenient to restate Proposition 3.5 of [8] on derivatives of iterates of P,. If (¢;)7_,
is a finite trajectory of P, and if x € Ty, H, = Cy then

n—1
(13) DP"(¢0)x = peDaF (Y 7 (87).60) x
j=0
with the projection pe : C'— C onto C, along RE, & = D1F(X72) 7,(6;), do)1.

2.5. Local invariant manifolds. This subsection contains the results on local stable,
center, and unstable manifolds for the semiflow F' at the stationary point 0 and for the
adapted Poincaré maps P, of the preceding subsection at the fixed point 3o which will
be used in the proof of Theorem 2.3.1.

PROPOSITION 1. (i) In case ug < 0 there exist an open neighbourhood W* of 0 in C
and constants ¢ > 1, k € [0,1) so that for all ¢ € W* and all integers n > 0,

[1E(n, §)II < ck™[|o]-

(i) In case ug = 0 there exist a Ct-map w® : L — Q with w°(0) = 0 and Dw°(0) = 0,
and an open neighbourhood N of 0 in C so that W¢ = {x + w(x) : x € L} has the
following properties:

(1) If z: R — Ris a solution of equation (1.1.1) with xs € N for all t< 0 then o€ W°.
(2) If e W t>0, and F(s,¢) € N for all s € [0,t], then F(t,¢) € W€.
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Proof. 1. Part (i) is a standard result on linearized stability for the map F(1,-).

2. Let ug = 0. We recall the description of the construction of W€ in Section 6 of
[20], which is based on [4], and indicate the modifications which are needed to derive
assertion (ii).

2.1 (Dual semigroups). The elements ¢© € C* for which the adjoints of the operators
T(t) define a continuous curve

[0,00) 3t T(t)*¢® € C°
form a positively invariant subspace C®, which is called the sun subspace. The operators
TO@1): C® 2 ¢° - T(t)¢® € C9, t>0,

constitute a Cp-semigroup on C®. Using this last semigroup one defines the space
C®® cC®*. The space C is sun-reflerive with respect to the original Cp-semigroup in
the sense that there exists a norm-preserving isomorphism of C' onto C©®.
There is an isomorphism between C®* and R x L>=(—1,0;R). Let r®* € C®* denote
the preimage of (1,0).
For a given continuous function g : R — C®* and real a < b the weak-star integral
b
{70 - )g(t) dt € C
a

is defined by

b b

(V7o -3t dt) @) = (700 - 1) 50) @) at

for z© € X©.
If g : R — R is a continuous function and if x : R — R is a solution of the equation
(3) 2 (t) = —pa(t) — aalt — 1)+ g(t)
with o = — f/(0), then the curve u : R 3 ¢ — ¢ € C is a solution of the integral equation
t

(4) ut) = T(t = syu(s) + | Tt = 1) (g(r)r®) dr, t> s

S

this last equation is in fact an equation between elements of C®* where the isomorphism
C = C99 and the inclusion map C©® — C®* are omitted. Conversely, if u : R — C
satisfies (4) then = : R 3 ¢ — u(t)(0) € R is a solution of equation (3), and z; = u(t) for
all t € R.

2.2 (Solutions slowly growing at infinity). Fix n > 0 with uy < —n < 0 = ug. For
a given Banach space E over R, let BC"(R, E) denote the space of continuous maps
u: R — F so that

supe”""[u(t)]| < oo,
teR

and consider the norm || - ||, on BC"(R, E) which is given by the last expression. For
each F' € BC"(R,C®*) there exists a unique solution

u= K(F) € BC"(R,C)
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of the integral equation
t

(5) u(t) = T(t - syu(s) + \ Tt = 7) F(r)dr, t>s,
with pu(0) = 0. The solution map K : BC"(R,C®*) — BC"(R, C) is lincar and continu-
ous.

2.3 (Modified equations, center manifold). There are sequences of open intervals I,
and C'-functions r, : R — R with compact supports, n € N, such that for every n € N,
0el,,

f(&) = f(0)E+ra(§) forall €1y,

(6) , 1 , .
[rn(§) —rn ()| < Elé—ﬁl for all £,&" in R.

The equations
R (u)(t) = ra(u(t)(=1))r®"
define substitution operators
R, : BC"(R,C) — BC"(R,C®*), n €N,

with Lipschitz constants L,, so that L,, — 0 as n — co. The hypothesis ug = 0 implies
that there is a constant M > 1 with ||T'(¢)|| < M for all ¢ > 0. Fix an integer n > 1 so
that

M, .. N 1

Sl <, LR <.

n

The operators T'(¢), ¢ > 0, induce a group of isomorphisms T, (t) : L — L, t € R, which
are uniformly bounded. For every x € L there is a unique solution u = u(x) € BC"(R, C)
of the equation

u="Tr()x + K(Rn(w).
Define
We={u(x)(0): x € L}.
There exists a Cl-map w® : L — @ with w®(0) = 0 and Dw*(0) = 0 so that
We={x+w(x):x €L}
Choose an open neighbourhood N of 0 in C' so small that ¢(t) € I,, for every ¢ € N and
for all t € [—-1,0].
2.4. Now (1) follows by arguments as in the proof of Proposition 6.4 in [20].
2.5. Proof of (2): Let ¢ € W€ t >0, and F(s,¢) € N for all s € [0,t]. There exist
u € BC"(R,C) and x € L so that
u0)=¢ and u=TL()x + K (Rn(u)).
For all real ?2 s,

u(t) = Tp()x + (ut) = To(t)x)

= To(E)x + T(F = s)(u(s) = To(s)x) + | T2 — 7)" Ra(u)(7) dr
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=T - s)u(s) +\ Tt — 7)* R, (u)(7) dr

= T = $)u(s) + |70 = 7)"ra(u(r) (~1)r®" dr.

I e ]

The remarks in part 2.1 show that x : R 3 s +— u(s)(0) € R is a solution of the modified
equation
(7) 7' (s) = —px(s) — ax(s — 1) + rp(x(s — 1)),
with 2, = u(s) for all s € R. Recall (6) and the choice of N. It follows that x5 = F (s, ¢)
for s€10,t]. In particular, z; = F(t,¢). Consider the solution = z(t+-) of eq. (7), and
u:R>s+— T, € C. It remains to show that @(0) € W¢. Now, @ is in BC"(R, C) since
for every s € R,

e Mlfa(s)|| = e fu(t + s)| < e u(t + 5)| < €™ ully,.
The remarks in parts 2.1 and 2.4 yield

u(t) =T(t — s)u(s) + \TO(t — s) 1 (U(7)(=1))r®* dr

= T(tN— s)u(s) + TQ(tN— )Ry (w)(7) dr

B ey R) O e )

for t > 5. The function %— T (-)pt(0) belongs to BC"(R, C) since T, (-)pt(0) is bounded.
Note p[u(0) — Tr(0)pw(0)] = 0. For t > s,

() = To(t)pu(0) = T(¢ — s)[a(s) — Tr(s)pu(0)] + \TO(f = 7)* Ry, (@)(7) dr.

B )

It follows that & — T (-)pii(0) = K (R, (@), or @(0) € W¢. u

COROLLARY 1. If there exists a solution x : R — R of eq. (1.1.1) with g # 0 and
s — 0 as t — —oo then ug > 0.

Proof. Assume ug < 0. There exists ¢t < 0 with z, € W* and ||| <1 for all s <*¢.
For every integer n > 0,

el = [1F(n, zen) || < k™[] < k™.
Therefore x; = 0, and xg = F(—t,2;) = 0 contrary to the hypothesis g # 0. =»

PROPOSITION 2. Let ug = 0, and consider W€ as in Proposition 1(ii). There exists an
open neighbourhood U of 0 in C so that the set X = WeN HNU is a one-dimensional
submanifold of C' with

ToX=LNH, XcCKU{0}U(-K), P(X)cCWwe
and P|X is injective.

Proof. 1. As in the proof of Proposition 9.1 in [17] one finds that the inclusion map
ig:H>¢r— ¢ e Cistransversal to W€ at ¢ =0, and dim H N L = 1. Corollary 17.2 of
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[1] shows that there is an open neighbourhood Uy of 0 in C so that X; = WeNHNU; =
i;ll (W¢€)NUy; is a one-dimensional C'*-submanifold of C, with Ty X, C ToWNH = LNH.
It follows that To X1 = LN H.

2. As in the proof of Proposition 6.4 in [17] one finds an open neighbourhood Us of 0
in Uy so that for every ¢ € Us N W with ¢ # 0 there exists ¢ € [0, 2] so that F(t, ¢) has
no zero.

3. By Proposition 2.2.2(v) the zeros of each 2%, ¢ € K U (—K), are unbounded, and
there exists b > 2 with z2(¢) + 1 < b for all ¢ € K U (—K) with 0 < ||¢| < 1.

4. Continuous dependence on initial data close to the stationary point and pro-
perty (2) (local positive invariance of W¢) yield an open neighbourhood Us of 0 in
Usn{peC:|¢| <1} with

F(t,¢) € W¢ forall ¢ € UsnW®, t€[0,b].

5. The linear map D2 F(2,0) = T'(2) defines an isomorphism of L = ToW¢ onto itself,
and F({2} x (UsNW¢)) Cc We. It follows that there exist open neighbourhoods Uy of 0
in Uz and Uy of 0 in Uy so that F(2,-) maps Uy N W€ onto Us N WC.

Claim: X1NUs C KU{0}U(—=K), and 0 # ¢(s) for all ¢ € X1NUs\ {0}, s € (—1,0].

Proof: Let ¢ € X1NUs C Us NW€ with ¢ # 0. There exist ¢ € UyNW€ and ¢ € [0, 2]
with ¢ = F(2,v) so that F(t,1¢) has no zero. Since ¢ € H, or ¢(—1) = 0, each F(s,v)
with 1 < s < 2 has a zero. Therefore 0 < ¢ < 1. Proposition 2.2.2(ii) gives ¢ € K U(—K),
and ¢(s) # 0 for —1 < s <0.

6. Parts 3, 4 and 5 combined yield

P(¢) = F(z2(¢) +1,4) e W°

for all ¢ € X7 NUs N Us with ¢ # 0. Proposition 2.2.3, applied to J = X1 N Us, shows
that P| X1 N Us is injective. Set U = Us NUs. m

Let y : R — R be a slowly oscillating periodic solution of equation (1.1.1), and consider
C.,C,, Hy, Ny, and the adapted Poincaré map P, : N, — H, with fixed point yo as in
Subsection 2.4.

PROPOSITION 3. (i) In case (2.4.5) holds with A, < 1 there exists an open neighbour-
hood W of yo in Ny so that for every ¢ € W there is a trajectory (¢,)5%, of P, with
¢o = ¢ and

On — Yo GS TN — O0.

(i) In case (2.4.5) holds with \. > 1 there exist an open neighbourhood Ci, of 0 in
C. and a C*-map wy, : Cyy, — C< with w,(0) = 0 and Dw,(0) = 0 so that for every
¢ €Wy =yo+{x+wu(x):x € Cu} there is a trajectory (¢,)0__ . of P, with ¢po = ¢
and

On — Yo GSN — —OQ.

There exists an open neighbourhood N, of yo in Ny so that Py(W, N N,) C W,, and
B0 € Wy, for every trajectory (¢,)°__ . of Py in Ny.

(iii) In case (2.4.4) holds there exist an open neighbourhood Cy. of 0 in Cy, a C*-map
we : Cye = Cc with w.(0) = 0 and Dw.(0) =0, and an open neighbourhood N. of yo in
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Ny so that Py(¢) € W, for every ¢ € W, = yo + {x + we(x) : x € Cic} with Py(¢) € Ng,
and ¢g € W, for every trajectory (é,)" of P, in N..

Proof. Assertion (i) is a standard result on linearized stability. For (ii), see the
standard result on local unstable manifolds at hyperbolic fixed points for C'-maps in
Banach spaces, e.g. Theorem 3.1 in [6] and Theorem 2.7 in [13]. Assertion (iii) can be
shown modifying the proof of Theorem 2 in Chapter V of [7] on existence of and attraction
to local center manifolds, and using the arguments in Section 4 of [2] on smoothness. For
details, see the report [9]. m

COROLLARY 2. (i) If there is a trajectory (¢n)°—_ . of Py in Ny\{yo} with ¢, — yo
as n — —oo then (2.4.4) holds, or (2.4.5) holds with A\, > 1.
(i) If (2.4.5) holds with A > 1 then W, C A.

Proof. 1. Proof of (i): In case (2.4.5) holds with A, < 1, the spectrum of 4, =
DP,(yo) is contained in the closed disk with radius A\, = sup,,cy, ||AZ¢||1/" and center
0 € C. The norm on Cy, given by ||$||, = sup,,cx, ||AZ¢||1/" is equivalent to the restriction
of || -] to Cy, and for all ¢ € Cy, |Aydlly < Asl|@|ly- It follows that there is a bounded
neighbourhood N of yo in Ny, so that for every ¢ € N, P,(¢) € N and || Py(¢) — yolly <
%Hqﬁ — 9yol|. Choose an integer n < 0 with ¢; € N for all integers j < n. Then

k
0 < lon =l < (252) Toos— o
for all integers k£ > 0, which yields a contradiction.

2. Proof of (ii): Use Proposition 3(ii), Proposition 2.4.6(ii), and Proposition 2.3.1(i). =

The next result concerns continuous maps in Banach spaces and trajectories in one-
dimensional graphs.

LEMMA 1. Let h : U — X be a continuous map on a subset U of a Banach space X,
with fixed point z. Suppose there are closed subspaces E,E°¢ of X with X = E &
E¢, dim E =1, and there are an open neighbourhood E, of 0 in E and a continuous
map w : B, — E° so that

W=z+{z+w():2€E,} CU.

Assume that h|W is injective. Let z. € E\ {0}, ¢ > 0 with (—¢,¢)ze C Ey, and § >0
be such that the injective curve

c:(—g,e) 2t z+ta, +w(te,) € X
and h satisfy h(c((=9,0))) C c((—¢,€)). Suppose there exists a trajectory (z,)°__ . of
h in c¢((=6,8)). Then for each so € R with |so| < |c™1(x0)| and sign(sg) = sign(c™!(zo))
there is a trajectory (y,)°— . of h in c((=6,9)) with yo = c(so) and |c=(yn)| <

lc=Y(zn)| for all integers n < 0.

Remark. The curve ¢ defines a homeomorphism onto the open subset c((—¢,¢))
of W.

Proof. Let pr: X — X denote the projection onto E along E°. Then c¢((—¢,¢)) =
{x € W : pr(z—2z) € (—¢,€)x.} is an open subset of W, and the inverse ¢! : ¢((—¢,¢)) —
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R of ¢ is continuous since it is given by
c N x)z, = pr(z —z) for all x € ¢((—¢,¢)).
The transformed map
he: (=6,8) >t c Y (h(c(t))) €R
with h.(0) = 0 is continuous and injective, hence strictly increasing or strictly decreasing.
The equations z, = ¢(t,), n € Ny, define intervals

I, = [min{t¢,, 0}, max{t,,0}] C (-4, 9)

with h.(I,—1) = I, for all integers n < 0. It follows that for every sy € Iy there is a

trajectory (s;)° of h. with s, € I, for all integers n < 0. Set y, = c(s,), for all

n=—oo

integers n < 0. m

3. A-priori estimates

3.1. Nonautonomous equations. Consider {5 € R and continuous functions
g : [to,0) x R — R which satisfy the negative feedback condition (2.2.2) for all t > ¢
and 0 # 0. The aim of this subsection is an a-priori estimate which expresses that certain
slowly oscillating solutions of equation (2.1.1) do not decay too fast, for g in a set of
functions given by a growth condition.
Set
Ko={peC:¢(-1) =0, ¢ increasing, 0 < ¢(t) for all t € (—1,0]},
M = KoU{¢ € C: ¢ decreasing, 0 < ¢(t) for all ¢ € [-1,0]},
Sm=MU(—M).
Obviously, the set S, of monotone data is contained in S.

PROPOSITION 1 (Entering S, starting in S,,). Let to € R and g : [to,00) xR — R be a
continuous function which satisfies (2.2.2) for all t > tg and § # 0. Let x : [tp—1,00) = R
be a solution of equation (2.1.1). Set ¢ = xy,.

(i) If ¢ € S then xy € S for all t > 0, and there exists t € [to,to + 3] with xt € Sp,.

(ii) If ¢ € Sy then either sign(z(t)) = sign(z(to)) = —sign(z’(t)) for all t > 0, or
there exists a zero z > to of x with sign(a’(t)) = —sign(x(to)) for all t € (to,z + 1),
and ©'(z + 1) = 0. The solution x is slowly oscillating. If z € (to,00) is a zero then
sign(a’(t)) = sign(x(z + 1)) for all t € [z,z + 1).

Proof. 1. For the first assertion in (i), see Proposition 2.2.1. The assertion (ii) is a
consequence of (2.2.2) for all t >ty and 6 # 0.

2. Proof of the second assertion in (i): Let ¢ € S. Suppose 0<z(t) for all t € [to—1, to)-
Then 2/(¢) < 0 in (to,to + 1], and 2'(s) < 0 for some s € (tg,to+1]. If 0 < x(tp+ 1) then
Zeg41 € M. If x(tg + 1) < 0 then there exist zeros 2’ < z in [tg, to + 1] so that

2 =tg, z<to+1,2(t) <0 in (z,t0+ 1),

or
to <z, 0<a(t) in (to,2"), z=1to+1,
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or
to <2, 0<a(t) in (ty,2"), z<to+1, x(t) <0 in (z,to+1].
It follows that z.4; € —Kj.
If there exists z € (—1,0) with 0 < z(¢) for all ¢t € [z,to] and x(t) < 0 for all
t € [to— 1,z] then 0 < x(t) for all ¢ € [z, z + 1], and as above one finds ¢t € [z + 1,2z + 3]
with x; € Sy,,. Now it is obvious how to proceed in the remaining cases. m

Let real a € (0,1), b > 1 be given, and set
I=[-1-1/(2b),0].
Observe I C (—2,0]. Consider the set D; of continuous functions ¢ : I — R so that
(1) |[—1/(2b),0] is differentiable with |¢'(¢)] > a|y(t — 1)| for —1/(2b) <t <0,
(2) o is strictly decreasing with 0 < (=1 — 1/(2b)).

Let Dy denote the set of continuous functions ¢ : I — R with property (1) so that there

exists m € I° with

3)  0<e(m),

(4)  ¢|(m—1-1/b,m]N1I is strictly increasing and 1|[m, 0] is strictly decreasing,

(5) m < —1/(2b) and 0 < (¢t) for all t € [-1 — 1/(2b),m), or —1/(2b) < m and
P(m—1) =0,

(6)  ¥(t) > (m)(1 —b(t—m)) for all t € [m,m + 1/b]N 1.

Set D~ = D1 U D5, and D = D~ U (—D-x). Observe that ¢y € S for every ¢ € D.
For amap z: M — R and ¢ € R with [t —1 —1/(2b),t] C M define 2' : I — R by
x2'(s) =x(t+s) for all s € I.

PROPOSITION 2 (Entering D). Let to € R and g : [tg,00) X R — R be a continuous
function which satisfies (2.2.2) for all t >ty and § # 0, and assume
(7) alé] < |g(t,6)| < b|d| for all t >ty, d € R.

Let x : [to — 1,00) — R be a solution of equation (2.1.1) with x, € Sy,. Then all the
shifted restrictions xt, t > to + 2, belong to the set D.

Proof. 1. Let t > to + 2. Set 1 = x*. The restriction 1|[—1/(2b),0] is differentiable
with
W (s)l ="t +s)| =lg(t+s,x(t+s— 1) = alz(t + s — 1) = aly(s — 1)
for —1/(2b) <t <0, so that (1) holds.
2. Suppose z(t —1 —1/(2b))=0. Set z =t —1—1/(2b). Then z > to, and Proposi-
tion 1(ii) yields a'(z) # 0. If 0 < 2/(z) then 0 < 2/(s) for all s € [z,z+ 1) and 2/(s) <0
forz+1<s<z+2 Forselz+1,2z+1+1/b],

' (s)] < bla(s = 1) < bla(z + 1)1,
hence
xz(s) > x(z4+1)(1—b(s — (2 4+ 1))).
Therefore ¢ € Dy C D. In case 2'(z) < 0 one finds ¢ € —Dy C D.
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3. In case z(t —1 —1/(2b)) > 0 and 2'(s) < 0 for all s € (¢t —1—1/(2b),t) one has
Y e Dy CD.

4. Suppose z(t—1—1/(2b)) > 0 and 0 < 2/(s¢) for some sg € (t—1—1/(2b),t). Then
x'(t—1/(2b)) = g(t,xz(t—1/(2b) — 1)) < 0, and there is a zero m of &’ between ¢t —1/(2b)
and sg. Using (2.2.2) one gets x(m — 1) = 0. Observe that

m—1>t—-1-1/(2b)—1>to—1/(2b) > to — 1.

The hypothesis x;, € Sy, yields 0 <m — 1.

4.1. We prove z/(s) # 0 for all s € (¢t — 1 — 1/(2b),m): Suppose z'(my) = 0 and
t—1—-1/(2b) <mg<m. As above one finds z(mo—1) = 0 and 0 < mo—1. Proposition 1(ii)
implies

0 < |z(s)| < |z(mo)] for mp —1 < s < my.
It follows that for mg < s < mg+ 1/,
|2 (s)] < bla(s — 1)] < bla(mo))l,
and therefore
|z(s)| = [2(mo)[(1 = b(s — mo)).
Consequently, z(s) # 0 for mg —1 < s < mg+ 1/b. Condition (2.2.2) yields z/(s) # 0 for
mo < s <mg+ 1+ 1/b, contrary to z’(m) =0 and mo < m <t < mg+ 1+ 1/(2b).

4.2. Suppose 2'(s) < 0 for all s € (t —1 —1/(2b),m). By Proposition 1(ii), z'(s) < 0
for all s € [m —1,m) and z(s) < 0 for m — 1 < s < m. As before it follows that

z(s) <z(m)(1—b(s —m)) form <s<m+1/b,
and z(s) < 0 for m —1 < s < m+ 1/b. The last inequality implies
0<2'(s) form<s<m+1+1/b,

and one has ¢ € —Dy C D.
43. If2'(s) >0 for all s € (¢t — 1 —1/(2b),m), then ¢ € Dy C D.
5. Now it is obvious how to proceed in the remaining case z(t —1 —1/(2b)) < 0. m

COROLLARY 1. Let tg € R and g : [tg,00) x R — R be a continuous function which
satisfies (2.2.2) for all t > to and § # 0, and assume (7). If x : [tp — 1,00) = R is a
solution of equation (2.1.1) with x¢, € S then ' € D for all t >ty + 5.

Proof. Use Propositions 1(i) and 2. »

PROPOSITION 3 (Invariance of D). Let to € R and g : [to,00) xR — R be a continuous
function which satisfies (2.2.2) for all t > to and 6 # 0, and assume (7). If ¥ € D and
a solution x : [ty — 1,00) — R of equation (2.1.1) satisfy x;, = |[—1,0] then x°Tt € D.

Proof. 1. The restriction x%*1|[—1/(2b),0] is differentiable with
(@ FY ()] = |2’ (to + 1 + 1) > ala(to + )| = ala’F (¢ — 1)

for —1/(2b) <t <0, so that (1) is satisfied.
2. Suppose € D1, 0 < 9(0). Then 0 < z(tp—1/(2b)), and 2’(t) < 0 fortg < ¢ < to+1,
therefore ztot! € D; C D.
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3. Suppose ¢ € Dy, ¥(0) < 0. Let ¢ denote the unique zero of ¢ in I°. If —1—1/(2b) <
¢ < —1, then 0 < a/(t) for tg < t < o + 1, and x has a strict local minimum at to. For
to <t§t0-‘r1/b,

|2 (£)] < bla(t — 1)] < bla(to)]-
Hence
x(t) < z(tg)(1 — b(t — tg)).

It follows that 2fotl € —Dy € D. If =1 < ( < 0, then 0 < x(t) for tg — 1 <t < to+ ¢
and z(t) < 0 for tg + ¢ < t < tg. Therefore 2/(t) < 0 for to <t <to+1+¢, 0 < 2/(¢)
for to+1+ ¢ <t <tp+1, and z has a strict local minimum at ¢t + 1+ ¢ € (o, %0 + 1].
Observe that x is strictly decreasing on [tg — 1,t90 + 1 + ¢) and strictly increasing on
(to+ 1+ ¢ to+ 1], with 2(to + 1+ ¢ — 1) = ¢(¢) = 0. As before one finds

z(t) <z(to+1+O)A=-bt—(to+1+4+())) forto+1+¢<t<to+1+{+1/b,

and it follows that zto+! € —Dy C D.

4. Suppose b € Da, 0 < 9(0). Consider m € I° so that (3)—(6) hold. Then 0 < )(t)
for t € (m —1,0) NI, hence z/(t) < 0 for top <t <o+ 1.

4.1. If m < —1/(2b) and 0 < ¥(¢) for —1 — 1/(2b) <t < m, then

z(to —1/(2b)) = ¢(=1/(2b)) > 0,
and z is strictly decreasing on [to — 1/(2b), to], hence z®*! € D; C D.

4.2. If —1/(2b) < m and ¢(m — 1) = 0, then z is strictly increasing and positive on
[to — 1/(2b),to + m] and strictly decreasing on [tg + m, to + 1]. For to + m < ¢ < to,

a(t) =t —to) > p(m)(1 = b(t —to —m)) = a(to +m)(1 —b(t — (to +m))).
For tg <t <tg+m+ 1/b, we have t < ¢ty + 1 and
0> a/(t) = glt,alt — 1)) = g(t, vt — to — 1))
> =bip(t —tg — 1) = =bip(m) = —bx(to + m),

therefore
t

w(t) = 2(to) + | 2/ (s) ds > w(to) — ba(to + m)(t — to)
to
> z(to +m){(1 —b(to — (to +m))) — bt —to)}
= :E(t() + m)(l - b(t — (to + m)))
It follows that ato*t! € Dy C D.
5. Suppose ¥ € Dy, ¥(0) < 0. Consider meI° as in part 4. There is a unique zero
of ¥ in (m,0), and
(>m+1/b>—1,
0<y(t) for —1<t<(,
P(t) <0 for ¢ <t<0.

This implies '(t) < 0 for to <t <to+1+Cand 0 < a'(t) for to+1+¢ <t <to+1,
and m¢ = to+ 1+ ¢ € (to,to + 1) is a strict local minimum of z. The solution x is
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negative and strictly decreasing in (m¢ — 1, m¢] and strictly increasing in [m¢, me + 1.
For m¢ <t <m¢ +1/b,
|2 (t)] < bla(t — 1)] < blz(me)|.
Therefore
z(t) < z(me)(1 = bt — mg)).
The inequality m+1/b < ¢ < 0 yields m < —1/(2b). It follows that z is strictly decreasing
on the interval [to — 1/(2b), to], and one obtains z'° ™ € —Dy C D.
6. It is now obvious how to proceed in the remaining case ¢y € —D.. m

Set
a1 a2b—-1)
c(a,b) = %mln{z, T}

PROPOSITION 4. Let to€R and g : [tg,00) X R—R be a continuous function which sa-
tisfies (2.2.2) for all t > tg and § # 0, and assume (7). Lety € D andx : [t — 1,00) = R
be a solution of equation (2.1.1) with x, = ¥|[—1,0]. Then

c(a, b)|zso || < llwto41ll-
Proof (Compare the proof of Lemma 5 in [16]). 1. If tp <¢ <t <ty+ 1 and if
has no zero in [t — 1, — 1] then

(8) 2[|zto41]l = a(t’ —1) min |z(s)]
[t—1,t'—1]

since 0 < alz(s — 1)] < |g(s,z(s — 1))| for t < s < ¢ and

’

2w 1] 2 2(t) — 2(0)] = | [ s, 205 = 1) ds

t t'—1
=\lgGs,a(s = 1)) ds > a | |a(s)|ds.

The following cases are possible.
A. There is a strict local extremum m of = in (tg — 1, %o).
Al to <m+1/(2b).

A2.m+1/(2b) < to and |z(m)| = ||x, |-
A3. m+1/(2b) < to and |z(m)| < ||z, |-
B. The solution z is strictly monotone on (tg — 1,%g).
B.L [ (to)] = [|z4 |-
B.2. |z(to)| < ||zt || = |x(to —1)| = |¢p(—1)|, and there exists s € (—1—1/(2b), —1)

with [¢(=1)| > |¢(s)].
B.3. Ja(to)| < llag, [l = 2(to — D] = [ (=1)] < [¢(s)] for all s € [-1 —1/(2b), —1].

2. In case A.1 the properties of ¢ yield |z(to)| > |z(m)|/2 = ||z,]|/2. Therefore
|ztg+1ll = |z(to)] > ||zt ll/2. In case A.2 the properties of ¢ imply

[x(m)|/2 < |x(s)| for m < s <m+1/(2b),
and (8) yields
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a a a
2 > — i > = — .
el 2 55 min - fa()] = fla(m)] = |

In case A.3 the properties of ¢ imply that there is a zero of z in (m,tg), and ||z, || =
|(to)|. Therefore [|zy, 1] > |2(to)| = [t

3. In case B.1, ||zto41] = |2(t0)] = ||t |-

4. In case B.2 and z(ty — 1) > 0, it follows that x is strictly decreasing in (to — 1, o).
Furthermore, there exists m € (=1 — 1/(2b), —1] so that ¢¥(m) > (—1) > 0 and ¥ (u) >
P(m)(1 —blu —m)) for m < u < m+1/b. For to +m + 1/(2b) <t <ty +m + 3/(4b),
one obtains t € [tg — 1, o],

1 3
t—ty € [m+—,m+ @] C [to — 1, 0],

2b
and
z(t) =Yt —tg) > p(m) > P(=1) _ z(ty — 1) o
4 4 2
Using (8) one finds
1 z(tg—1 a
2|zl > a % = ﬁ”xtoﬂ

In case B.2 and z(tp — 1) < 0 the same estimate holds.

5. In case B.3 and 0 < z(ty — 1), as before, x is strictly decreasing on (tg —1,tg). The
function ¢ has no zero in [—1 — 1/(2b), —1]. Using (1) one finds that 1)’ has no zero in
[—1/(2b),0], and

to 0 0
1
x(to)—x<to—%>‘—’ | woa=] | wedsl= | Wl
to—1/(2b) —1/(2b) —1/(2b)

-1
a a a
Za | Js)lds 2 (-1 = gle(to = 1] = ]z, .
—1—1/(2b)
Therefore
a
lzel <la@)l (< e,

(o z)

20 )|
If the last inequality and |z(to)| < (a/(4b))||xt,|| hold then the fact that x is strictly
decreasing on (o — 1,%o) implies x(tg — 1/(2b)) > 0, and

or

a
el <

1 a 1
x(t) >x(to——> > E”It"” for to—lﬁtgto—%,

Using (8) one finds

1\ a
oyl 2 01 57 ) o

Altogether,

1\ a
lto1ll = al 1= 50 ) llat |
in case B.3 with 0 < x(tgp — 1). The same estimate holds in case B.3 with z(¢; — 1) < 0.
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6. Observe that

1 a a a? 1
b) =min<{ -, —,1,—, — (1 — )
c(a,b) mm{z’sb’ ’32b’8b< 2b>} -

It is also convenient to state here the following simple result.

PROPOSITION 5. Let tg € R and g : [tp,00) x R — R be a continuous function
which satisfies (2.2.2) for all t > tg and § # 0, and assume (7). For every solution
x:[to —1,00) = R of equation (2.1.1) and for every t € [to,to + 1],

el < (b + D)l -

Proof. Use
t
2(t)] = |w(to) + § g(s, (s 1)) ds
to
< gl +0(t — to) max |z(s)] fortg <t<tr+1. m
[to—1,i—1]

3.2. Vectors tangent to the attractor and to domains of adapted Poincaré
maps. Let y : R — R be a slowly oscillating periodic solution of equation (1.1.1) with
minimal period w > 2, monodromy operator ¥ and adapted Poincaré map P, : N, — H,
as in Subsection 2.4. The main result of the present subsection says that certain vectors
in the sets Ty A NTyN,, for ¢ close to yo, belong to a cone which contains the subspace
C, C Cy =TyN, and is disjoint from C. \ {0}. Fix reals a € (0,1), b > 1, so that

—b<etminf oy <e'maxf oy < —a,

and let D denote the set of functions ¢ : [-1 — 1/(2b),0] — C associated with a and b
as in the preceding section. Recall the decomposition C' = C. & Cs and the projection
ps : C — C onto Cs along C.

PROPOSITION 1. There exists a constant c(y) > 0 so that for every ) € D and ¢ € C
with

(1) P(t) =et'ot) for =1 <t <0,

we have

c@)l¢ll < llp>oll.

Proof. 1. Let n denote the smallest integer in [w, 00). We prove

L CL PP

1+5b
for all v € D and ¢ € C satisfying (1). Recall Y¢ = v,, where v : [-1,00) — R is the
solution of the variational equation along y with vy = ¢. The function x : [-1,00) D ¢ —

ettu(t) € R is a solution of equation (2.1.1) with
g(t,0) =elf'(y(t—1))d fort>0and d € R,
so that
dg(t,0) <0 forallt>0andd+#0,
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and
alé] < |g(t,0)] <b|§] forallt>0anddeR.
Proposition 3.1.3 yields 27 € D for all j € {1,...,n}. Proposition 3.1.4 yields
c(a,b)||z;|| < |lzj41|| forall j €{0,...,n—1}.
Therefore c(a, b)™||zo|| < ||zn||. By Proposition 3.1.5,
[zl < (b + D]zl
Use e "||@]] < ||zo]| and ||zw|| < e#“|lv, || to complete the proof.
2. The set M = {Y¢ : ||¢|]| = 1, and there exists ¢» € D with (1)} is contained in S,

according to Corollary 2.2.1, and M is compact. Part 1 of the proof shows that M is
bounded away from 0. Therefore M C S\ {0} = S. By (2.4.8),

0 < min |[p> ||
M

< inf{|lpsY | : ||¢]| = 1, and there exists ) € D with (1)}

=inf{||Yp>¢| : ||¢]| = 1, and there exists ¢ € D with (1)}

< ||V |[inf{|lp>¢] : ||¢]l =1, and there exists ¢ € D with (1)}.
Set

1 .
cly) = (4l min lp>¢ll. m

Recall the projection p, : Cy — Cy onto C, along C..

PROPOSITION 2. There exists an open neighbourhood NY of yo in Ny so that for every
differentiable curve v : J — C with |y| C AN H, and for every s € J with y(s) € NY
one has

Py(v(s)) € Ny,  Py(Py(v(s))) € Ny,
and the vector x = DPy?’(v(s))w’(s) € Tpa(y(s))A N Cy satisfies cW)lIxIl < llp«xl-

Proof. Choose an open neighbourhood N¥ of yg in N, so small that for every ¢ NY,
one has

Py(¢) € Ny, Py(Py(¢)) € Ny,
2 <7y(P)(¢)) <w+1 forj=0,1,2,
—b<elfl(x®(t—1)) < —a for 0 <t<3w+3.

Set
2
u="Y 7,(Pi(v(s))) € (6,3w +3).
j=0

Consider a differentiable curve v : J — C with |y| € AN Hy, and s € J with v(s) € NV.
Then

’}//(S) S T’y(s)A N T,Y(S)Ny = Tw(s)A NCy.
Using (2.4.11) one finds that x = DPJ(v(s))7'(s) belongs to Tps(,(s))A N Cy. Set @ =
x(y(s)). According to (2.4.13) there exists r € R so that

X = D2F(u,v(s))Y'(s) — ral,,
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or Y = vy, with the solution v : [-1,00) — R of the variational equation (2.1.2) along x
given by the initial condition vg = 4/(s) — raj. Proposition 2.3.4 yields vy € S.
Assume x # 0. Then v, # 0, hence vy # 0, and consequently vy € S\ {0} = S. The
function z : [—1,00) 2 t +— etto(t) € R is a solution of the equation
Z(t) = e f/(a(t — 1)zt — 1)
with zg € S. Define g : [0,00) x R — R by

(t,6) = et f'(z(t —1))d for 0 <t <3w+3andd € R,
KEOT= et (2(3w+3—1))§ for 3w+3<tanddeR.

Then ¢ is continuous, and (2.2.2) for t > 0 and § # 0 and (3.1.7) are satisfied. The
solution d : [—1,00) — R of equation (2.1.1) with dy = zg € S satisfies d* € D, according
to Corollary 3.1.1. For —1 <t < 3w+3, d(t) = 2(t). In particular, z* € D. Proposition 1
gives

c(@)loull < llp>vull-
Use (2.4.10) and x = v,,. =

4. Transversals on the attractor and smoothness

4.1. A sufficient condition for smoothness

PROPOSITION 1. Let ¢ € A.

(i) If there exist t > 1 and a C*-curve o : (—1,1) — C with |a| C A, a(0) = z(¢) 4
so that o/(0) and z(¢)"_, are linearly independent then pop € (pA)°, and

1 there is an open neighbourhood N of po in (pA)° so that a|N is C*-smooth.
( P 9 p p

(ii) If ¢ = y° for some s € R, and if there exist t > 1 and a C'-curve o : (—=1,1) — C
with «([0,1)) C A, a(0) = y°_, so that o/(0) and (y°_,)" are linearly independent then

(2)  there are an open neighbourhood N of pé in L and a Ct-map ay : N — Q with
a|N NpA =an|NNpA.
Proof. 1. Proof of (i): Set z = x(¢). Let € € (0,¢ — 1). The C'-map
h:(—ee)x(=1,1)3 (s,u) — pF(t+s,a(u)) € C
satisfies
Dn(0,0)(s,r) = pD1F(t,x_¢)s + pDaF (t,x—4)Da(0)r = pDo F(t,x_)[sz’_, + ra’(0)]

for all real s, r. Using Proposition 2.3.4, the inclusion Do F(t,z_;)S C S=SU{0}, 0¢pS,
and linear independence of 2/, and /(0) one finds that Dh(0,0) is injective. It follows
that there exist 6 € (0,¢) and an open neighbourhood N of p¢ = h(0,0) in L with
h((—=6,8) x (—6,48)) = N so that there is a C'-inverse h' : N — R? of h|(—4, ) x (=5, 6).
The relation |o| C A and the invariance properties of A yield N C pA. For every x € N,

X = h(hy' () = pF(t+ (hy' (0)1, al(hy' (X))2)),



42 H.-O. Walther and M. Yebdri

and F(...) € A. Consequently,
a(x) = ¢F (t + (hy' ())1. a((hy' (0))2)),

and it becomes obvious that a|N is C'-smooth.
2. The proof of (ii) is analogous and leads to a C''-map

an i N 3 x = qF(t + (hy' 00, al(hy'(X))2)) € Q
which coincides with ¢ on N NpA. =
COROLLARY 1. Let ¢ € A\ {0}. If there exist t > 1 with px(d)_; € (pA)° and an

open neighbourhood Ny of px(¢p)_; in (pA)° so that a|Ng is Ct-smooth then pp € (pA)°,
and there is an open neighbourhood N of p¢ in (pA)° so that a|N is Ct-smooth.

Proof. Set ¢ = xz(¢)_;. Observe vy € A\{0}. By (2.3.2), pto’ #0. Choose x € L\Rpy’
and § > 0 with py 4+ (—6,0)x C Ny. Consider the curve

a:(=1,1)3r e p+rdx +a(py +rdx) € C.
Apply Proposition 1. =

4.2. Smoothness at wandering points

THEOREM 1. Let p€ A\ {0} be such that x(p) is not periodic. Then pp € (pA)°, and
there exists an open neighbourhood N of p¢ in (pA)° so that a|N is Ct-smooth.

Proof. 1. Set z = z(¢).

2. Supposee a(x) is the orbit in C of a slowly oscillating periodic solution y : R — R.
Recall the space C; = C, @ C< and the hyperplane H, = yo + C,. Consider the Poincaré
map P, : N, — H, associated with y. Proposition 2.4.6 shows that there is a strictly
increasing sequence (¢;)__ . in (—oo, —1) with t; — —o0 as j — —o0 so that the points
¢ = xt;, j € —Np, form a trajectory of P, which converges to the fixed point yo as
j — —oo. Corollary 2.5.2 yields that either (2.4.4) holds, or (2.4.5) holds with A, > 1.
Proposition 2.5.3(ii), (iii) implies that there exist an open neighbourhood C., of 0 in Ci,
a Cl-map w : Cy, — C< with w(0) =0, Dw(0) =0, and

W =yo+{x+w(x): x € Cux} C Ny,

and an integer k£ < 0 with ¢; € W for all integers j < k. Furthermore, there is an open
neighbourhood Ny of yy in N, so that

P,(W N Ny) CW.

Corollary 2.4.2 yields € > 0 with (—¢, €)@, C C.. so that the restriction of P, to the open
subset W. = {¢ € W : ||p.(¢ — yo)|| < €} of W is injective. The C-curve

C : (_878) 385 y0+8¢* +w(s¢*) S C
defines a homeomorphism onto We. There exists § > 0 with
Py(¢((=6,6))) € We = (((—¢,¢)),

and there is an integer k1 < k with ¢; € (((—46,0)) for all integers j < ki. Observe that
¢ (¢j) — 0 as j — —oo, and ¢; # yo for all integers j < 0, since x is not periodic.
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There are integers j < k; and n < j so that the preimages

S5 = Cil(d)j)a Sn = Cil((bn) in (_57 5)
satisty

sign(s,) = sign(s;) and 0 <|s,| < |s;l;
Lemma 2.5.1 guarantees that for each s € [min{s;,0}, max{s;,0}] = I there is a trajec-
tory (¢m)9,—_ oo of P, with ¢9 = ((s) and ), — yo as m — —oo. Choose §; > 0 with
(8n — 61,8, +61) C I. The Ct-curve

a:(=1,1)3 s ((sy, +s61) € C
satisfies
a(0) = ((sn) = én = @1,
Recall t,, < —1. Propositions 2.4.6 and 2.3.1(i) combined yield |a| C A. The vectors
a'(0) = 610 + Dw(s,¢.)d1¢s € (C \ {0}) + C< C C,
and
"E;n = DlF(Ty(‘/L‘tn*l)7 xtnfl)]‘ € C \ CU

are linearly independent. Apply Proposition 1.

3. If a(x) is not the orbit in C' of a slowly oscillating periodic solution then a(x) = 0.
Corollary 2.5.1 gives ug > 0 in this case.

4. In case a(x) = {0} and ug > 0, Proposition 6.3 of [20] shows that ¢ is contained in
the submanifold W = F ([0, 0o) x Wy) of Theorem 8.1 of [17]. W\ {0} consists of segments
of bounded slowly oscillating solutions = : R — R, hence W C A. The set pWW is open in
L, and there exists a C'-map w : pW — Q with

W= {x+w(x):xecpW}
Consequently, p¢ € pW C pA, and the restriction a|pW = w is C'-smooth.

5. In case a(z) = {0} and uy = 0, consider the center manifold W¢ of Proposi-
tion 2.5.1(ii) and the neighbourhood U of 0 in C', and the one-dimensional C'*-submanifold

X=WNnHNUC KU{0}U(-K)

of Proposition 2.5.2. The equation TypX = L N H implies that there exist a complemen-
tary subspace E¢ in C, € > 0, an open neighbourhood V of 0 in U, and a C'-map
v:{xeLNH:|x| <e} = E° with v(0) =0, Dv(0) =0, so that

XNV={x+v(x):x€LNH, |x|| <e}.
Choose a unit vector 1 € L N H. The C'-curve
Ci(=ge)ar=rp+o(ry) el

defines a homeomorphism onto X N'V. The restriction P|X NV is injective, and there
exists 0 € (0,¢) so that

P(¢((=0,9))) cWN(KU{0}U(-K))NV Cc XNV =(((—¢,¢));

there is an open neighbourhood Vs of 0 in V' with {((—¢,4)) = X N Vs. The property
(2.5.1) of We€ yields t < 0 with x5 € W¢ for all s < ¢t. Proposition 2.2.4(ii) shows that
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there is a strictly increasing sequence (t,,)0__
the sequence (x4, )°

n=—oo

follows that there is an integer n < 0 with ¢, < —1 and
z, eWNKNVs C XNVs=(((-9,0))

for all integers j < n. Set r; = (~!(axy,) for all integers j < n. Recall that z, # 0
for all s € R. There exist integers j < n and k < j with sign(ry) = sign(r;) and
0 < |rg|] <|rj| < ¢é. Lemma 2.5.1 shows that for every

r € I = [min{r;,0}, max{r;,0}] C (=6,0)

in R with t,, — —00 as n — —o0 so that
is a trajectory of P in K. Of course, z;, — 0 as n — —oo. It

there exists a trajectory (¢m)’ of P with ¢, = ¢{(r) and ¢, — 0 as m — —o0.

m=—o0

Choose 61 > 0 with (ry — 1,7, + 61) C I. The C'-curve
a:(-1,1)>r—((r +1rd) €C

satisfies a(0) = ((rx) = x,. Recall ¢ < t, < —1. Propositions 2.2.4(ii) and 2.3.1(i)
combined yield |a| C A. Since |a| C X C H, we have o/(0) € H. The relations

o' (0) = D¢(rk)d1 = 619 + Du(rgp)dip, 0 +# 619 € LN H, Du(riap)d19 € E°

yield o/(0) # 0. The simplicity of the zeros of the bounded slowly oscillating solution z
(see Proposition 2.2.3) and zy, € K give z}, (—=1) = 2'(t, —1) # 0, or z, ¢ H. It follows
that o/(0) and =, are linearly independent. Apply Proposition 1. m

COROLLARY 1. Let y be a slowly oscillating periodic solution of equation (1), with
orbit parametrization 7.

(i) If for every x € int(pon) \ {0} the solution z(x + a(x)) is not periodic then the
restriction a|(int(pon) \ {0}) is C*-smooth.

(ii) If y is another slowly oscillating periodic solution of equation (1), with orbit
parametrization 1 and |p o1 C int(p on), and if for every x € ext(p o) Nint(p on)
the solution x(x + a(x)) is not periodic then the restriction a|(ext(p o 7) Nint(p o 7)) is
Cl-smooth.

5. Curves on the attractor emanating from periodic orbits
and connecting the stationary point to a periodic orbit

5.1. From lines in the plane L to curves on the graph A which are transver-
sal to the flow. This subsection contains minor modifications of results from Chapter 8
of [20] which prepare the construction of curves on A in the next subsections. The curves
will pass through or begin at periodic orbits, or connect the stationary point to a periodic
orbit. They will be needed for the application of Theorem 4.2.1 and Corollary 4.2.1.

PROPOSITION 1. (i) Let o € pA\{0}, t € R, and let Z be a closed hyperplane in C. If
Fa(t,0+a(o)) € C\ Z then there exist an open neighbourhood N of o in L, e > 0, and
a continuous map o : NNpA — (t—e,t+¢€) with o(0) =t such that for every g € NNpA
and s € (t —e,t+¢),

Fa(s,0+a(0)) € Fa(t,o+a(p)) + Z is equivalent to s = 0c(0).
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If in addition t > 1 then there exist N,e, and o as before, and there are an open neigh-
bourhood V of o+ a(p) in C and a C*-map G : V — (t —e,t +¢) with 5(o + a(o)) =t
so that

o(p) =0(o+a(o)) for every g € N NpA.

(ii) Let ¢ € A\ {0}, t € R, and x € L\{0}. If p[Fa(t,¢)'] € L\ Ry then there exist
an open neighbourhood U of ¢ in C, e > 0, and a continuous map o : gﬂA — (t—e,t+e)
with o(¢) =t so that for every ¢ € UNA and s € (t—e,t+e), pFa(s, ¢) € pFa(t, ¢)+Rx
is equivalent to s = o ().

Proof. Proceed as in the proof of Proposition 8.2 of [20]. In case F'(t, o+a(p)) € C\Z
and t > 1, construct ¢ as the composition of a C'-map & from an open neighbourhood
V of o+ a(p) into (t — e,t + &) for which

peV, |s—t|<e, Fa(s,d) € Falt,o+al0) +Z

is equivalent to s = o(¢), with the homeomorphism p(ANV) > g— g+a(p) € ANV. m

COROLLARY 1. Let o € pA\ {0}, t € R, x € L\ {0}, and let Z be a closed hyperplane
in C such that

pllo+a(e)] € L\Rx and Fa(t,o+a(0) €C\ Z.

Then there exist open neighbourhoods N of o in L and U of Fa(t,0+ a(p)) in C, e >0,
and a continuous map o : N NpA — (t —e,t +¢) with o(9) =1t such that the map

h:NNpAN(o+Rx) Do+ Fa(o(d),0+a(2)) €C

defines a homeomorphism onto U N AN (Fa(t, 0+ a(p)) + Z). If in addition t > 1 then
there exist N,U, e, and o as before, and there are an open neighbourhood V' of o+ a(p)
in C and a Ct-map G :V — (t — &,t +¢) with

o(0) =0c(o0+a(g)) for every g € N NpA.

5.2. Arcs emanating from periodic orbits. Let y : R — R be a slowly oscillating
periodic solution of equation (1.1.1) with minimal period w > 2 and orbit parametrization
7 :[0,w] 3t y, € C. This subsection contains the construction of curves on A which
begin or end at the periodic orbit |n| and which are C*-smooth provided they do not
intersect other periodic orbits. Consider a closed hyperplane Z in C with y, € C'\ Z. By
(2.3.2), py, # 0. Recall Proposition 2.1.1. Choose x € L so that x and py{ are linearly
independent, and

py + (0,5)x Cint(pon)\ {0} for some s > 0.

An application of Corollary 5.1.1 to ¢ = pyo, t = w, and Z yields open neighbourhoods
N of pyg in L, U of yg = y, in C, a map o, and a homeomorphism h mapping the set
NNpAN (pyo+Ryx) onto the subset UNAN(yo + Z) of A. For s € R with pyo+sx € pA
define

bs =pyo + sx +alpyo +sx) and z¥) = 2(g).
There exists d; > 0 so that
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pyo + (0,6i]x C (int(pon) \ {0}) NN, pyo + [=6i, 0)x C ext(pon),
x and pg., are linearly independent for every s € (0, &;]
(use the continuity of the map A 3 ¢ — ¢’ € C guaranteed by Proposition 2.3.3), and
D1F(6(¢s), ¢s)1 = h(pyo + sx)' € C\ Z for every s € (0,5;].
The continuous map d : [0,6;) — C given by
d(S) = h(pyO + SX) = FA(8(¢S)= ¢s)
is injective and has a continuous inverse d—! : d([0,;)) — R. In case
(1) [nl 0 0% =0,
or equivalently, |p o n| C int(p o n°), there exists . > 0 so that
Yo + (=3¢, 0)x C ext(pon) Nint(por”), pyo + (0,0.)x C int(pon),
x and p@’, are linearly independent for every s € (—d,0),
and
D1F(5(¢s), ¢s)1 = h(pyo + sx) € C\ Z for every s € (=0, 0).
The continuous map d, : (—d.,0] — C given by
de(s) = h(pyo + sx) = Fa(0(ds), ds)
is injective and has a continuous inverse d_ ! : d((—de,0]) — R.

PROPOSITION 1. (i) For every § € (0, ;] there exists an open neighbourhood Us of yo
in C with
d((0,9)) ={ocUsNAN(yo+Z):pp €int(pon)}.
If no solution £(*), 0 < s < 8, is periodic then the restriction d|(0,8) is C*-smooth, and
Dd(s) #0 for all s € (0,0).
(i) Suppose (1) holds, and § € (0,0.]. Then there exists an open neighbourhood Us of
yo in C with
de((=6,0)) ={op € Us N AN (yo + Z) : pg € ext(pon)}.
If no solution z(9), —§ < s < 0, is periodic then the restriction d|(—6,0) is C'-smooth,
and Dd.(s) #0 for all s € (—06,0).
Proof. 1. Let § € (0,9;]. There is an open neighbourhood Us of yo in U with
h(N NpAN (pyo + (=6,8)x)) = Us N AN (yo + 2).
Let ¢ € UsN AN (yo + Z) with po € int(p o n). By Proposition 2.3.5, px(¢); € int(pon)
for all ¢ € R. There exists s € (—4,0) with
o= h(pyO + SX) = FA(8(¢S)= ¢s)

It follows that yo + sy = pos € int(p on). Consequently, s € (0, 9).
Conversely, let s € (0,d). Then pgs = yo + sy € int(p o n), and therefore pd(s) =
pFA(G(hs), ¢s) € int(p o n), with

d(s) = h(pyo +sx) € Us N AN (yo + 2Z)
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2. Let § € (0,8;] and suppose no solution 2(*), 0 < s < 4, is periodic. Theorem 4.2.1
and the last statement in Corollary 5.1.1 combined imply that d|(0,d) is C*'-smooth.
Assume Dd(s) = 0 for some s € (0,6). The chain rule and the formula for the derivatives
of intersection maps in Subsection 2.1 give

0 = pe D2 F(0(¢s), ¢s)[x + Da(pyo + sx)x]

where pe : C — C is the projection onto Z along { = D1F (6 (¢s), ¢s)1. The formula for
pe yields

DyF(G(¢s), ¢s)Ix + Da(pyo + sx)x] € RE = RD2F(5(6s), ¢s) -

Because of the injectivity of DoF (c(¢s, ¢s) one finds x + Da(pyo + sx)x € R¢., which
implies a contradiction to the fact that y and p¢’, are linearly independent.
3. The proof of (ii) is analogous. m

5.3. Smooth ends at periodic orbits. This subsection prepares the proof that
the map a is smooth at projected periodic orbits. Let y : R — R be a slowly oscillating
periodic solution of equation (1.1.1) with minimal period w > 2 and orbit parametrization
7 as in the preceding subsection. For

Z=0C,=C.aC,

consider the maps d and d. constructed in Subsection 5.2, and recall the properties of
the adapted Poincaré map P, : Ny, — H,, Hy = yo + C,.

PROPOSITION 1. There exists 6; € (0,9;] with P,(d((0,6;))) C d((0,6;)). If (5.2.1)
holds then there exists 6y € (0,d.) with

Py(de((=05,0))) C de((=0e,0))-

Proof. Let 6 = §;. Consider a neighbourhood Uj of yo in C' as in Proposition 5.2.1(i).
There exist an open neighbourhood U of yo in Us with Py(UNH,) C Us, and §; € (0, ;)
so that d([0,6;)) C U. For 0 < s < §;, d(s) € UN AN Hy, and pd(s) € int(p o n).
Therefore Py(d(s)) € UsN AN H, and pP,(d(s)) € int(p o 7). Proposition 5.2.1(i) yields
P,(d(s)) € d((0,6;)). The proof of the second statement is analogous. m

The transformed map
Pj:(0,85) 3 s+ d~1(Py(d(s))) € (0,6)

is continuous. Corollary 2.4.2 imples that it is injective. Note that P;(s) — 0 as s — 0.
It follows that P; is strictly increasing.
If (5.2.1) holds then also the transformed map

Py (=87,0) 3 5 = . (P,(de(s))) € (~5..,0)

is continuous, injective, and strictly increasing, with Pr(s) — 0 as s — 0.

The next two propositions relate the attraction and repulsion properties of 0 € R for
the interval maps P; and Pr to the smoothness of d and d. and to the stability properties
of the fixed point gy of P,. Attraction implies smoothness for restrictions of d and d. to
open intervals with endpoint 0.
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The main result of the present subsection is that in the cases of attraction the nor-
malized tangent vectors
1 1
d'(s) de(s)
lld’(s)l

[EACH]
have limits at s = 0, i.e., at the periodic orbit.

PROPOSITION 2. (i) If

(1) 0 €(0,0;) and Pj(s)<s forall se(0,9)

then the restriction d|(0,6) is Ct-smooth, and Dd(s) # 0 for all s € (0,9).
(i) If

(2) for every s € (0,6;) there exists s € (0,s) with s < P;(3)
then every neighbourhood of yo in Ny contains a trajectory (vn)S__ .o of P, with pi, €

int(p on) for all integers n < 0.
(iii) If there are s € (0,0;) and a trajectory (n)5o, of P, with o = d(s) and
U — Yo as n — oo then there exists § > 0 with property (1).

Proof. 1. Proof of (i): In view of Proposition 5.2.1(i) it remains to exclude the
possibility that for some s € (0,d) the solution (%) is periodic. Assume the periodicity.
The solution z(d(s)) is a translate of z(*), hence periodic. Property (1) implies that there
is a trajectory (s, )52 of P; with sp = sand s,, — 0 asn — oo. The trajectory (d(sn))5,
of P, tends to yo as n — oo, and all d(s,,) belong to the compact orbit {z(d(s)), : t € R}.
It follows that yo = x(d(s)); for some ¢ € R, and y = z(d(s))(t + -). In particular,
d(s) =y—¢ € |n]. As 0 < s < §j, d(s) € N,. Proposition 2.4.4 yields d(s) = yo, and one
arrives at s = d~1(yo) = 0, contrary to s € (0, 9).

2. Proof of (ii): Let N be a neighbourhood of yy in N,. Choose § € (0,0;) with
d((0,9)) € N. If there is a fixed point s € (0,d) of P; then the fixed point d(s) of P,
in N determines the desired trajectory. In the remaining case one obtains s < P;(s) for
all s € (0,9), and each s € (0,6) determines a trajectory (s,)%___ of P; in (0,8) with
so = s and s, — 0 as n — —oo. The points d(s,) form a trajectory of P, in N with
pd(sy) € int(p on) for all integers n < 0.

3. Proof of (ili): The hypothesis implies pi,, € int(p o n) for all integers n > 0.
According to Proposition 5.2.1(i) there is an open neighbourhood Us; of yo in C' with

d((0,65)) ={v € Us; NANH, : py € int(pon)}.
It follows that there exists k& € N so that v, € d((0,d;)) for all integers n > k. The
preimages s, = d~ (), n > k, form a trajectory of P; with s, — 0 as n — oo.
Furthermore, s,,+1 < s, for all integers n > k since otherwise the fact that P; is increasing
would contradict lim,, o S, = 0.

Set 6 = si. Let s € (0,0) be given. There is an integer n > k with s,11 < 8 < sp.
Consequently, Pj(s) < Pj(sn) = sp+1 < 5. m

PROPOSITION 3. Suppose (5.2.1) holds.
(i) If
(3) 0€(0,05) and s< Ps(s) forall se (—06,0)
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then the restriction d.|(—9,0) is C'-smooth, with Dd.(s) # 0 for all s € (=4,0).
(i) If

4) for every s € (=dy7,0) there exists 5 € (s,0) with P;(5) <3§
then every neighbourhood of yo in Ny contains a trajectory (vn)S__ .o of P, with pi, €

ext(pon) for all integers n < 0.
(ili) If there are s € (—=6,0) and a trajectory (¢¥n)22y of P, with 1o = d.(s) and
U — Yo as n — oo then there exists § > 0 with property (3).

Proof. Analogous to the proof of the preceding proposition. m

The result on convergence of tangent vectors mentioned before is based on the a-priori
estimate c(y)|x|| < [[p«x|| of Proposition 3.2.2.

PROPOSITION 4. (i) Suppose (1) holds for some § > 0. Then

(5) d'(P;(s)) € RDP,(d(s))d'(s) for all s € (0,0),
and there exists d,. € (0,0) with
(6) clld' ()| < lpd'(s)]| for all s € (0,0.).

(ii) If (5.2.1) holds and if (3) holds for some 6 > 0 then
&,(Py(s)) € RDP, (du(s))di(s) for all s € (=5,0),
and there exists 0. € (0,0) with
(7) cW)llde(s)]| < llpde(s)l| for all s € (=6s,0).

Proof. 1. Suppose (1) holds for some ¢ > 0.

1.1. Let s € (0,0). Set s1 = P;(s). Then 0 < s; < s < 0. There exists € > 0 so
that A = d((s1 —&,s1 4 €)) is a one-dimensional C"'-submanifold of C, with Ty, A =
Rd'(s1). P; maps a neighbourhood I of s into (s1 —¢, s1 +¢). Therefore (Pyo (d|I))(I) C
A, Py(d(s)) = d(s1), and DP,(d(s))d'(s) € Ty(s,)A. Using d'(s) # 0 and Corollary 2.4.2
one finds DP,(d(s))d'(s) # 0, and (5) follows.

1.2. Proof of (6): Choose a neighbourhood NV of yy in N, as in Proposition 3.2.2,
and e € (0,6) with d((0,e)) € NY. By (1), P;((0,¢)) C (0,¢), and P3((0,¢)) = (0,4x)
with 0. = P}(e) € (0,9).

Let s € (0,d,). There exist sg, s1, 2,53 in (0,¢) with s = s3 and sp41 = P;(sg) for
k €{0,1,2}. Property (5) shows that there are rg,r;, 72 in R\ {0} so that

d'(sk+1) = e DPy(d(sk))d (si) for k € {0,1,2}.
The chain rule yields
d'(s) = d'(s3) = rar1roD(Py)* (d(s0))d' (s0).
Set r = rory7rg. Proposition 3.2.2 gives
cW)ld ()] = Irle) | D(Py)* (d(s0))d (so)l| < |r] - [lp«D(Py)*(d(s0))d (s0)|| = [P+’ ()lI-

2. The proof of assertion (ii) is analogous. m
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For ¢ € Cy\ C<, i.e., p.® # 0, define the inclination with respect to the decomposition

Cy=C.®Cy by
@) = p=¢ll/lIp«3ll.
Note that in case (1) holds for some § > 0, Proposition 2(i) and (6) combined imply
0 # pid'(s) for 0 < s < ..
If (5.2.1) holds and if there exists § > 0 with property (3) then Proposition 3(i) and (5)
combined yield
0 # pud.(s) for —d, <s<0.

PROPOSITION 5 (Inclination lemma). (i) Suppose (1) holds for some 6 > 0. Then

there exists 6, € (0,0) with
u(d'(sg)) — 0 asn— oo

for every sequence ($5,)22 in (0,d,) with s, — 0 as n — oo.

(i1) Suppose (5.2.1) holds, and there exists 6 > 0 with property (3). Then there is
0« € (0,0) so that

u(d.(sp)) =0 asn— oo

for every sequence ($,)22 in (—04,0) with s, — 0 as n — 0.

Proof. 1. Suppose (1) holds for some ¢ > 0.

1.1. Consider 0, € (0,6) as in Proposition 4(i). Let (s,)22, be a sequence in (0, d,)
with s,, — 0 as n — oo.

1.2. Set Ay, = DP,(yo). Then A,Cc C C., and for all ¢ € C., Ayp = M@, with
A« = 1 in case (2.4.4) holds. Proposition 2.4.5 shows that there exists 8 € (0, min{1, A.})
with |A| < 8 for all A in the spectrum of the map Ay« : C« 3 ¢ — Ay¢ € Cc. There
exist a norm || - ||, on Cy and ¢; > 0, ¢z > 0 with

cillglly < 191l < callglly, and  [[Ayglly < Bllolly
for all ¢ € C<. For ¢ € Cy, with p.¢ # 0 set

ty(8) = p=8lly/Ip«olly-

The nonlinear part
R:Ny—yo3 ¢ Py¢+yo) — Ay¢ —yo € Cy
of P, at yo is C'-smooth and satisfies R(0) =0, DR(0) = 0, and DP,(¢) = A, ¢ + R(¢)
for all ¢ in the open neighbourhood N, — o of 0 in C,,. Set
Sl e
cy) «a

where [|B||, = supj4), <1 [[B&|ly for every continuous linear map B : C, — C,,. For
¢ € Ny —yo and ¢ € Cy, with p.1p # 0 and (1)) < ¢ one finds

Ip=DPy(¢+yo)¥lly < P~ Ay¥lly + P~ DR()lly (1 + c)llpstlly
= |14y~ [ly + [P=DR($)lly (1 + c)[p+ ]l
< Blp=vlly + IP=DR(&)lly (L + c)lIp«2lly
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and

1+ DPy (¢ +y0)¥lly = Allptblly = ([P« DR(D) |y (1 + )Pt lly
= (A = Ip-DR()[ly (1 + ))lIptlly-

1.3. Choose ag € (0, 6x). Then P;((0,a0)) C (0,a0), and there is a strictly decreasing
trajectory (an)ie, of P; in (0,9.) with a,, — 0 as n — co. Choose By € (8/A+,1) and
no € N such that for all s € (0, an,],

B
0 .
X DR —gol,A+ o ~

For integers n > ng set

o oy DR —w)l (0 +0)
o A — D DR((S) — y0) [y (1+ )

Then 0 < g,,41 < &, for all integers n > ng, and &, — 0 as n — oo.
1.4. Claim: For every € > 0 there exists an integer n. > ng with

ty(d'(s)) <e forall s € [ant1,an|,n > ne

Proof: Let € > 0. Choose integers m. > ng and k. > 1 with
1

Em——r

1—05o

Bhe < g for all integers k > k..

€ .
< 3 for all integers m > m.,

Set ne = me + ke. Then n. > 2. Let s € [an+1,an],n > n.. Recall that P; is strictly
increasing, with [ag42, ag+1] = Pj([ag+1, ax]) for all integers k > 0. It follows that there
exist t, € [ay41,a,] for v € {0,...,n} with s = ¢, and t,4+1 = P;(t,) for all v €
{0,...,n —1}. Hence
d(ty4+1) = P,(d(t,) forallve{0,...,n—1}.

According to (5) there exist rg,...,7,—1 in R\ {0} with

d (ty41) = r,DP,(d(t,))d (t,) forallv e {0,...,n—1}.
The inequality (6) yields p.d’'(t,) # 0 and

<d'(t, <|Illd’ (t.,
oty = P I e
[« (t0)ly [p«d' ()|
for all v € {0,...,n}. For every v € {mg,...,n—1}, s, < ay < am, < an,, and the
estimates in part 1.2 of the proof yield

Ly(dl(twrl)) = Ly(DPy(d(tV))d/(tV)) < ﬁOLy(dl(tu)) + &
It follows that
Ly(d/(s)) = Ly(d/(tn)) < ﬁgime Ly(d/(tms)) +én—1+eEn—2B0+ ...+ Em, gilima
< Byt em g <<

— Bo

1.5. Let € > 0. Consider k = n.,./., as in the preceding claim. There exists v € N so

o

that for all integers n > v,

0<sp,<ag, Sp€ (axt1,as] forsomer >k,
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and

mw%»g§?¢4@0)<a

2. The proof of assertion (ii) is analogous. m

Suppose now that (1) holds for some 6 > 0. Then the trace d((0, d)) is reparametrized
by arclength using the C''-transformation
v:(0,0)3s— | [ld(w)]dueR.
5/2

Obviously, v'(s) > 0 for all s € (0,d). The range R = v((0,4)) is an open interval, and
the C'-curve

0:Ror—dvt(r)ecC
has the following properties:

o(R) =d((0,8)) C{p€ A:pp €int(pon)},
lo'(r)| =1 forallreR,
p«0' (r) #0 forall 7 € R with r < v(é,),

where 9, is given by Proposition 4(i), and
o(r) —yo and «(o'(r)) = u(d' (v (r))) = 0 asr — infR.

COROLLARY 1. There exists k € {0,1} with o'(r) — (—=1)*¢. as r — inf R, and R is
bounded from below.

Proof. 1. The continuous map

(inf R, v(8,)) 2 Hp*@’(T) € {¢u, —0:}

1
" e @)
is constant. Let ¢ denote its value. For inf R < r < v(dy),
1
e ()]

1or) — ] = ] 40 et ()| < 1) = e O] + ]1 ]np*g’mn

= p=d' (Nl + lllp«’ (M = ' (M| < 2[p='(7)]
= 2u(d'(")llp-2" (Il < 2e(2" (")) lIp-1I,
and it follows that ¢'(r) — ¢ as r — inf R.

2. Choose r¢ € R such that for r € (inf R, 7o}, ||o(r) — yol| < 1 and ||o'(r) — ¢| < 1/2.
For such r,

2> o) - atroll = || § | = | | oas]| - || § @' 9) - 0y s

To To

o r || [ )~ 0)s]| 20—~ Liro ),
H )

To

orr>ro—4. m
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If (5.2.1) holds and if there exists 6 > 0 with property (3) then the trace d.((—d,0))
is reparametrized using the C'-transformation

ve: (=6,0)3 s | [d(w]ducR
~5/2
and the open interval R, = v.((—6,0)); the Cl-curve g. : R. > 7 — d.(v;1(r)) € C
satisfies
0e(Re) = de((=0,0)) C {¢ € A:po € ext(pon)},
lloL(r)| =1 forallr € R,
pe0.(r) #0 for all r € R, with ve(d,) <,
d. given by Proposition 4(ii),
0(r) =0 and (0 (r)) = (d(v71(r)) = O as T — sup Re.

COROLLARY 2. There exists m € {0,1} with o,(r) — (=1)"¢. as r — sup R., and

R is bounded from above.

Proof. Analogous to the proof of the preceding corollary. m

5.4. A curve on A connecting 0 in K to a periodic orbit. The subsequent
construction will be used in the proof that the map a is smooth in a neighbourhood of
the projected stationary point 0 € L. The general hypotheses throughout this subsection
are that there is a slowly oscillating periodic solution y : R — R of equation (1.1.1), with
minimal period w > 2 and orbit parametrization 7, so that

(1) yo € K, and no solution x(¢), 0 # p¢ € int(p on), is periodic,
and that
(2) for each x(¢), 0 # ¢ € A, the zeros are not bounded from above.

Consider the set

X={peANH:¢(0) 20, p$ € int(pon)U|pon|}.
Using Proposition 2.3.1(iii) and equations (2.3.3) one finds
X={peANK :p¢ € int(pon)U[pon|}u{0}
={¢pe ANK :pé € int(pon)}U{0,y0},
and parts (iv) and (v) of Proposition 2.3.1 in combination with Proposition 2.3.5 show

that the return map P defines a homeomorphism of the compact set X onto itself.
For

Xi={p€e ANK :pp €int(pon)}

one finds

Xi={pc ANH:0<¢0), pp €int(pon)}
and
3) P(X;) = Xi.

PROPOSITION 1. The set X; is a one-dimensional C*-submanifold of C.
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Proof. Consider the inclusion map I : {¢ € H : 0 < ¢(0)} > ¢ — ¢ € C and the

set A; ={dp€A:0+#pp €intpon)} ={x+a(x):0# x €int(pon)}, which is a
2-dimensional C''-submanifold of C' by Corollary 4.2.1(i). Obviously,

and in view of Corollary 17.2 of [1] it remains to show that I and X; are transversal, i.e.,
for every ¢ € X; the preimage

DI(¢) "TrgyAi = HNTHA;
has a closed complementary subspace in H, and the image
DI@)Ty{$ € H: (0) > 0} = H

contains a closed complementary subspace of Ty A; = TyA; in C.
To prove this, let ¢ € H with ¢(0) > 0 and I(¢) € A; be given. Then ¢(—1) =0,
Fa(t,¢) € A; for all t € R, and ¢'(—1) = x(¢)'(—1) # 0. It follows that

¢' = D1Fa(0,9)1 € TyA; \ H,
and therefore
(4) C=Ha®Ry.

Furthermore, there exists x € (HNTyA;)\{0} since otherwise (4) would yield Ty A; C R¢/,
which contradicts dim Ty A; = 2. Observe Ty A; = Ry ® R¢’ and Ry = H NTyA;. There
is a closed subspace H, of H with

H = H, ®Ry = H, ® DI(¢) ' Ty(4)A:,
H, C H=DI(¢)Tp{tp € H:4(0) >0}, C=H,®T,A;. n

The main result of the present subsection is that the set X D X; is the continuous
injective image of a compact interval. The construction of the desired parametrization
begins as in Subsection 5.2, with Z = H. Recall the relations y,, € H, y/, =y, € C'\ H,
and py(, # 0. Choose x € L\ Rpy}, with

pyo + (0,8)x C int(pon)\ {0}

for some s > 0. An application of Corollary 5.1.1 to 0 = pyo, t = w, and H yields open
neighbourhoods N of pyg in L, U of yg = y, in C, a map &, and a homeomorphism h
mapping NNpAN(pyo+Rx) onto the subset UNANH of A. For s € R with pyo+sx € pA
define ¢5 = pyo + sx + a(pyo + sx) and z(*) = x(¢,). There exist §; > 0 and an open
neighbourhood U; of yg in {¢ € U : $(0) > 0} so that

pyo + (0,6:]x C (int(pon) \ {0}) NN,
pyo + [—d:,0)x C ext(pon) C N,
h(pAN (pyo + (—0i,0i)x)) =U; NANH,

and for every s € (0,6;], x and p¢, are linearly independent (use the continuity of the
map A 3 ¢ — ¢ € C guaranteed by Proposition 2.3.3). Note that U;NANH = U;NANK.
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The continuous map d : [0,6;) — C given by
d(s) = h(gs) = Fa(@(9s), ds)
is injective, with d(0) = yo, and there is a continuous inverse d~! : d([0,d;)) — R.
COROLLARY 1. The image d([0,;)) equals
{p€eU,NANH:ppcint(pon)},
and there exists 6 € (0,6;) with P(d((0,9))) = d((0,6;)).

Proof. 1. The first assertion is shown as in part 1 of the proof of Proposition 5.2.1.

2. Choose a neighbourhood U; of yo in U; with P(U; N K) C U;, and 6 € (0,0;)
with d((0,9)) C U;. For 0 < s < 4, d(s) e UyNANH =U; N AN K. Consequently,
P(d(s)) € U;. Also,

P(d(s)) € A, P(d(s)) e KC H, pP(d(s)) € int(pon).
It follows that P(d(s)) € {¢ € UyNANH : pp € int(pon)} =d((0,6;)). m
The transformed return map
P :(0,6) 35— d ' (P(d(s))) € (0,68)

is continuous and injective, with P;(s) — 0 as s — 0. It follows that P; is strictly
increasing. The hypothesis (1) excludes fixed points of the map P;. Therefore

(5) s < Py(s) forallse(0,0),

or

(6) P,(s) <s forallse(0,0).

Choose sy € (0,6). If (5) holds then there is a strictly increasing trajectory (s;)9- ., of P;

with s; — 0 as j — —o0, and P, maps each interval (s;_1,s;], j < 0, homeomorphically
onto (s;,8;j+1]. If (6) holds then there is a strictly decreasing trajectory (s;)52, of P, with
s; — 0 as j — oo, and P, maps each interval (s;+1,s;], j > 0, homeomorphically onto
($j+2, 8j+41]-

PROPOSITION 2. Let ¢ € AN K with po € int(pon).

(i) If (5) holds then the trajectory (¢;)52_, of P given by ¢o = ¢ satisfies ¢; — yo
as j — —oo and ¢; — 0 as j — co. There exist j € Z and s € (s_1, so] with ¢; = d(s).

(ii) If (6) holds then the trajectory (¢;)32 ., of P given by ¢o = ¢ satisfies ¢; — 0

as j — —o0 and ¢j — yo as j — oo. There exist j € Z and s € (s—1, So] with ¢; = d(s).
Proof. 1. We have ¢ € X; C X. Suppose (5) holds. There is a trajectory (¢;)2_
of P in the compact set X, with ¢g = ¢ and pF4(t, ¢) € int(pon) for all t € R. Tt follows
that both sets a(z(¢)) and w(¢) belong to the compact set
{p € A:pop €int(pon)U|pon|}
which contains 0 and |n| but no other periodic orbit. Therefore
a(z(¢)) =1l and w(¢) ={0}, or a(z(¢))={0} and w(g)=I|nl.

Suppose the last statement holds. Every subsequence of (¢; )J‘?‘;O has a subsequence which
converges to a point ¢ in AN H N|n| with ¢(0) > 0. Using (2.3.3) and yo € K one finds
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that ¢; — yo as j — oo. All ¢; belong to AN H, with 0 # p¢; € int(p o n). Corollary 1
shows that there exists an integer jo with ¢; € d((0,6;)) for all j > jo. Consequently,
d=1(¢;) — 0 as j — oo, and there is an integer j; > jo with 0 < d=!(¢;) < 4 for
all j > ji. The points d='(¢;), j > ji, form a trajectory of P, and one arrives at a
contradiction to s < P,(s) for all s € (0, 9).

2. It follows that a(z(¢)) = |n| and w(¢) = {0}. The last equation gives ¢; — 0 as
j — 00. As in part 1 one finds ¢; — yo as j — —oo, and there exists an integer n so that
(d=t (¢7))j—_ is a trajectory of P, which converges to 0 as j — —oo. There are integers
k < n with

0< d71(¢k) < sp
and m < 0 with
Sm—1 < d71(¢k) < Sm-

Set s = P,™(d Y (¢x)), j =k —m. Then s € (s_1,50] and d(s) = P~™(¢y) = ¢;.

3. The proof of assertion (ii) is analogous. m

In case (5) holds the restriction d|[0,so] is extended to a map v from a compact
interval into C as follows. For j € N set

J
sj =S80+ E 27"
=1

and consider the affine map a; : R — R given by
aj(sj-1) = s-1, aj(s;) = so.

Define g = s + 1, G = [0, g], and set

~v(s) =d(s) for 0 < s < s,
v(s) = Pi(d(a;(s))) forsj_1 <s<sj, jEN,
7(9) = 0.

Then
P(y(s;)) = P7" (d(s0)) = P (d(aj1(s41))) = v(sj41) for all j >0,

and Proposition 2 yields
(7) v(s;) =0 asj— oo.

ProrosiTION 3. The map v is injective, and

1G) =X, ((0,9) = Xi, 7([0,9)) ={¢ € ANK : pp € int(pon) Ulpon|}.

Proof. 1. Proof of the equations: Let ¢ € X. Then either ¢ =0 = y(g), or ¢ =yog =
d(0) = (0), or p¢ € int(pon). In the last case there is a trajectory (¢;)3_,, of Pin X
with ¢g = ¢. Proposition 2(i) gives an integer j and s € (s_1, so] with ¢; = d(s). In case
J <0,

¢ =¢o =P 7(¢;) = P/ (d(s)) = P~7(d(a;(aZ}(s)))) = v(aZ}(s)) € 7((0.9))
In case j > 0 there exists r € (s_;_1,5_;] with P/ () = s, and the equations

PI(3(r)) = P/(d(r)) = d(P] (r)) = d(s) = ¢; = P?(¢0)

imply ¢ = ¢o =(r) € 7((0,9))-
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Conversely, let ¢ € v(G). Then either ¢ = v(0) = yp € X, or p =v(9) =0 € X, or
¢ €7((0,9)). In the last case, either ¢ = ~(s) with s € (0, so], and therefore

p=d(s)e{veUnNANH :py cint(pon)} (see Corollary 1)
C Xi7
or there are j € N and s € (s;_1, s;] with
¢ =7(s) = P?(d(a;(s))) € P7(d(0, so]) C P/(X;) C X.
2. Proof of injectivity: The restrictions of v to the intervals [0, so] and (sj_1, s;],
7 € N, are all injective, and
Y(g)=0¢{p€ ANK : pp € int(pon) Ulponl} =~([0,9)).
Also,
Yy0)=yo €{p € ANK : pp € int(pon)} U{0}
= X; U{0} =((0,9)) U {7(9)} = ~((0,9]).
Next, consider s € (0,s0] and t € (s;_1,s;], with j € N. Then ~(s) = d(s), 7(t) =
Pi(d(a;(t))), and a;(t) € (s—1,50] C (0, so]. There is an integer k < 0 with s_1 < s < s,
and there exists r € (sg—1—;, sk—;j] C (0, so] with
s=P/(r), d(s)=P(d(r)).
Observe that r < sp—; < s_1 < a;(t). The injectivity of d and of P|X now yield

v(s) = d(s) = P7(d(r)) # P’ (d(a;(t))) = 7(t).
Finally, consider arguments s € (sp_1,sx] and ¢t € (s;_1, s;] with 0 < k < j. Then
v(s) = P*(d(ax(s))), ~(t) = P?(d(a;(t))),

and
ax(s) € (s-1, 0], a;(t) € (s—1,s0].
There exists © € (Sgx—j—1, Sk—;] with Ptj_k(r) = ag(s). Observe that 0 < r < sp—; <
s_1 < a;(t) < sg. The injectivity of d and of P|X now yield
K 4 4
7(s) = P*(d(ax(s))) = PH((P/ ™" (1)) = P(d(r)) # P?(d(a;(t))) = 7(t). =
PROPOSITION 4. The map 7 is continuous.
Proof. 1. Continuity at points in [0, sg) and (s;, sj+1), j > 0, is obvious.
2. Let >0 be an integer. Continuity at s; from the left is obvious. To show continuity

from the right, let (¢4)%°; be a sequence in (s;, $j41] with ¢, — s; as k— 00. Set ag=idg.
For every positive integer k,

(te) = PT N (d(aj41(t)) = P (P(d(a;(a; (aj41(t))))))-
The points r, = a;l(a#l(tk)) € (sj—1,8;], k € N, converge to s;_1 as k — co. Therefore
a;(ry) — s—1 as k — oo, and

Y(tw) = P7(P(aj(ri))) — P?(P(d(s-1))) = P(d(s0)) = P (d(a;(s;))) = 7(s;).
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3. Proof that v is continuous at g:
3.1. By the previous proposition, v is injective, and v((0,¢9)) = X;. Parts 1 and 2 of
the proof imply that the map

7i:(0,9) 35— 7(s) € X;

is continuous.

Claim: The map ~y; is a homeomorphism.

Proof: The set X; = v((0, g)) is connected. It is not compact since y(s;) — ¥(0) = yo
as j — —oo and yg ¢ X;. Consequently, there exists a homeomorphism h from an
open interval (a,b) C R onto the one-dimensional C'-submanifold X; (see e.g. 23.19 in
Chapter VI of [14]). It follows that h~! o~; is a homeomorphism onto the interval (a, b),
and

vt =y oh)oh T =(h o) o]
is continuous.

3.2. Assume « is not continuous at g. Then there are a sequence (¢x)5>, in G and
e > 0sothat ty — gask — oo and ||y(tx)|| > € for k € N. The compactness of X = v(G)
permits extracting a subsequence of points u; = tx;, j € N, so that (y(u;))52; converges
to a point ¢ € y(G) with ||¢]| > .

3.2.1. Claim: There exist a sequence (1, )5_; in (0,g) and s € (0, g) so that r,, — g
and y(rm) — v(s) as m — oo.

Proof: Observe that ¢#0 = v(g). Assume ¢ = v(0) = yo. Let € = ||yo||. There exists
Jo € N so that

[v(uj) —yoll <e/3 and |v(s;)ll <e/3 forallj> jo.
The compact interval I; with endpoints u;, s; is contained in (0, g). The continuity of
v](0, g) implies that there is a point w; € I; with
[v(wj) —voll > ¢/3 and [ly(w;)|| >¢&/3.
Note w; — g as j — oco. As above one finds a subsequence (wj,, )>°_; and a point ¢ € X
so that y(w;,,) — ¥ as m — oo, with
[ —yoll = €/3 and [¢]| > /3.

Therefore ) € X \ {0,y0} = 7((0, g)).

3.2.2. Recall P(X;) = X;, and X; = v((0,9)). It follows that there exists t € (0, g)
with P(y(s)) = v(t). Fix € € (0, min{¢,g — t}). Part 3.1 of the proof implies that there
is an open neighbourhood U; of v(¢) in C with y((t —e,t 4+ ¢)) = U N~v((0, g)). By the
continuity of P, there is an open neighbourhood U; of v(s) in C with

PUs n~((0,9))) Cc UsN P(v((0,9))) € UsN~((0,9)).

Choose j € N so large that t + ¢ < r; and y(r;j) € Us. Choose k € N with s, > r;. The
map

P :(0,9) 27—~ {(P(y(r) €R
is continuous, and

Pi(sk) = sk+1 > sk, Pi(rj) € (t—e,t+¢€) C (—o0,15).
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It follows that there is a fixed point of P; in (r}, s ), and P has a fixed point in ((0, g)) =
X;. This implies a contradiction to the hypothesis (1) that no solution z(¢) with 0 #
po € int(p on) is periodic. m

COROLLARY 2. Assume (1) and (2). If (5) holds then there exist g > 0 and a conti-
nuous injective map v : [0, g] — C with

7([0,9]) ={p € ANH : 0 < $(0), pp €int(pon)Ulpon|}
and v(0) = yo,v(g) = 0.

Remark 1. If (1), (2) and (6) hold then a construction analogous to the one above
yields the same existence result as in Corollary 2.

6. Smoothness at periodic orbits

6.1. Interior periodic orbits. Let ¢ € A\ ({0}U|n°|) be such that z(¢) is periodic.
Then pg € (pA)°. The aim of the present subsection is to prove that (4.1.1) holds. Choose
t > 1 and consider the slowly oscillating periodic solution

y:Ros—z(p)(s—t) eR
of equation (1.1.1), with minimal period w > 2 and orbit parametrization n : [0,w] — C.

Consider the closed hyperplane Cy = C« @ C, its translate H, = yo + Cy, the adapted
Poincaré map P, : N, — H,, and recall Proposition 2.4.5.

PROPOSITION 1 (y hyperbolic and unstable). If (2.4.5) is satisfied and if A« > 1 then
(4.1.1) holds.

Proof. Recall Proposition 2.5.3(ii). Choose € >0 with (—¢,¢&)¢. C Cy,. The Cl-curve
a:(=1,1) — C given by
a(s) = yo + seds + wy(se¢s)
has range in A (see Corollary 2.5.2(ii)), and a(0) = yo. The vectors o/(0) = e¢, € C,,
and z(¢)_, =y € C'\ C, are linearly independent. Apply Proposition 4.1.1(i). m

The proofs of property (4.1.1) in the remaining cases make use of the constructions
in Subsection 5.3. The hypothesis ¢ € C'\ |1°| implies that equation (5.2.1) holds. Recall
the continuous maps d : [0,6;) — C and d, : (=6.,0] — C from Subsection 5.3, with
values in A and d(0) = yo = d.(0).

PROPOSITION 2 (y hyperbolic and stable). If (2.4.5) is satisfied and if A < 1 then
(4.1.1) holds.

Proof. Consider a neighbourhood Wy of y¢ in N, as in Proposition 2.5.3(i). There
exist s € (0,0;) and s, € (—0d¢,0) so that d(s) € W, and dc(se) € W,. Proposi-
tions 5.3.2(iii) and 5.3.3(iii) show that there exists § € (0, min{d;,d.}) so that the con-
ditions (5.3.1) and (5.3.3) are satisfied. Propositions 5.3.2(i) and 5.3.3(i) yield that the
restrictions d|(0,4) and d.|(—d,0) are C'-smooth with all derivatives injective. The re-
parametrizations ¢ : R — C and g, : Re — C of d|(0,0) and d.|(—4d,0), respectively,
which are constructed in the last part of Subsection 5.3, are C''-smooth and have the
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following properties: R is bounded from below, R, is bounded from above, |g|U|g.| C A,
|[poo| Cint(pon), [pooe| Cext(pon), o(r) — yo as r — inf R, g.(r) — yo as r — sup Re;
there exist j and k in {0, 1} so that
od(r)— (=1)7¢p, asr —infR

and

o.(r) = (=1)*¢p, ast— supR..
Set r; = inf R, r. = sup R.. Then the set

I=(R.—71.)U{0}U(R—1;)

is an open interval, and the map aj : I — C given by

ar(r) =ge(r+re) for0>rel,

ar (O) = Yo,

ar(ry=o(r+r;) for0O<rel,
is continuous and has range in A. The restrictions az|I N (—00,0) and a;|I N (0, 00) are
C*'-smooth, with o/;(r) — (=1)*¢, as 0 > r — 0 and a/(r) — (=1)7¢,. as 0 < r — 0.
Moreover,

par(r) € ext(pon) for 0>rel,

par(r) €int(pon) for0<rel.
Proposition 2.4.3 says that pg, and (pon)’(0) = py; are linearly independent. An appli-
cation of Proposition 2.1.1 to pon and po ay yields k = j, and a; is C'-smooth, with
a4(0) = (=1)?¢,. Choose ¢ > 0 with (—¢,¢) C I and define a Cl-curve o : (—1,1) = C
by a(s) = as(es). Then |a] C A, a(0) = yo = z(¢)—+, and /(0) = &(—1)7¢, and
x(¢)_, =y, are linearly independent. Apply Proposition 4.1.1(i). =

PROPOSITION 3 (y not hyperbolic). If (2.4.4) is satisfied then (4.1.1) holds.

Proof. 1 (A center manifold). Consider a C*-map w, : Cye — C<, the set W, =
yo + {x + we(x) : x € Cic}, and an open neighbourhood N, of yo in N, as in Proposi-
tion 2.5.3(iii). In the sequel an application of Lemma 2.5.1 is prepared. The continuity of
P, at yo and the local invariance property of W, yield an open neighbourhood N¢. of yg
in N, with P,(W.NN,.) C W,. Corollary 2.4.2 implies that the derivative of the C'-map

WeN Nee 3 ¢ Py(¢p) € We

at yo is an isomorphism of Ty W,. It follows that there is a neighbourhood NN; of g in
Nec so that the restriction Py|W, N N; is injective. Choose €; > 0 with (—¢&;,€;)¢+ C Cie
and

Yo + $o« + we(sps) € Ny for |s] < e;.
Recall again that pg. and py( are linearly independent (Proposition 2.4.3). Proposi-
tion 2.1.1 applies, and there exist s > 0 and 1) € {—¢x, ¢, } with

pyo + (0, s)py Cint(pon), pyo+ (—s,0)py C ext(pon),
and € € (0,¢;) so that the Cl-curve
C:(—e,e)ds—yo+ s +we(sy) eC
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with ¢(0) = yo and ¢’(0) =4, (po ¢)'(0) = py, satisfies
(poO)((0,¢)) Cint(pon), (po()((=,0)) Cext(pon).
The map (¢ defines a homeomorphism onto |(|, and there exists an open neighbourhood
N of yo in N, with (((—e,€)) = W, N N.. The continuity of P, at yo gives ¢’ € (0,¢)
with
Py(C((=¢',€")) € We N Ne = (((—¢,¢)),
and there is an open neighbourhood N’ of yo in N, with {((—¢’,&")) = W. N N".

2 (Branches of the center manifold on A). Recall the transformed return maps P; :
(0,6;) — (0,0;) and Py : (—6¢,0) — (=6, 0) of Subsection 5.3.

2.1. If (5.3.2) holds then Proposition 5.3.2(ii) guarantees a trajectory (1,)%___ of
P, in N’ N N, with p,, € int(p o n) for all integers n < 0. Proposition 2.5.3(iii) yields
Yy € W, for all n < 0. Hence

¥ € W.N N N p~Yint(pon)) = ¢((0,&')) foralln <O0.
In particular,
o = ((s4) for some s; € (0,¢).
Lemma 2.5.1 shows that for every s € (0,s4] there is a trajectory (x,)%__., of P, in
C((=¢',€")) with xo = ¢(s) and |¢"1(xn)| < |¢71(¥,)] for all n < 0. Propositions 2.4.6(ii)
and 2.3.1(i) combined yield ¢((0, s1)) C A. The restriction oy = ¢|(0, s+ ) satisfies |a4|C
A oy(s) = yoass— 0,0/ (s) = 1ass—0.

2.2. If (5.3.4) holds then arguments analogous to those in part 2.1 show that there
exist e > 0 and a Cl-curve a_ : (—¢,0) — C with |a_| C A, a_(s) — yo as s — 0,
o' (s) =1 ass—0.

2.3. If (5.3.1) holds then the arguments used in the proof of the preceding proposition
yield an open interval R which is bounded from below, a C'-curve ¢ : R — C, and
X € {—¢x, @« }, with the properties

lofl CA, [poog| Cint(pon), o(r) >yo and o'(r)—x asr—infR.
Set r; = inf R, I, = R — r;, and consider the C'-curve
ar: I >reo(r+m) e C

Then |y | C A, [poay| Cint(pon), ay(r) — yo and o, (r) — x as r — 0. Recall from
part 1 of the proof that there exists § > 0 so that the C''-curve

B:(=0,0) 37— pyo+rpY €L

with ¢ € {—d., ¢« } satisfies |3] C ext(pon). An application of Proposition 2.1.2 to pon
and to the curve 0 : (—d,7) — L given by

rely, 6|(=0,0)=25, 6(0)=pyo, 0](0,r)=(poay)|(0r),
yields px = py(#£ 0), and consequently the unit vectors x and ¥ in {—¢., ¢, } coincide.
Hence o/ (r) — ¢ as 7 — 0.
2.4. If (5.3.3) holds then arguments as in part 2.3 show that there exist an open

interval I_ with sup/_ = 0 and a C'-curve a_ : I_ — C with |a_| C A, a_(r) — yo
and o_(r) — ¢ as r — 0.
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3. In every combination of one of the cases (5.3.1), (5.3.2) with one of the cases (5.3.3),
(5.3.4) one obtains an open interval I 3 0 and a Cl-curve ay : I — C with |az| C A
and a;(0) = yo so that the unit vector o;(0) = ¢ € Cy, and z(¢)_, = y; € C\ C,
are linearly independent. Complete the proof of property (4.1.1) as in the proof of the
preceding proposition. m

COROLLARY 1. Let ¢ € A\ ({0} U |nb|). If x(¢) is periodic then po € (pA)°, and
there is an open neighbourhood N of p¢ in (pA)° so that a|N is Ct-smooth.

6.2. Smoothness at the boundary. Let ¢ € |°|. Choose ¢ > 1. There is a slowly
oscillating periodic solution y : R — R of equation (1.1.1) with ¢ = y;. Let w > 2 denote
the minimal period of y. Consider the orbit parametrization 7 : [0,w] — C, the closed
hyperplane Cy, = C. ® C, its translate H, = yo + Cy, and the adapted Poincaré map
P, : N, — H, as in the preceding subsection.

PROPOSITION 1. Either (2.4.4) holds, or (2.4.5) holds with A\, < 1.

Proof. Assume (2.4.5) and 1 < A.. An application of Proposition 4.1.1(i) as in the
proof of Proposition 6.1.1 yields p¢ € (pA)°, which contradicts to the equation

pA=int(pon’)Ulpon’|. m

PROPOSITION 2. There exist an open neighbourhood N of p¢ in L and a C'-map
ay : N — Q with a]N NpA =an|N NpA.

Proof. 1. Recall the continuous map d : [0,0;) — C of Subsection 5.3, with d(0) = yo
and range in AN Hy.

2. Suppose (2.4.5) holds with A, < 1. Consider a neighbourhood W; of yo in N, as in
Proposition 2.5.3(ii). There exists s € (0, d;) with d(s) € W,. Proposition 5.3.2(iii) shows
that there exists § € (0,6;) so that (5.3.1) is satisfied. Proposition 5.3.2(i) yields that
the restriction d|(0, ) is C'-smooth, with all derivatives injective. The reparametrization
0: R — C of d|(0,8) constructed in the last part of Subsection 5.3 is C''-smooth and has

the following properties: R is bounded from below, |g| C A, [po | C int(pon), o(r) — yo
as r — inf R; there exists j € {0,1} so that

o(r) = (-1)¢. asr —infR.

Set r; = infR, choose ro € R, and apply Proposition 4.1.1(ii) to the C'-curve
a:(—1,1) — C given by

a(s) = o(r; +s(ro —14)) for 0 < s <1,

a(0) = o,

a(s) =yo+s(ro — i) (=1)7p,  for =1 < 5 <0,
which satisfies o/ (0) = (ro — r;)(—1)7¢. € Cy \ {0}.

3. Suppose (2.4.4) holds. Consider a C'-map w, : Cyc — C<, the set W, = yo+ {x +

we(x) @ x € Cic}, and an open neighbourhood N, of yo in N, as in Proposition 2.5.3(iii).

As in part 1 of the proof of Proposition 6.1.3 one obtains an open neighbourhood N; of yq
in N, so that Py|W, N N; is injective, and there exist a unit vector ¢ € {—¢., ¢« }, €>0,
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and £’ € (0,e) with the following properties: si) € C,, for all s € (—¢,¢); the Cl-curve
C:(—€,6) 3 s yo+ st + we(sy) € C satisfies

¢(0) =wo, [CICNi, (poQ)((0,¢)) Cint(pon), (pol)((—¢,0)) C ext(pon);
¢)=1v, (poQ)(0)=py, Py(C((=¢"€")) C C((—e,¢)).
Furthermore, there are open neighbourhoods N; of yo in N, and N’ of yo in N, with
C((—&,e)) =W.N N, (((=€,¢"))=W.NnN".

Recall the transformed Poincaré map P; : (0,9;) — (0,d;) of Subsection 5.3. If (5.3.2)
holds then one finds s; € (0,¢’) with {((0,s+)) C A as in part 2.1 of the proof of Propo-
sition 6.1.3, and an application of Proposition 4.1.1(ii) to the C'-curve a: (—=1,1) 3 r
((rs4) € C yields the assertion. If (5.3.1) holds then Proposition 5.3.2(i) is applicable,
and a curve « which satisfies the hypotheses of Proposition 4.1.1(ii) is constructed as in
part 2 above. m

7. Smoothness at the stationary point

7.1. Cases of no attraction. Recall the leading real part ug of the eigenvalues of
the generator of the linearization of the semiflow F' at the stationary point 0 € C.

PROPOSITION 1. In case ug > 0,

(1) there exists an open neighbourhood Lo of 0 in (pA)® so that the restriction a|Lo
is C*-smooth.

Proof. In [17] it is proved that there are an open neighbourhood Ly of 0 in L and
a C'-map w : Ly — @ with w(0) = 0 so that for every x € Lo \ {0} there is a bounded
slowly oscillating solution z : R — R of equation (1.1.1) with z¢g = x + w(x). Therefore
X +w(x) € A for every x € Lo, or Ly C pA, and w(x) = ¢(x +w(x)) = a(p(x +w(x))) =
a(x) for all x € Lo. =

Set

I =inf{|lpy]| : t € R, and y : R — R is a slowly oscillating

periodic solution of equation (1.1.1)}.

PROPOSITION 2. If ug =0 and I =0 then (1) holds.

Proof. Consider a Cl-map w®: L — @, the set W¢ = {x + w°(x) : x € L}, and an
open neighbourhood N of 0 in C as in Proposition 2.5.1(ii). Recall that, due to the general
assumption A # {0}, the stationary point 0 is an inner point of pA. The continuity of a
at 0 yields € > 0 with x € pA and x+a(x) € N for all x € L with ||x|| < €. According to
Propositions 2.3.1(iii) and 2.2.2(v) there exists b > 1 with z2(¢) < b for all ¢ € A\ {0}
with ¢(—1) = 0. By continuous dependence on initial data, there is a neighbourhood N’
of 0 in N so that

IpF(t, )| <e forall g € N', t €[0,b+1].

The hypothesis I = 0 and the continuity of a at 0 imply that there exist a slowly oscillating
periodic solution y : R — R of equation (1.1.1) and ¢ € R with v = py: + a(py) € N'.
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There exists s € R with ys € ANK, and w = 22(ys) +1 € (2,b+1) is the minimal period
of y. Note that

lpys|| <e forall s € [t,t+b+1].
It follows that the orbit parametrization 1 : [0,w] 3 s — ys € C satisfies

lponl C{xeL:|x|<e},

which in turn implies that the open neighbourhood Ly = int(pon) of 0 in pA is contained in
the disk {x € L: ||x|| <e}. Let x € Lo, x = z(x+a(x)). Foreveryt € R, pz; € int(pon),
and therefore ||pz:|| < e, x¢ = pxy + a(pz) € N. Hence zp € W°, and

a(x) = q(x + a(x)) = qzo = w*(pxo) = w(X).
The equation a|Lg = w|Lg yields the assertion. m
The final result of this subsection concerns the case
(1) up=0 and 0<I.

The proof makes use of the curve constructed in Subsection 5.4 which connects 0 in
AN H to a periodic orbit. Recall first that in case 0 < I Proposition 2.3.6 guarantees
the existence of a slowly oscillating periodic solution y* : R — R of equation (1.1.1),
with minimal period w > 2 and orbit parametrization n° : [0,w] — C, so that for every
¢ € A\ {0} with p¢ € int(pon’), z(¢) is not periodic, and either

3) a(a(¢)) = {0} and  w(e) = |n'l,
(4) a(a(¢)) = 0’| and  w(e) = {0}.

PROPOSITION 3. If ug = 0, if 0 < I, and if there exists ¢ € A\{0} with pe € int(pon’)
and property (3) then (1) holds.

Proof. 1. There exists t; € R with F4(t;, yg) € K. Consider the translate y : Ro>t+—
y'(t +t;) € R and its orbit parametrization 7 : [0,w] — C. The remarks preceding the
proposition show that the general hypothesis (5.4.1) for the results of Subsection 5.4 is
satisfied. Propositions 2.3.1(i),2.2.3, and 2.2.2(i), (v) combined imply that also hypothesis
(5.4.2) is satisfied. It follows that there exist a compact interval G = [0,g¢], g > 0, and a
continuous injective map v : G — C with

Y(0) =50, (9) =0, YG)={Y € ANK:pyp €int(pon)}U{0,y0},
and the return map P defines a homeomorphism of the compact set v(G) onto itself.
1.1. Claim: There is a trajectory (sp)52

P, G350 (P(1(5) € G

in (0,¢g) with s, — g as n — —o0.

Proof: Propositions 2.2.3(i) and 2.3.5 applied to the solution x(¢) yield a sequence
(tn)__ . in R with ¢,, — —00 as n — —o0 so that the points ¢, = x(¢);, , n < 0, form
a trajectory of P in ANK Np~!(int(pon)) =~((0,g)). Use (5.4.3) to obtain a trajectory
(hn)22 _, of Pinv((0,g)) with ¢,, — 0 as n — —o0. Set s, = vy~ (¢,,) for all integers n.

As a(x(¢)) = {0}, ¢, — 0 as n — —oo. Consequently, s, — g as n — —oo.

of the homeomorphism
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1.2. Claim: For every s € (0,g), Py(s) < s.

Proof: There are no fixed points of P, in (0, g) since otherwise, x = z(y(s)) with
s € (0,g9) and P(v(s)) = 7(s) would be a periodic solution with 0 # xy € A and
pxo € int(pon) = int(pon?), contradicting the properties of 3. It follows that either the
assertion is correct, or s < P,(s) for all s € (0,g). In the last case, s, < so < g for all
n < 0, which contradicts lim,,—,_~ s, = g.

2. Consider a Cl-map w® : L — @Q, the set W¢ = {x + w°(x) : x € L}, and an open
neighbourhood N of 0 in C as in Proposition 2.5.1(ii). Proposition 2.2.2(v) shows that
there exists b > 0 with

z0(¥) <b forally € AN (KU (—K)).
By continuous dependence on initial data, there is an open neighbourhood N’ of 0 in NV
with F([0,b+ 1] x N’) C N. Choose an integer n with v((sy,g]) C N'.

Claim: For every ¢ € y((sn,g]) and all ¢ <0, z(¢)), € We.

Proof: For every s € (sn, g] there is a trajectory (r;)52_., of P, with ro = s and

sp<s=rg<7r; <g forall integers j <0.

It follows that for every ¥ € y((sn, g]) there is a trajectory (1;) of Pin y((sn,g]) C N’

with ¥y = 1. For each j < —1,
1/)j+1:F(t,1/)j) with 2 <t <b+1,
and one obtains z(¢); € N for all ¢ < 0. Use property (2.5.1).

3. There is an open neighbourhood N,, of 0 in N’ with v((sn, g]) =v(G)NN,,. The con-
tinuity of a at 0 and continuous dependence on initial data yields an open neighbourhood
Lo of 0 in int(p o n) C pA with

F(t,x +a(x)) € N, forall x € Lo, t €[0,b+1].
Let x € Lo \ {0}. Recall that the zeros of x = z(x + a(x)) are not bounded from below.
Proposition 2.2.2(i), (v) imply that z, € K for some s € [0,b+ 1]. By Proposition 2.3.5,
pxs € int(p on). It follows that

s € ANK Np (int(pon)) NN, Cy(G) N Ny, =v((5n,9]).

o0
j=—oo

The last claim yields x + a(x) = zo € W€, or
a(x) = q(x + a(x)) = w*(p(x + a(x))) = w*(x)-

Using also a(0) = 0 = w®(0), one arrives at a|Ly = w|Lg. m

7.2. On the inclination of tangent spaces of the attractor close to the
stationary point. The investigation of the smoothness of the map a close to 0 € (pA)° in
the remaining cases employs an inclination lemma which is derived below. For v € C'\ Q
define the inclination with respect to the decomposition C = L & @ by

i) = llavll/llpe|l-
PROPOSITION 1. There ezists ca > 0 with i(¢) < ca for all ¥ € TgA\ {0}, ¢ € A.

Proof. Setr = maxyca ||¢|. Consider the constant c(r)>0 of Proposition 2.2.5. Let
¢ € A, 1p € TyA. There is a differentiable curve o : (—=1,1) — C with «(0) = ¢, |a| C A,
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o/ (0) = 4. For |h| < 1,set z = z(a(h)), y = 2(¢) = z(a(0)). Recall (2.3.1) and Corollary
2.2.1(i). Use Proposition 2.2.5 and deduce

c(r)lla(h) — a(0)]| < [lpa(h) — pa(0)]

For 0 < |h| < 1 it follows that
a( 7t o)) || < WL, (L aqn) — afop) |
@
ol < 200y,

ll4ll
e(r)

Consequently,

and the assertion becomes obvious. m
For ¢ € A define
i(TyA) =sup{i(v) : 0 £ € TobA} < ca.

PROPOSITION 2. Suppose Lo C pA is open in L, and the restriction a|Lg is C*-smooth.
Let x € Lo. Then

Tyta()A = {o+Da(x)e: o€ L} and |[Da(x)| = i(TXJra(x)A)'

The proof is omitted.
For a set B C C and an integer n > 0 define B,, = F({n} x B). The set B is said to
converge to 0 if for every € > 0 there is an integer n. > 0 so that

B, Cc{peC:|¢| <e} forallintegers n > n..

PROPOSITION 3. Suppose B C A converges to 0, and for every integer n > 0 there is
an open subset L, of (pA)° so that a|L,, is C'-smooth and pB,, C L,. Then

sup i(TgA) — 0 asn — oo.
#€Bn

Proof. 1. The derivative T'(1) = D3F(1,0) defines an isomorphism 77, of L onto L
and a continuous linear map of ) into @) with spectra
or = exp(c N (R+i[—-2m,27])), oo ={0}Uexp(c\ (R + i[—2m,2n])),
respectively. Choose s,t in R with

sup |A| < s <t < min |\
Ae€og A€or

Then (T, ') € {\ € C: || < 1/t}. There exist a norm |- ||o on C and constants ¢; > 0,
co > ¢1 so that

cillgllo < [|oll < czfl¢flo  for all ¢ € C,

tlello < [IT(1)¢llo for all ¢ € L,

IT(L)éllo < sligllo for all ¢ € Q.
The remainder map R = F(1,-) — T(1) is C'-smooth and satisfies R(0) = 0, DR(0) = 0.
Set

c=ca—.
C1
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For all € A and all Y € TyA,

lavllo < ellpylo,
due to Proposition 1, and

lgD2F(1,¢)¢llo < lqT ()¢ llo + [¢DR(9)[lo(1 + c)[[pello
= [T(W)gyllo + llgDR(@)[[o(1 + c)l[pbllo
< sllgllo + lgDR(9)llo(1 + o)llpello

and

[PD2F(L,9)¢bllo = tlpello — [[PDR(D)]lo(1 + c)[[pollo
= (= lpDR(@)[o(1 + c)lpllo-

For ¢ € C'\ @ set

(¥) = llavllo/ ¥ llo-
Obviously, to(¢0) < ¢ for all v € TyA\ {0}, ¢ € A. Choose § € (s/t,1) There exists an

integer ng > 0 such that for all integers n > ng and for all ¢ € B,

S
S DR@a <

and the sequence

gy liPE@ 0
sh, t—IPDRO) o1+ "=

converges to 0 as n — oo.
2. Claim: For every € > 0 there is an integer n. > ng so that

() <e forally € TzAN\ {0}, ¢ € By, n > ne.

Proof: Let € > 0. Choose an integer j > ng with
1
SLm < % for allLZj,
and choose an integer k > 0 with 3*c < £/2. Set n. = j + k. Take an integer n > n.,
¢ € By, and ¢ € ToA\ {0}. There exist ¢, € B,, v € {0,...,n}, with ¢ = ¢,, and
dvy1 = F(1,¢,) for all v € {0,...,n — 1}. Proposition 2 shows that each

Ty, A={x+Dal¢p,)x:x€L}, ve{0,...,n},
is a 2-dimensional linear space. Recall that all maps D2F(1,¢,), v € {0,...,n}, are
injective, and
DyF(1,¢,)Ty,AC Ty, A forallve{0,...,n—1}.
It follows that there exist ¢, € Ty, A\ {0}, v € {0,...,n}, so that ¢, = ¢ and Y41 =
DyF(1,6¢,)9, for all v € {0,...,n — 1}. The estimates in part 1 of the proof yield
LO(¢U+1) = Lo(DzF(L%Wu) < @0(1/11/) +eu
for all v € {4,...,n — 1}. Hence
n—1—j 1

(¥) = to(¥n) < B uo(h) + D e’ < BFet+( max e)—— <e.
v=0

j<v<n—1 1 —ﬁ
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3. Use
(1) < Zip(y) forallg € O\ Q

C1
to complete the proof. m

7.3. The cases of attraction. Recall from Subsection 7.1 that in case
0<I=inf{|lpyll :t € R, and y : R — R is a slowly oscillating
periodic solution of equation (1.1.1)}

there exists a slowly oscillating periodic solution y* : R — R of equation (1.1.1), with
minimal period w > 2 and orbit parametrization 1’ : [0,w] — C, so that for each ¢ €
A\ {0} with p¢ € int(p o n®) the solution z(¢) is not periodic, and either (7.1.3) holds,
or (7.1.4) holds.

PROPOSITION 1. If ug = 0, if 0 < I, and if there exists ¢ € A\{0} with pe € int(pon’)
and property (7.1.4), then (7.1.1) holds.

Proof. 1. Asin part 1 of the proof of Proposition 7.1.3, there is a translatey : R — R
of 4 so that the orbit parametrization 7 : [0,w] — C of y satisfies 7(0) = yo € K. There
exist a compact interval G = [0, g], g > 0, and a continuous injective map v : G — C

YG)={Y e ANK :py € int(pon)} U{0,y0},

and the return map P defines a homeomorphism of the compact set v(G) onto itself.

o0
n=—oo

P,:G3S—~yHP(y(s) €qG

in (0,g) with s, — g as n — oo.

Proof: Asin part 1.1 of the proof of Proposition 7.1.3 one finds a trajectory (¢,)52 _
of P in v((0,g)) and a sequence (¢,)%2__ in R so that ¢, = x;, for all integers n. In
particular, ¢, # 0 for all n, and therefore ¢,1 > t, + 2 for all n. Now w(¢) = {0} yields
¢n — 0 as n — oo, and the sequence s, = v 1(¢,), n € Z, converges to g = v~ 1(0) as
n — oo.

1.1. Claim: There is a trajectory (sy) of the homeomorphism

1.2 Arguing as in part 1.2 of the proof of Proposition 7.1.3 one obtains s < P(s)
for every s € (0,g). In particular, 0 < s, < spt1 < ¢ and Py ((sn, g]) = (Sn+1, 9] for all
integers n.

2. Proposition 2.2.2(v) shows that there exists b > 1 with

W) +1<b forally e An(KU(—K)).

Set B = F([0,b] x ¥([s0,51])) and B, = F({n} x B) for all integers n > 0 as in the
preceding subsection.

2.1. Claim: B converges to 0.

Proof: Let € > 0. Choose ¢ > 0 so that ||F(t,9)|| < e for all t € [0,0] and all p € C
with [|¢|| < 6. Choose an integer ns > 0 with [|y(s)|| < d for all s € [s,,, g]. For every
Y € B, = F({n} x B) with n > (ns + 1)b there exist t € [0,b] and s € [sg, 1] so that

¥ = F(n, F(t,7(s))) = F(n+t,7(s)),
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and there is a unique integer j7 > 0 with

> la(P(v(s) + 1 <n+t <> [22(PH(y(s)) +1].
k=0 k=0
It follows that for some r € [0, 2o(P7(y(s))) + 1) C [0,b],
j—1
Y =F(n+t,7(s)) = F(r, F(Y_[z2(P"(+(s)) + 1],7(s))
k=0

— F(r, Pi(+(s))) € F((0, 8] x 7(P2([s0,51]))) = F(0,5] x 7([s55551)).
Using 2 < 25(P¥(y(s))) +1 < b for all k € {0,...,;} one finds
J+Db>n+t>n>(ns+1)b,
or j > ng. Therefore

Ve F([Ovb] X 7([Sj7sj+1])) C F([Ovb] X 7([‘9”579]))7

and finally ||¢|| < e.
2.2. Claim: For every integer n >0 there is an open neighbourhood U, of 0 in C with

(AnTw)\ {0} c | B
k=n

Proof: Fix an integer n > 0. There exist an integer j > 1 with 2j —b—1 > n, an open
neighbourhood U of 0 in C so that v((s;, g]) = v(G)NU, and an open neighbourhood U,
of 0 in U so that F([0,b] x U,) C U and pU C int(pon). Let ¢ € (ANU,)\ {0} be given.
Recall that the zeros of z(1)) are not bounded from below. Use Proposition 2.2.2(i), (v)
to obtain ¢ € [0,b] with F(t,) € K. Proposition 2.3.5 yields pF'(t, ) € int(p o n) since
py € pU. It follows that

0#F(t,9) € [ANKNnp int(pon)NU Cv(G)NU =~((s;,g),

and so F'(t,v) € v((sj,g)). There exist an integer m > 7, r € (S, Sm+1], and s € (s, $1]
so that

F(t,¢) =~(r) =P} (s)) = P"(v(s)) = F(tm,V(s))
with

m—1
tm = Z [22(P(v(s)) +1] >2m>2j >b>t.
xk=0
The injectivity of F(t,-) yields ¢ = F(tm — t,v(s)). There is an integer k£ > 0 with
kE<t,-—-t<k+1,and

v =F(k,F(tym —t—k,v(s)) € F({k} x F([0,1) x v([s0,51]))) C Bk.

Observe that k > t,, —t—1>2m—-b—-1>2j—-b—12>n.
3. Recall ([so, s1]) € ANp~!(int(pon)). Proposition 2.3.5 yields pB,, C int(pon) for
all integers n > 0. Moreover,

pB,, Cint(pon)\ {0} foralln>0
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since 0 & v([so,s1]), B C A\ {0}. Corollary 4.2.1(i) guarantees that the restriction of a
to the open subset Lo = int(pon)\ {0} of (pA)° is C'-smooth. Proposition 7.2.3 applies,
and

sup i(TyA) — 0 asn — oo.
YEBn

Using Proposition 7.2.2 one finds

sup ||Da(x)]| — 0 asn — oo.
X€EpBn

3.1. Claim: Da(x) — 0as 0# x — 0.

Proof: Let € > 0. There exists an integer n with [|[Da(x)|| < ¢ for all x € pBy,
k > n. Consider an open neighbourhood U,, of 0 in C' as in claim 2.2. Choose an open
neighbourhood L. of 0 in int(pon) with {x+a(x) : x € L.} C U,. For every x € L.\ {0}
there exists an integer k > n with

X +a(x) € By, x=px+alx)) €pBr, [Da(x)|<e.

3.2. Claim: a is differentiable at 0 € (pA)°, and Da(0) = 0.
Proof: Let € > 0. There exists § > 0 with ||Da(x)|| < € for 0 < ||x|| < §. For such x

and for every integer n > 1,
1 1
= =<(1- 3 )
n n

b0 -a(3x)] <
Ja(x) ~ a(0) ~ 0x ~ 0)l = Ja() < el = elix — 0l

As a(2x) — a(0) for n — oo,
4. Now it is obvious how to complete the proof that the restriction alint(p o n) is
C'-smooth. m

Finally, the case of a stable hyperbolic stationary point remains to be considered.
PROPOSITION 2. If ug < 0 then (7.1.1) holds.

Proof. 1. According to Proposition 2.5.1(i) there are an open neighbourhood W* of
0 in C and constants ¢ > 1, k € [0,1) with

[|1E(n,@)|| < ck™||¢|| for all ¢ € W* and all integers n > 0.

The continuity of a at 0 € (pA)° yields € > 0 so that x +a(x) € W* and ||[x +a(x)|| <1
for all x € L with |x|| < &. Then no solution z(x + a(x)), ||x|| < €, is periodic, and

e <inf{|lpy:]] : t € R, and y : R — R is a slowly oscillating

periodic solution of equation (1.1.1)}.

Proposition 2.3.6 shows that there exists a slowly oscillating periodic solution y : R — R
of equation (1.1.1), with minimal period w > 2 and orbit parametrization 7 : [0,w] — C,
so that no solution z(¢) with ¢ € A\ {0} and p¢ € int(p o n) is periodic. Corollary
4.2.1(i) guarantees that the restriction alint(p o n) \ {0} is C'-smooth. The relations
0 €int(pon) and e < ||py]| for 0 < ¢t < w yield {x € L : ||x|| < e} C int(pomn). Set
B ={x+alx):0<|x|]| <e}and B, = F({n} x B) for all integers n > 0. Then
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Bcwsn{s e C: || <1} converges to 0. Using the inclusion pB C int(p o n) and
Proposition 2.3.5 one finds

pB, Cint(pon) foralln>0.

As B c A\ {0}, we have B,, C A\ {0}, and 0 & pB,, for all n > 0.
Propositions 7.2.3 and 7.2.2 combined yield

sup ||Da(x)]| =0 asn — oco.
XEpBn

The set

pBn U{0} = pFa({n} x {x+a(x) : [IxIl <e})
is an open neighbourhood of 0 € (pA)° in pA since the map

pA > x = pFa(n,x +a(x)) € pA

is a homeomorphism.

2. Claim: Da(x) — 0as0# x — 0.

Proof: Let € > 0. There exists an integer n with ||Da(x)|| < € for all x € pB,, =
(pB,, U{0})\ {0}; pB, U {0} is a neighbourhood of 0 in pA.

3. Complete the proof that the restriction alint(p o ) is C'-smooth as in parts 3.1
and 4 of the proof of the preceding proposition. m
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