CONTENTS 1. Introduction......................................................................................................................................................................5 2. The delay differential equation and its attractor of almost all solutions............................................................................9 2.1. The delay differential equation....................................................................................................................................9 2.2. Slowly oscillating solutions.........................................................................................................................................13 2.3. The attractor of eventually slowly oscillating solutions...............................................................................................16 2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted Poincaré maps.............................................21 2.5. Local invariant manifolds...........................................................................................................................................27 3. A-priori estimates...........................................................................................................................................................33 3.1. Nonautonomous equations........................................................................................................................................33 3.2. Vectors tangent to the attractor and to domains of adapted Poincaré maps.............................................................39 4. Transversals on the attractor and smoothness..............................................................................................................41 4.1. A sufficient condition for smoothness.........................................................................................................................41 4.2. Smoothness at wandering points...............................................................................................................................42 5. Curves on the attractor emanating from periodic orbits and connecting the stationary point to a periodic orbit............44 5.1. From lines in the plane L to curves on the graph A which are transversal to the flow................................................44 5.2. Arcs emanating from periodic orbits..........................................................................................................................45 5.3. Smooth ends at periodic orbits..................................................................................................................................47 5.4. A curve on A connecting 0 in K̅ to a periodic orbit.....................................................................................................53 6. Smoothness at periodic orbits.......................................................................................................................................59 6.1. Interior periodic orbits................................................................................................................................................59 6.2. Smoothness at the boundary.....................................................................................................................................62 7. Smoothness at the stationary point................................................................................................................................63 7.1. Cases of no attraction................................................................................................................................................63 7.2. On the inclination of tangent spaces of the attractor close to the stationary point.....................................................65 7.3. The cases of attraction..............................................................................................................................................68 References........................................................................................................................................................................71
Mathematisches Institut, Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany
Bibliografia
[1] R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin, New York, 1967.
[2] S. N. Chow and K. Lu, $C^k$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 303-320.
[3] S. N. Chow and H. O. Walther, Characteristic multipliers and stability of symmetric periodic solutions of ẋ(t)=g(x(t-1)), Trans. Amer. Math. Soc. 307 (1988), 127-142.
[4] O. Diekmann, S. van Gils, S. Verduyn Lunel and H. O. Walther, Delay Equations: Complex-, Functional- and Nonlinear Analysis, Springer, New York, 1995.
[5] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988.
[6] J. K. Hale and X. B. Lin, Symbolic dynamics and nonlinear semiflows, Ann. Mat. Pura Appl. 144 (1986), 229-259.
[7] G. Iooss, Bifurcation of Maps and Applications, North-Holland Math. Stud. 36, North-Holland, Amsterdam, 1979.
[8] B. Lani-Wayda and H. O. Walther, Chaotic motion generated by delayed negative feedback. Part I: A transversality criterion, Differential Integral Equations 8 (1995), 1407-1452.
[9] B. Lani-Wayda and M. Yebdri, On local center manifolds, technical report, in preparation.
[10] J. Mallet-Paret and G. Sell, Systems of differential delay equations I: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations 125 (1996), 385-440.
[11] J. Mallet-Paret and G. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations 125 (1996), 441-489.
[12] J. Mallet-Paret and H. O. Walther, Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time lag, preprint, Universität Gießen, 1994.
[13] A. Neugebauer, Invariante Mannigfaltigkeiten und Neigungslemmata für Abbildungen in Banachräumen, diploma thesis, Universität München, 1988.
[14] W. Rinow, Lehrbuch der Topologie, Deutscher Verlag der Wiss., Berlin, 1975.
[15] I. Tereščák, Dynamical systems with discrete Lyapunov functionals, Ph.D. thesis, Comenius University, Bratislava, 1994.
[16] H. O. Walther, On instability, ω-limit sets and periodic solutions of nonlinear autonomous differential delay equations, in: Functional Differential Equations and Approximation of Fixed Points, H. O. Peitgen and H. O. Walther (eds.), Lecture Notes in Math. 730, Springer, Heidelberg, 1979, 489-503.
[17] H. O. Walther, An invariant manifold of slowly oscillating solutions for ẋ(t)=-μ x(t)+f(x(t-1)), J. Reine Angew. Math. 414 (1991), 67-112.
[18] H. O. Walther, On Floquet multipliers of periodic solutions of delay equations with monotone nonlinearities, in: Proc. Internat. Sympos. on Functional Differential Equations (Kyoto, 1990), T. Yoshizawa and J. Kato (eds.), World Sci., Singapore, 1991, 349-356.
[19] H. O. Walther, Unstable manifolds of periodic orbits of a differential delay equation, Oscillations and Dynamics in Delay Equations, J. R. Graef and J. K. Hale (eds.), Amer. Math. Soc., Providence, 1992, 177-240.
[20] H. O. Walther, The 2-dimensional attractor of x'(t)=-μ x(t)+f(x(t-1)), Mem. Amer. Math. Soc. 544 (1995).