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Introduction

In his study of the reduction problem of Hermitian quadratic forms
Aronszajn [1] introduced a theory of systems (V, W; A,, 4,), where V
and W are complex locally convex topological vector spaces and 4,, 4,:
V—>W are continuous linear transformations. A homomorphism from
(V, w; 4,, A4,) to a system (X, Y; By, B,) is a pair (p, ) of continuous
linear transformations ¢: V—X, y: W—XY such that B;¢ = v4,,j =1, 2.
Composing homomorphisms componentwise, we obtain a category in
which two systems are isomorphic if and only if the corresponding pairs
of linear transformations are equivalent in the classical sense. In the
special case that V = W, X = Y and A,, B, are identity operators the
systems above are isomorphic precisely when the operators 4, and B,
are similar.

In this paper we consider systems (V, W; 4,,..., Ay) involving
N > 2 continuous linear transformations. A classification of such systems
up to isomorphism is of course out of the question in view of the fact
that the problem poses insurmountable difficulties for very special sub-
categories already in the case N = 2. Consider for example the fact that
for systems with zero second spaces isomorphism amounts to topological
linear isomorphism of their first spaces, or take the similarity question
for single operators in Hilbert space (Ernest [4] has recently classified
bounded linear operators on a separable Hilbert space up to unitary
equivalence. However, of necessity, the invariants are of a very complicated
nature). The detailed investigation of special classes of linear transform-
ations, deep as it may be, anyway seldom approaches the goal of a com-
plete classification. Hence there is place for a more qualitative study of
general systems which may still yield useful information on their structure.

We outline some of the background. An algebraic system (V, W;
Ay, ..., Ay) is one in which V and W are complex vector spaces in the
algebraic sense and A,,..., Ay: V—W are arbitrary linear transform-
ations. As pointed out in [1], such a system can be viewed as a topological
system with ¥V and W carrying their finest weak topologies. The category
of algebraic systems with N linear transformations is equivalent to the
category of right modules over a certain subring of the matrix ring
My, (C) (details in [6]). Hence general concepts of module theory are
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applicable to algebraic systems. E.g., subspaces G of V, H of W deter-
mine a subsystem (G, H; A, |y, ..., Aylg) of (V, W; A,, ..., Ay) provided
A4;G+...+ AyG < H. In the rest of the introduction we write (V, W),
(@, H) for a system and its subsystem when no ambiguity arises. (The
concept of a system, and therefore the meaning of these symbols, is
modified in the paper itself.) A subsystem (G, H) of (V, W) is a direct
summand (') of (¥, W) in case there exists a subsystem (K, L) of (V, W)
such that V = G+ K, W = H + L with the sums direct. Note the restric-
tion )4;K < L. (For topological systems one requires in addition that
the associated projections of V onto G and of W onto H be continuous.)
The subsystem (@, H) is pure in (V, W) iff it is a direct summand in every
intermediate subsystem the spaces of which are finite-dimensional
extensions of G and H. '

The structure of algebraic systems (V, W; 4,, 4,) (with 2 transform-
ations!) was investigated by Aronszajn and one of the authors ([1],
(2] and [5]). The category of such systems contains subcategories equiv-
alent to the category of modules over the principal ideal domain of
complex polynomials in one variable. Thus concepts and results from
the theory of modules over integral domains and in particular abelian
groups (such as torsion-submodule, torsion-free rank, Priifer groups)
could be generalized to systems, though often in a more complicated
form requiring new methods. One of the main lines of attack was to
first describe completely the structure of purely simple (in particular
indecomposable) systems of increasingly complex isomorphism types £.
Then one gives necessary and sufficient conditions on subsystems of
type 2 within a given system (7, W) to form a direct sum which is pure
in (V, W). For certain types £ the cardinal number of summands in
a maximal sum of this sort is the dimension of a certain vector space
attached to (V, W). It is thus an isomorphism invariant of (V, W) — the
multiplicity of 2 in (V, W). This is combined with an analysis of in-
creasingly involved canonically defined subsystems of a given system (e.g.,
its maximal divisible subsystem or its torsion part).

For topological systems such an approach would require substantial
modifications. However, the first steps can be carried out. In this paper
we give necessary and sufficient conditions for any finite-dimensional
subsystem to be a direct summand in the topological sense. The result
can be put in its most explicit form for subsystems whose structure is
known; in particular, for all finite-dimensional subsystems in case N = 2.

Let us describe the nature of the conditions obtained by means of
a simple example. Consider sequences of vectors (g,,9,) in ¥V and

() The terms “spectral”, “quasi-spectral”, “quasi-spectrally irreducible” and
“eigenvalue part” were used in some of our references instead of “direct summand”,
“pure”, “purely simple” and “torsion part” respectively.



Introduction . 7

pair of sequences is an example of what we call a chain I" in (V, W). We
represent it by the diagram:

8 &

h h hy

In case (g¢,,9,) and (h,, hy, hs) are linearly independent sequences,
the subspaces G and H spanned by them determine a subsystem (G, H)
of a well defined isomorphism type which we denote by III3. It was
shown in [2] that to have these sequences independent and (G, H)
a direct summand of (V, W) in the algebraic sense it is necessary and
sufficierit that the chain not be the sum of restrictions of two longer
chains in (V, W):

& & % 9 9 o o o
7\ ," \
/\ A
A A —— ! \A: A \
= / \ | /o
\ /
U hs hs w} w) w] w} w} w}

(termwise addition). Assume for simplicity that the topologies of V' and
W are metrizable. We show here that (G, H) is a topologiecal direct summand
of type III® if and only if there do not exist two sequences of “broken

chains”:
vol" vll'l DZ’n
A
/\
/ \
/ \ ,
\
\
\
\
\
A _‘U(llu w:n A :vlln w}n w_llu
and
Via o, v
A
/\
/ \\
A A A Az A ,/ \

wl:n Al”lzn w%n A IPIII Win
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(ie., im (4,9}, —wj,,,) = 0,7 = 0,1; lim (4,0}, —w},,,) =0,j = 1,2)

such that the given chain is the sum of their restrictions (i.e., g; = v}, -+ vj,,
J =1,2). In this condition the sequences ('u}n) ete. themselves need not
converge. In other words, the topological condition is the algebraic con-
dition obtained by passing to sequences of vectors modulo null sequences.

After getting the initial definitions out of the way, we reformulate
our problem in Section 2 in terms of split monomorphisms and outline
the method followed in characterizing them. In Section 3 wc introduce
the tools of internal hom and tensor products for topological systems
(these are discussed in [6] for algebraic systems). Criteria for split mono-
morphisms from systems whose spaces carry their weak topologies and
from finite-dimensional systems are given in Theorems 4.4 and 4.5
respectively. These pivotal results of the paper can bc obtained without
the machinery of Section 3 (as in [10]). However, we want to emphasize
the functorial aspeet of our procedure.

Our insistence on a general concept of a system which includes
algebraic systems as a special case now pays off in several ways. We
define functors from topological to algebraic systems which enable us
to reduce the question of when a finite-dimensional subsystem is a topo-
logical direct summand to the algebraic case (Theorem 5.2). A further
reduction, to finite-dimensional indecomposable subsystems, is made in
Section 6. In Section 7 we use these reductions to transform the chain
conditions of [2] to broken chain conditions. The chain conditions in
the algebraic case themselves can also be deduced from Theorem 4.5.
Rather than repeat the results of [2] for pairs of linear transformations,.
we treat in the concluding section an example of one isomorphism type
of systems involving three linear transformations.

Theorem 4.5, dealing with topological systems, is used in [11] to
prove the algebraic result that a copure subsystem is also pure (copurity
being defined in a dual fashion to purity). This in turn yields one possible
way to obtain a purity criterion for pairs of linear transformations [7].

1. The category of C"-systems

We wish to consider finitely many continuous linear transformations
Ay, ..., Ay from a topological vector space V to a topological vector
space W. All the topological vector spaces considered in this work are assumed
to be complex, locally convex and separated. It is helpful to view the data
(V, W; A,,..., Ay) as an object of a category with suitable morphisms.
Just as a set of endomorphisms of an abelian group M determines a module
over the ring R generated by the endomorphisms, the linear transform-
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ations A,, ..., Ay give rise to a module-like object. To each N-tuple

N
(@, ..., ay) € CV a linear transformation > a;4;: V—W is attached, and
i=1
one gets a vector space of transformations from V to W. In the case of
the module M it is convenient to replace R by an abstract ring, because
the action of B on submodules and quoticnt modules of M may not be
faithful. So in the case of (V, W; 4,,..., Ay) it is for similar reasons
convenient to have the space CV of N-tuples (a,, ..., ay) acting as linear
transformations from ¥ to W, rather than the space of combinations
Da4;.

- We therefore define a topological CV-system, or briefly a CV-system,
to be a pair (V, W) of complex, separated, locally convex topological
vector spaces along with a system operation assigning to every N-tuple
eecCV and veV a vector ev € W such that:

(i) for each ¢ e CV the map v—>ev is a continuous linear transform-
ation of V to W; :

(ii) (ae,+ Pe,)v = a(e,v)+B(e,v)forallve V,e,, e, CY and e, f € C.

For any pair of topological veetor spaces V and W we shall hence-
forth denote by Hom(V, W) the space of continuous linear maps from
V to W. Essentially, a C¥-system (V, W) is given by a linear represen-
tation T: C¥—=Hom (V, W) such that for each e e C¥ and v e V T,(v) = ev.
Any base ¢!, ..., 6" of CV determines N continuous linear maps T, ..., T y:
V—>W. Conversely, having N continuous linear maps A, ..., Ay: VW
and selecting a base ¢!, ..., ¢V of CV, a representation T': CY—Hom(V, W)
is given by sending ¢ = Ya;e' e C¥ to T, = Ya,A;. When there is no
confusion we denote the transformation T, simply by e.

Let (X, ¥), (V, W) be two topological CV -systems. A homomorphism
(@, w): (X, Y)—>(V, W) is a pair of continuous lincar transformations
p: X—V, y: Y>W such that

ep (1) = y(ex)

for every ¢ € C¥ and x € X. In fact it suffices to test this commutativity
condition only on a basis of C¥ and a set of generators of X. We compose
two homomorphisms (¢, y): (X, Y)—>(V, W), (0, 7): (V, W)—>(U, Z) by
the rule (o, 7)(p,y) = (op, ty): (X, Y)->(U, Z). The didentity homo-
morphism 1,y 5, on (V, W) is the pair of identity maps (1p, 1y). The
notions of endomorphism, isomorphism and isomorphic systems now become
apparent. The set of homomorphisms from (X, Y) to (V, W) forms a sub-
space of Hom(X, V) x Hom(Y, W) in the obvious manner, and we shall
denote it by Hom (X, Y), (V, W)).

A subsystem (G, H) of a CV-system (V, W) is determined by two
linear subspaces G of V and H of W such that ¢(@) = H for all ¢ e CV.
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With the induced topologies, G and H are again separated and locally
convex. The action of C¥ from V to W restricts to a continuous action
from G to H. Hence (G, H) has the structure of a CV-system. More-
over, the pair (tpq, 4y y) of inclusions of G to V and of H to W is a
homomorphism of CV-systems. If (¢, y) e Hom((V, W), (U, Z)), then
(9y ¥) (tp.gy tw i) 18 called the restriction of (¢, v) to (G, H).

A closed subsystem (G, H) of (V, W) is a subsystem such that @ is
closed in V and H is closed in W.

If (¢, %) EHOH‘I((X, ), (V, W))’ then (¢, y)(X, Y) = (¢pX, pY) is
a subsystem of (V, W) and Ker(p, y) = (Kerp, Kery) is a closed sub-
system of (X, Y).

The sum (G*, H') +(G% H?) and intersection (G, H')N (G2, H?) of two
subsystems (G, H'), (G% H?) of (V, W) are respectively the subsystems
(G*+G* H'4 H?) and (G*NG?, H' N H?).

In the sequel we shall denote the dual space of a locally convex
space V, consisting of continuous linear forms on V, by V’. We put (v, v")>
for the value of a linear form v’ € V' on an element » € V. Any topological
CV-system (V, W) has a dual CV-system (V, W)’ = (W', V') defined as
follows. We let each ¢ € CV act from W’ to V' via the transpose rule

(v, ew’y = {ev, w’).

We assume that W', V' carry their weak topologies (i.e., the o(W’', W),
o(V’, V) topologies), in which case ¢ € CN acts continuously from W’ to V.

An algebraic CN-system (V, W) is initially defined in the same way
as a topological CV-system cxcept that V and W are simple linear spaces
without topologies (and consequently each ¢ € CV acts as a simple linear
map from V to W). Every algebraic CV-system (V, W) can be viewed
as a topological CN-system by putting on V and W their finest weak
topologies (i.e., o(V, V*), o(W, W*), where V*, W* are the algebraic
duals). This is because every linear map between such spaces is continuous
(and every linear subspace of such a space is closed). When the term
“algebraic CV-system” is used it will be clear from the context whether
the initial algebraic concept or its topological equivalent is meant.

To every topological C¥-system (V, W) one can attach its underlying
algebraic CN-system obtained by forgetting the topologies on V and W
(or replacing them by the finest weak topologies).

2. The problem of split monomorphisms

A CV.system (V, W) is said to be the direct sum of a family of sub-
systems ((G;, H,));; in case V is the topological direct sum of (&;);,, and
W is the topological direct sum of (H;);,,. If this is the case, we write



2. Problem of split monomorphisms _ 11

(V, W) = D'{G;, H))

: jeJ
(or (V, W) = (G4, H,)+...+(@G,, H,) for a finite number of summands).
A subsystem (G, H) of (V, W) is said to be a direct summand of (V, W)
in case it has a supplement, namely a subsystem (K, L) such that (V, W)

= (@, H)+ (K, L). As V and W are separated, a direct summand and any
of its supplements must be closed subsystems of (V, W). A subsystem
(@G, H) of (V, W) is a direet summand of (V, W) if and only if there is
an endomorphism (=, ¢) of (V, W) such that (=, ¢)*® = (%, ¢) and
(7, 0)(V, W) = (G, H) (in which case Ker (=, o) is a supplement to (G, H) in
(V, W)). We call such a (=, ¢9) a projection. Note that the existence of
a closed subsystem (K, L) of (V, W) such that (V, W) = (G, H)+ (K, L)
and (G, H)n (K, L) = (0,0) does not by itself imply that (@&, H) is
a direct summand of (V, W) (except in situations where the closed graph
theorem can be invoked to show that the projection in the algebraic
sense is continuous).

Let us return for a moment to the example of the subsystem (@G, H)
spanned by the chain I' of the introduction; where now A4,, 4, are
replaced by the basis e!, e of C2. The two components of a projection
onto (@, H) must be of the form

2 3
n(0) = Y 0,00,  ew) = Y<w, ik, geV, heW.
j=1

j=1

From the requirements that (m, o) be a projection and (h,, hy, hs) be
linearly independent one deduces that the functionals must form a chain

in (W', V') which is dual to I"in the sense that (g;, gi> = 01y by, > = .
Conversely, the existence of a dual chain implies that (G, H) is a direct
summand of type III3. This is a special case of Aronszajn’s characteriz-
ation of finite-dimensional direct summands of C*-systems [1], Section 6,
Theorem 1. Our task is to eliminate the dual system from this character-
ization.

Chains may be regarded as descriptions of homomorphisms (see
Proposition 7.2 below). In general, to describe direct summands of a given
isomorphism type 2 in a CV-system (V, W) we consider homomorphisms
(p, ») from a model system (X, ¥) of type 2 into (V, W). Such a homo-
morphism is said to be a split monomorphism whenever it has a left in-
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verse (0,7): (V, W)>(X, Y) (ie, (s,7) (9, ¥) = Lix,r))- I (¢, ) e Hom ((X,
Y), (V, W)) is a split monomorphism with left inverse (o, t), then (p, v) X
X (o, ) is a projection of (V, W) onto (¢, )(X, Y), and the homomorphism
of (X, Y) onto (¢, v)(X, Y)induced by (¢, y) hastherestriction (o, 7)|, ,x. 1)
as a two-sided inverse. Thus (¢, y)(X, Y) is a direct summand of (V, W)
which is isomorphic to (X, Y¥). Conversely, given a projection (z, o)
of (V, W) onto a subsystem (G, H) and an isomorphism (¢, v): (X, ¥)
~ (G, H), we have (but for change of targets) that (¢, y) e Hom((X, ¥),
(V, W)) and (o, 7) = (¢~ ¢ ')(, ¢) is a well defined left inverse of it.
We therefore develop conditions for a given homomorphism to be a split
monomorphism. We shall study in particular the case that (X, Y) is
finite-dimensional, that is both X and Y are of finite dimension.

We observe that for isomorphism types 2 of infinite-dimensional
systems there is some advantage in studying a given system in terms of
its epimorphisms onto a system of type £ (rather than in terms of sub-
systems of type ). This is because the kernel of a homomorphism is
always closed. However, as far as single direct summands are concerned
the two approaches are equivalent.

As a first step in eliminating linear functionals, we characterize
split monomorphisms (¢, v): (X, ¥)—(V, W) in terms involving (¥’, X)
rather than (W', V’). Our technique is to generalize the following con-
siderations to CV-systems. Let X and V be vector spaces, which for
simplicity we take to be finite-dimensional. Let ()i, be a basis of X
and (2)[, its dual in X'. A linear transformation ¢: X~V is left in-
vertible if and only if ¢ is monic or, equivalently, (¢(x;))7, is lincarly
independent. However, we shall imitate the following transforms of these
conditions. Look at the commutative diagram

Hom(g, X)

Hom(V, X) Hom (X, X)

(
I |

¥
Hom(V, Hom (X', C))

Hom(p, Hom(X’,C))

> Hom(X ,Hom (X', C))

l l

¥
Hom(V ® X', C) Hom(+®1xC) » Hom (X X/, C)

Clearly, ¢ has a left inverse if and only if 11is in the image of Hom (¢, X).
The vertical isomorphisms to the second row stem from the canonical
isomorphism ~ : X ~ X" = Hom(X', C), while those to the third come
from the adjointness relation of Hom and ®. 1y is carried first to ~ and
then to the trace form x (a particular contraction of tensors) defined
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by the requirements »: z ®2'+>{(z’, ) = (@, #’). Thus ¢ has a left in-
verse if and only if there exists a linear functional ¥ on ¥V ® X’ such that
F(p ®1x.) = ». This i3 the condition generalized in 4.4. Since any linear
functional on the image of ¢ ®1y. is extendible to V ® X', this is equiv-
alent to the requirement that

m
Z eyp(x,) ®x; =0, ¢ scalars,
%,j=1
implies

m m
Zc,“ :x( 20,,93,;@(0;) =0-
i=1 ij=1

This is generalized in 4.5.

3. Internal hom and tensor product

The desired functors, which will enable us to carry through the
argument of the last section in the category of CV-systems, can be defined
with various choices of topologies. We shall consider here only the simplest
definitions adequate for application to finite-dimensional direet summands.

We first choose internal hom and tensor products in the category
of separated locally convex spaces. If X and V are such spaces, we endow
the space Hom (X, V) of continuous linear maps from X to ¥V with the
topology of pointwise (or simple) convergence. This space with the as-
signed separated locally convex topology will be denoted by Hom, (X, V).
It is clear that defining the action of Hom, on continuous linear maps
in the usual way we obtain a bifunctor. Note that with the topology we
have already chosen for X' we have Hom,(X, C) = X'

We endow the algebraic tensor product X ® Y with the inductive
topology and denote the resulting separated locally convex space by
X ®,V (see [8], Definition 3). This inductive topology is the finest locally
convex topology making the tensor map ®: X x V>X ® V separately
continuous. For any separated locally convex space U the map gr>@o ®
is a bijection of Hom (X ®,V, U) onto the space Z(X, V; U) of separately
continuous bilinear maps of X x ¥V into U (see [8], Proposition 13). This
universal property enables us to define the bifunctor ®, as usual.

It is clear from the definitions that the map wis(w—(v—>o(z, o))
is a bijection of #(X,V; U) onto Hom (X, Hom,(V, U)). Thus we get
a bijection '

(1) Hom (X ®,V, U) ~ Hom(X, Hom, (V, U)),
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where a continuous linear map ¢: X ®, V— U corresponds to a continuous
linear map y: X—~>Hom,(V, U) if and only if

(2) p(r®@v) =yp(@)(v) for all zeX,velV.

The isomorphisms (1) are evidently linear and constitute a natural iso-
morphism or an adjointness relation.

We define an internal homfunctor hom in the category of CV-systems
as follows. We put Hom,((V, W), (U, Z)) for the space Hom ((V, W),
(U, Z)) of system homomorphisms with the topology induced on it as
a Subspace of the topological product Hom,(V, U) x Hom,(W, Z). We
define the continuous action of any e e CV from Hom,((V, W), (U, Z))
to Hom,(V, Z) by

(3) ¢(p,y) = eop = yoe, (¢, y) e Hom((V, W), (U, Z)).

(Here we have written ¢ for 7,.) As the spaces involved are separated
locally convex and (e, (¢, y))—e(p, y) is bilinear, we obtain a CV-system

hom ((V, W), (U, Z)) = (Hom,((V, W), (U, Z)), Hom,(V, Z))

with the system operation specified by (3).
Given homomorphisms (u,»): (VY W)—(V, W) and (o, 7): (U, Z)

~(U%, Z'), we set

hom((l‘) v), (o, T)) = (Hom((,“a v), (o, T))’ Hom (g, T))’
where

Hom((l‘y")y(oy T)) ((‘P;"l’)) = (o, 7)(p, »)(u,v), _
(py ) e Hom ((V: w), (U, Z))

This makes hom a bifunctor with the usual varianees.

The dual of a CM-system, defined in Section 1, can be constructed
(up to isomorphism) as a value of hom. To do this, we consider the CV-sys-
tem (CY’, C), where CV’ is the dual of C" and ¢ € CV acts on f e CV via
the rule ef = (¢, ).

LemmMA 3.1. If (X, Y) is a CN-system, then the map (¢, p)—>y is an
isomorphism of Hom,((X, Y), (CV', C)) onto the dual space ¥’ of ¥.

Proof. If (¢, v): (X, ¥Y)—(CY', C)is a homomorphism of C¥-systems,
we must have ep(x) = y(ex) for all ¢ e CV and x e X. By the action of
e defined for (CY', C) we have ep(x) = (e, ¢(2)). Thus e, p(0)) = {ez, y)>
and ¢ is determined by y. In other words, the map of the lemma is injec-
tive. It is also surjective because if ¢ (2) is defined for every #in X by means
of the last equation, then ¢ is a continuous linear map of X into CY and
(9, ¥) is a homomorphism. It is easy to see that (¢, y)—y is a homeo-
morphism.
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PROPOSITION 3.2. For any OCV-system (X, Y) the pair of maps
(@, v)>y and 1y is an isomorphism

bom ((X, ¥), (CV, C)) ~ (Y, X).

These isomorphisms constitule a natural isomorphism.

Proof. By Lemma 3.1 and the fact that Hom,(X, C) = X', we have
a pair of topological linear isomorphisms. That this pair is a homomor-
phism of systems is immediate from the definitions.

The assignment (X, Y)—(Y', X) is completed to a contravariant
functor by sending (¢, y) e Hom ((X, Y), (U, Z)) to (v', ¢') e Hom((T, Z)’,
(X, X)), where ¢’, y" are the transposes of ¢, y. It is then easy to verify
that the isomorphisms of the proposition are natural, namely constitute
a corepresentation of this duality functor.

We now construct a left adjoint to hom. We consider the space
(XQW)YD(Y®,V), with the direct sum (same as product) topology,
and the (not necessarily closed) subspace R((X, ¥), (V, W)) algebraically
generated by all terms of the form ‘

(x®@ev, —ex@v) for zeX,veV,ecCV.

This subspace, which we shall denote simply by E when there is no con-
fusion, is called the space of tensor relations in X @ WPY ®,V. Taking
the closure R and considering the quotient space (X@ WY ®,V)/R
(which is still locally econvex and separated), we determine the action
of any ¢ e CY from X ®,V to (XQWPY®,V)/E by the requirement

(4) e(z®v) = (®Qev,0)+E = (0,e0Q00)+ R

for « € X, v € V. This action is linear and continuous because itis 1y ®T,:
X®,V—>XQ®,W followed by the canonical injection and quotient maps.
The linearity in e is evident. The ¢nternal tensor product (X, Y)®(V, W)
is then the CV-system (X®,V,(X®W®Y®,V)/R) with the system
operation given by (4).

The tensor product of two homomorphisms (¢, v): (X, Y)—(X?, Y1),
(o, 7): (V, W)—(V, W) is the homomorphism

(@, ¥)® (0, 7): (X, ¥)Q(V, W)>(X', Y) @(¥, W)
defined as the pair
(p®0c, 9RTDY o).

Here ¢ Qo: X ®,V>X'®, V" is the usual tensor product of linear trans-
formations. As to the second component, we note that due to the commu-
tativity condition satisfied by (¢, v) and (¢, ) the continuous linear map
PRT@yQomaps R = R((X, Y), (V, W)) into B* = R((X", X", (V',W?)),
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hence R into (R')~. It thus induces a continuous linear map ¢ ® T Dy Qo
on passing to the quotients. This map is determined by the requirement
that

PRTDYo((zQw,y®v) +R) = (p(2) ®7(w), v(y) @ (v)) + (RY)"

for all # € X, ete. It is easy to see that (¢, v) ® (o, 7) is a homomorphism
of CV-systems and that our assignments constitute a bifunctor — the
internal tensor product functor of CN-systems.

ProPOSITION 3.3. The internal tensor product functor of the category

of CN-systems is a left adjoint of hom. In other words, we have natural
bijections- :
(5) E: Hom((X, Y)®(V7 W)’ (Uy Z))
~ Hom ((X, Y), hom ((V, W), (U, Z))).
(In the notation for natural transformations we often suppress

indices indicating dependence on the objects involved.)

Proof. For given (X, Y), (U, Z),(V, W) we define the required
bijection & as the composite of three bijections.

(a) A bijection of Hom((X, Y), hom((V, W), (U,Z))) onto the set A
of all triples of continuous linear maps
a,: X—>Hom,(V, U), a,: X—-Hom,(W,Z), a3 Y—>Homy(V,Z)

satisfying the equations

(6) ea, (2)(v) = ay(®)(ev) = az(ew)(v)
for all e X,veV,eeCV

A homomorphism (s, 7): (X, ¥)>hom((V, W), (U, Z)) is a pair of
continuous linear maps

o: X—Hom,((V, W), (U, Z))
and
r: Y—>Hom,(V, Z)

satisfying
(%) (e (@) (v) = v(em)(v).
Now o(w), being in Hom,((V, W), (U, Z)), is a pair of continuous linear
‘maps o,(%): V—U and o,(x): W—Z which satisfy the commutativity
condition for homomorphisms of CV-systems. Define o,:" X -Hom,(V, U)
and o,: X—>Homy(W,Z) by o,: #—>0.(2), 05: ®—>0,(x). The fact that
o is linear is equivalent to the linearity of ¢, and ¢,. Since the topology
of Hom,((V, W), (U, Z)) is that induced from the product topology of
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Hom, (V, U) x Hom, (W, Z), the continuity of ¢ is equivalent to that of
g, and o,. Equation (*) can be rewritten

(¢(01(2), 0a(@))) (0) = 7(e2) (0).

By the definition (3) of the system operation of hom((V, W), (U, Z)),
this can be expressed in the form ’

€0, (#)(v) = oq(@)(ev) = 7(ew)(v),

the first equality of which is the commutativity condition for o(«). Thus,
if we attach to each (o, t) the triple (o, oy, ), We obtain a map into A.
This map is the desired first bijection. Indeed it is clear from the above
considerations that it has as inverse the map sending (a,, a;, a3) € A to
((au as), aa)-

(b) A bijection of A onio the set B of all triples of contimuous linear
maps

Bi: XQV—->U, Bs: XIQW—Z, By YR V~>Z

‘satisfying the equations

(7) ef1(2 @) = Br(x ®ev) = Py{ex @)
for all te X, veV, ecCV.

"For ¢ =1,2,3 we take B, to be the map corresponding to a; in the
adjointness relation (1). The formulas of type (2) show that equations
(7) are equivalent to the equations (6).

(c) A bijection of B onto Hom((X, ¥Y)Q(V, W), (U, Z)).

Let (B,, B2, Ps) € B. Since X @ WP Y ®,V is a topological direct sum,
the linearity and continuity of the map [8,, f,] sending (¢,,?,) ¢ X @ WD
@Y ®,V to B,(t,) + Bs(ty) € Z is equivalent to the linearity and continuity
of B, and B;. The second equality of (7) expresses the fact that [f;, fs]

vanishes on generators of R((X, Y), (V, W)), hence on R. Therefore
[Bs, Bs] induces a continuous linear map

(B2, Bal: (XQWDYR,V)E~Z

(and conversely, every continuous linear map o bebtween these spaces
is of this form with B,(¢,) = o((t,, 0) + R), Bs(2.) = ¢((0, t,) + R)). Referring
to the definition (4) of the system operation of (X, Y)®(V, W), we see
that equations (7) state that (B,, [, fs]) satisfies the commutativity
condition of system homomorphisms. Thus, our third bijection is the map
(B1y Bay Ba)—=>(B1y [Ba, Ba]). Its inverse attaches to (=, o) € Hom((x’ Y)®

®(V, W), (U, Z)) the triple (x, f5, f3), where f,, B, are defined in terms
of o as in the parenthetical remark above..

2 — Dissertationes Mathematicae CLXI U
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-Of the statement that (5) is an adjointness relation we shall verify
only the part actually used here; namely, the naturality in the first variable.
(In fact, for algebraic systems at least we have a natural isomorphism
even between the internal functors:

hom((x) Y)e(V, W), (U’Z)) Nhom((xﬁ Y), hom((Va W), (U, Z)))’

cf. [6]. Here it is clear that if we endow A and B with the structures of
complex vector spaces by defining the operations componentwise, our
three bijections become linear isomorphisms. Hence so is their composite £.)

Let (p,v): (XY Y)—>(X,Y) be a homomorphism of CV-gsystems.
We distinguish maps belonging to (X%, Y'), (V, W), (U,Z) from the
former ones by adding the superscript 1, and show that the following
fquare commutes.

Hom ((X , Y, Hom (9, hom((7,),0.2)) Hom (X%, Y1),
hom ((V, W), (U, 2))) hom ((V, W), (U, 2))
(8) £ &l

¥ Y
Hom((X, ¥)® Hom((r.)®1 (7, (U2) Hom ((X', Y ®
® (V, W), (U, 2)) ® (V, W), (U, 2))

Let (o, 7) belong to the upper left corner. It is sent by the top map
to (o%, ') = (op, Ty). We have o} = 0,9, 0} = o,0. Hence, the first
bijection defining &' sends (o, 71) to (g,¢, 0.9, Tw).. The second bijection
carries this to (8], B3, f;), where (2! ®v) = o,(¢(2")}(v), ete. Thus

(Bly B2y B3) = (Bulp ®1y), Bslp ®Ly), ol ®Ly)).

This goes by the third bijection to

(B¢ ®1p), [B2(9 @), Baly ®11)T).

Evaluating the second component on a generator (z'®w, y'®9v)+(R')~
of the second space of (X', Y')®(V, W), we see that it equals [B,, f3] X

X(p @1y @y ®1,). Thus the image of (¢, ) we just computed is the same
a8 its image along the other path; namely,

(B1y [Bay .Ba])((?’) ¥) @ (1, 17))'
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4. Characterizations of split monomorphisms

Let X be a separated locally convex space. As in the definition of
the dual system, its topological dual X' is endowed with the topology
o(X', X). Hence, deviating from standard notation, we shall denote here
by X" the topological dual of the above X' endowed with the topology
o(X", X'). .

A CV-gystem (X, Y) is said to be weak in case X and ¥ have the
weak topologies o(X, X') and o(Y, ¥’'). Algebraic C¥-gsystems and in
particular finite-dimensional CV-systems are weak. For a weak system
(X, Y) the canonical map *: X X", sending z to Z with (&', &) = (&, ')
for all 2’ € X', is a topological linear isomorphism; similarly for ¥. It is
easy to see that we have an isomorphism

(%,): (X, ¥) ~ (X", X).

Combining this isomorphism with the inverse of the isomorphism of
Proposition 3.2 for (X, Y)' in place of (X, Y), we obtain

LEMMA 4.1. For a weak CV-system (X, Y) we have an isomorphism

(8,¢): (X, Y) ~hom((X, Y), (CV, C)).

Here e(y) = § and 6(x) is of the form (6, (x), @), where ,(z) e Hom(X’, CV').

The determination of é,(x), which is given by (e, 8,(2)(y')) = <e(®), y’'>
for all ' € Y¥', e € CV, is immaterial for our purpose. So also is the fact
that the isomorphisms of 4.1 are natural.

LEMMA 4.2. Let (X, Y) be a weak CN-system. Then the image of the
isomorphism (6, ¢) of Lemma 4.1 under the bijection

Hom (X, Y), hom((X, Y, (CV) 0))
~ Hom((X, ¥)® (X, XY, (CV), C))
described wn the proof of Proposition 3.3 is the trace homomorphism
(4, %): (X, Y)®(X, Yy—’(CN’) C),
where the trace form x is defined by the requirements
(2 ®%', y®y)+R((X, ¥), (X, Y))7) = (&, 8> +<,¥"
forallze X,y e Y,o' € X', y’ € Y'(and A satisfies (¢, A(x @Y')) = {em,y")).

Proof. The first bijection of 3.3 sends (4,¢) to (d,,% ¥), where -
8, maps z to é,(«) as in 4.1. This is sent by the second bijection to (4, A5, fs),
where A(z®Yy’) = 8,(»)(y’) (and thus A is as defined in the lemma),
B.(2®2') = z(2') = (®,2’) and similarly B,(y ®Y') = (¥, ¥’)>. The last
bijection leads to (4, [B,, fs]), where clearly [Bs, B3] = .




20 Direct summands of systems

PROPOSITION 4.3. Let (X, Y) be a weak C¥-system. A homomorphism
(@, v): (X, X)—=(V, W) is a split monomorphism if and only if there exisis
a homomorphism

(o, 7): (V, w) ®(X, Y)’_*(CN'y C)
such that

(1) (0, 7) (95 ¥) ®Lx,7y) = (4, %),

where (A, %) is the trace homomorphism on (X, ¥Y)®(X, ¥).
Proof. We have a commutative diagram

Hom ((9,¥),(X,Y))

Hom ((V, W), (X, ¥)) — ———> Hom (X, ¥), (X, Y))
\Hom((V,%),(3,¢)) | Hom((X, ¥),(0,4))

Hom((V, W), , Hom((X, 7),

hom (X, YY), (CV, C))) hom ((X, YY), (€Y', ©)))
1 14!

Hom ((V, W) ® _ Hom (YX, ®

®(X7 Y)’y (CN’1 C)) Hom((%v)@l(x,y)‘-(CN'.C)) ® (X, Y)" (CN" C))

The top square is commutative and its vertical maps are isomorphisms
because Hom is a bifunctor and (4, ¢) (of Lemma 4.1) is an isomorphism.
The bottom square is a case of square (8) of Section 3. The homomorphism
(¢, ) 18 left invertible if and only if 1y yy is in the image of Hom((q), ¥),
(X, Y)). We have Hom ((X, ¥), (4, ¢))(1x,r)) = (4, &) and by Lemma 4.2
E‘((d, ¢)) = (A, »). Hence (g, y) is left invertible if and only if (4, ) is
in the image of the bottom horizontal map; which is what the proposition
states.

THEOREM 4.4. Let (X, Y) be a weak CN-system, and let the linear
trace form #: X @,X @Y ®,Y —~C be defined by the requirements

%((r®2, y®y") = (@, )+, ¥">.
A homomorphism (¢, v): (X, Y)—>(V, W) is a split monomorphism if and
only if for some continuous linear functional F: VX OW®,Y —>C,
vanishing on the space of tensor relations R((V, W), (X, XY)'), we have

(2) F(p@ly@y®ly) = &.

Proof. Due to the naturality of the isomorphisms of Lemma 3.1
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(see 3.2), we have a commutative square

Hom ((V, W)® Hom((w.w)@I(X’Y)'.(CN',C)_)> Hom((X, Y)®
®(X, ¥), (CV, 0) ®(X, ¥'), (CY, C))

\ 1

V ') e ! * ' ’
(V®.X @W ®,Y)/B) Emreizersiro (X0, ©Y®,¥)/(B))

where the vertical isomorphisms take a homomorphism to its second
component. Thus there exists a (o, 7) satisfying (1) of Proposition 4.3
if and only if there exists a linear functional v satisfying

T(pQlxy Dy Rly) = x.

This last condition is clearly tantamount to the condition stated in the
theorem.

We see that the consideration of the systems hom((V, W), (U, Z))
and (X, Y)®(V, W), rather than just their second spaces, has been
extra baggage; carried along to motivate the procedure.

We now specialize to the problem of splitting (¢, v): (X, Y)—>(V, W),
under the standing assumption that (X, Y) is finite-dimensional. Let
(@1y ooy By)y (Yyy .-y Y,) be bases of X and ¥ respectively, and let (a,, ...
cees @)y (Yyy --+y Y,) be their dual bases in X', Y’ respectively. That is,
{myy 2y = 0y and <Yy, ¥;> = 6. We say that the elements

{(?wi@a’;yo)y (O,Wk®?/2); 4, =1,...,m; k, I.=1, 1'”’}

in VX' @ WQY' are independent of R((V, W), (X, Y))~ up to a zero
trace whenever any pair of linear combinations

(2 0;; @, Z Yy ®3/2)1

3,j=1 k=1

which belongs to R((V, W), (X, ¥)')” must satisfy

m n
Zcﬂ‘*‘ dek = 0.
i1 k=1

THEOREM 4.5. The homomorphism (¢, v): (X, Y)>(V, W) ¢8 a split
monomorphism if and only if the elements {(gz;R;,0), (0, Y. @Y))} are
independent of R((V, W), (X, X))~ up to a zero trace. ’

Proof. Supposing (¢, ) is split, we get a continuous functional
F: VX ®W®, Y —~C, vanishing on the closure of the space
R = R((V, wy, (X, Y)') of tensor relations, and satisfying condition (2)
of Theorem 4.4. In particular

F((gx; @, 0)) = (wy, ;) = 6  for 4,5 =1,...,m,
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and
F((Oy'l’yk@?/;)) =<yk7y;> =0y for Kkl1=1,..,n.

If some pair of combinations (Ye,ew; ®x;, ddyyy, ®y,) belongs to R,
then

0 = F((Jcypz; @), D di vy, ®?/;))
= ZcﬂF((‘pwi®$;7 0)) +Zdlc1F((01 Wk®yl’)) = Zcii+2dkk-

_ On the other hand, if the elements in question are independent of
R up to a zero trace, one defines a linear functional ¥, on the finite-
dimensional subspace of (V®,X' @ W®,Y')/R generated by the terms

{(‘I’mi@m;, 0)-+RB; (0, yy, Qy;) + R}
by
F((eypn; @5y Ydwy, ®y)+ R) = deoy+ Ydyy.

This F, is well defined because of the hypothesis, and continuous because
it is given on a finite-dimensional secparated vector spacc. We take a con-
tinuous extension of F, to all of (V®,X ® W®,Y')/R and let F be the
functional defined on V®,X @ W ®,Y’ as the composite of that extension
with the canonical map

VX oW Y (Ve X ®@We®,Y')/R.

This F will satisfy condition (2) of 4.4. Indeced, it sufficcs to compare the
values of the members of (2) only on the basis {(#; ®;,0), (0, ¥, ®y,)}

of XX ®Y®,Y. In that case F((pz;®%;,0)) = d; = (&, ¥;> and
F((0, vy ®W1)) = 84 = {Yx, ¥1», and the proof is ended.

‘Remark. Without employing bases our theorem states that (¢, y)
i8 a split monomorphism if and only if the preimage of R((V, W), (X, X))~
under ¢ @1y Py @14, is contained in Ker(x).

In order to pursuc the splitting question further, we require a more
explicit description of the space R of tensor relationsin V,X @ W®,Y’
and of the topology of the latter, under which the closure of R is taken
(or more simply, of the topologies of V®,X and W ®,Y’). This is the
purpose of the following two propositions.

- Keeping the above notations for bases of X, ¥ and their duals, let
(€Y ..., ") be a basis of CV. For each ke {1, ..., N} let (e) be the n X m
matrix of the linear transformation #+—>¢e*x relative to the bases (w,, ...

veey @)y (Yyy -0y y,) of X and ¥; so that ez, = Ze}‘iyj.
i=1

PROPOSITION 4.6. An element z in VQX ® WY’ belongs to R if
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Ond onlg; if it is of the form
n N
(3) (% (2:1:2 ”gk)® ;) ,'—;(gekvﬂc) ®y;'),

where the vy, e V.

Proof. If 2 is of the above form we may rewrite it as

n N
ZZ('DM ® Zm:é}‘,-m;, — vy, ®y}).

=1 k=1 =1

Since the matrix associated to the action of ¢* from Y to X' is the

m

transpose of (ej;), we have Ze}‘,-m; = ¢*y;. Thus
i=1

n

(4) = ('Djk- ®6ky;7 _ekvjk ®3/})
j=1k=

]

—

Each summand above is in B, by definition of the space of tensor relations,
and hence z € R.

For the converse it suffices to show that any generator (v ®ey’,
—ev®y’) of R, with veV, ec CY, y' €Y', is expressible as a term of

the form (3). Letting ¢ = fckek, Yy = jd,y} we get
k=1 j=1
N
(v@ey', —ev®y’) = (ZZd]ckv@)e Yiy — Z(Ze d;c, )®y,)
=1 k=1
Upon noting that e*y; = 2 £ x;, this equals
=)
m n N 1 n N
(2( ZZ@,’-‘,-d,-ckv) ®F;, — 2 (Ze"d,-c,,v) ®y;-),
fml el k=l j=1 k=1

an expression of the desired form (3).

PROPOSITION 4.7. The mapping V">V ®,X  given by (vy,...,9,,)

"’2"1 Rw; is an algebraic and topologwal zsamorphzsm of VX' with
Jem1

the m-fold cartesian product V’"‘. Thus a net Yv;(a) @x; in V Q,X’, where
a runs over a directed set, tends to an element Y'v; ® z; if and only if v;(a)—>v,
for each j =1,...,m in V. Similarly for W®,Y".

Proof. That we have an algebraic isomorphism is obvious since the
x;'s form a basis of X'. The topological part falls out from the fact that
the topology on V ® X', carried over from the product space V™, makes
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the tensor product map V x X >V ® X  separately continuous (in fact
continuous) and is finer than the topology of V ®,X’, hence coincides
with it.

5. Reduction to algebraic systems

In [2] Theorem 6.6 explicit “chain” conditions are given so that
a homomorphism (8, T)—~(U, Z) of algebraic C2systems, with (8, T)
finite-dimensional, will be a split monomorphism. We now intend to reduce
the question of splitting a homomorphism (¢, y): (X, ¥Y)—>(V, W) between
topological C~-systems, with (X, Y) finite-dimensional, to the same
question concerning the simpler algebraic C¥-systems. This will put us
in a position in Section 7 to apply the chain conditions of [2], Theorem
6.6, to (¢, y).

For any separated locally convex space V and directed set D let
V2 be the vector space of all nets over D in V and, denoting by VP the
subspace of nets tending to zero, consider @Q2(V) = V?/V2. For any
continuous linear map A: V—W bctween our spaces, there is a functorially
induced linear map Q”(A): @P(V)—QP (W) such that Q°(A4A)((va)ep+ V)
= (A0.).ep+W?P. The continuity of A guarantees that QP(A4) is well
defined. For any separated locally convex space ¥V there is a natural
embedding 4,: V—>QP(V) given by 4,(v) = (9)ap+ V>, where v, =
for all a € D. (Although A4, depends also on D, we leave this out of its
notation, as the symbol @2 (V) for its target will be a sufficient reminder
of this fact.) The naturality of A is expressed by QP(4)4, = 4 A.

Using this construction on a topological CV-system (V, W), we derive
the algebraic CN-system QP(V, W) = (Q”(V), @Q®(W)), where the action
of e € CV from QP (V) to Q°(W) is given by €((9.)ecp + VY) = (€V)acp + Wi -
To a homomorphism (o, 7): (V, W)—(U,Z) we associate functorially
the homomorphism QP (c, 7) = (@ (), @°(7)): Q@°(V, W)>Q"(U, Z) of
algebraic CV-systems. For any CV-system (V, W) there is a natural mono-
morphism of algebraic CV-systems Ay ) = (4y, dy): (V, W)>QP(V, W),
where the source (V, W) stands for the underlying algebraic system of
the given system. Thus, for any (¢, 7): (V, W)—(U, Z) the equation,
Q2 (o, ©) Ay, w) = A(v.z(0, 7) holds.

LemMMA 5.1. For any finite-dimensional CY-system (X, Y) and every
directed set D the homomorphism Ay vy : (X, Y)>Q”(X,Y) is a split
monomorphism of algebraic CV-systems.

Proof. We pick any linear map no: QP(C)—C which is a left in-
verse of the injection A;: C—>@QP(C). Being finite-dimensional, the space
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X is reflexive, and thus for each u e QP (X) there is a uniquely determined
element w#y(u) € X satisfying

(x(u), ') = ﬂc(QD(w')(“))
for every &’ € X'. Here QP («’) is the map of QP (X) into @Q°(C) attached
to #': X—>C. The ensuing map my: @°(X)—X is linear. Likewise for
Y we get a linear map 7ny: QP(Y)— Y satisfying

(my(2), ¥ = nc(@°(¥')(2))
for all zeQP(Y), y' € Y'. The equations

(nx(dx(@), 2"y = @ (@)(dx () = 7c(dc (<@, o))
= (@, a")
establish that ny is a left inverse of 4. Similarly, = is a left inverse
of 4y. '
Thus the pair (wy, 7y) Will be a left inverse of 4y y), provided it
satisfies the commutativity condition required of homomorphisms. We

note that

| QP (ey’) (w) = QP (y")(ew)
for e CY, y' e Y’ and u € QP (X). Indeed, if T, is the linear transfor-
mation corresponding to ¢ in (X, Y), we have ey’ = y'oT,. Hence by

functoriality Q7 (ey’) = QP (y')oQ”(T,). Testing (7y, 7y) for the commu-
tativity requirement yields :

Comg (), y') = (nx(u), ey") = nc(Q” (ey’) (w)
= 7c(@P (y') (ew)) = (my(ew), y).

Hence 4,y is a split monomorphism.

THEOREM 5.2. Let (X, Y), (V, W) be CV-systems with (X, Y) finite-
dimensional. Let D be a directed set which is order isomorphic to & base of
neighbourhoods of zero in V®,X @ W®,Y  (right directed with respect
to the relation o). Then a homomorphism (¢, v): (X, Y)>(V, W) is
a split monomorphism if and only if

4y, dw)le, )t (X, X)>QP(V, W)

8 a split monomorphism of algebraic CV-systems.

Proof. Suppose (g, 7): (V, W)—>(X, Y) is a left inverse for (¢, v),
so that (o, 7)(p,y) = (1x, 1y). By functoriality, Q°(p, v) is then split
by the left inverse @”(c, 7) for any directed set D. By 5.1, dx,y, has
a left inverse (7y, #y). Then (7y, 7y)@7 (0, 7) serves as a left inverse of
Q% (e, ) Aix,7) = Aw.w)(®, ¥), and one half of the proof is done.
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On the other hand, if (¢, y) is mot a split monomorphism, then
choosing bases {#,, ..., #,} of X, {y,, ..., v,} of ¥ and dual bases {z], ..
y T} of X'y {1, ..., 9} of ¥', we infer from 4.5 that the terms {(pz,; ® 42},
0), (0, vy, ®¥,)} in V®,X' @ W®,Y arc not independent of E = R((V,
W), (X, Y))- up to a zero trace. Thus there exists a pair of linear com-
binations

= ( Zm' Opg®Tp @y, Zn: dra'/*yr®y;) eR

p,g=1 r,8=1

m n
such that Xe,,+ X' d, +# 0. Let (2,),.p be a net in R converging to z in

p=1 r=1
its closure. Due to 4.6 each z, looks like

n N
o= (3155 dmio) o S(S euto) o)

where {¢!, ..., eV} forms a base of CV, (¢f) is the matrix of €* as it aets
from X to Y and vj.(a) e V. To say 2z,—z as a runs through D means,
according to 4.7, that

3 S (@ S oupny i =1,..,m,

j=1 k=1 p=1
N
) Z_GIUR: _’Zdr]wyr’ J=17"'7n7
Foml r=1

as a runs through D. These convergence relations may be respectively
interpreted as the following equations inside QD(V) and Q°(W

n

223;‘1 vjk a) aeD T VD Z V(‘Pw 1=1,...,m,

J=1 k=1 p=1

N n
2 —ek((”jk(a))aep+ V(P) = Zdrjdw(’/’yr); J=1,...,mn.

k=1 r=1

Regrouping these equations into one inside QP(V)®,.X @Q°(W)®,Y'
gives

m n N n N
(33 S elonahot Vi@, = 33 utmlart v8) 03)
i=1 j=1 k=1 = A
m m .
- (SZGPiAV(q"”p) ®“":'122dr141w(¢3/r) ®?/})-
i=1 p=1 j=1r=1

But the left-hand side is now seen, because of 4.6, to belong to R(QD (V, W),
(X, Y)'), the tensor relations space contained in @”(V) ®,X ®Q°(W)Q®,Y,
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and hence to R(QP(V, W), (X, ¥))~. (We note in passing that, since
QP (V, W) is algebraic, @Q°(V) and Q° (W) have their finest weak topologies.
It turns out thereby that so does QP(V)®,X’ @QD( ) ®, Y' and hence

R(QP(V, W), (X, Y)) is closed.) Recalling that 2 Cppt+ Z d,, # 0 the
re=l

equation shows that the elements {(4,¢r; @; 0), (0 A vy, ®Y;)} are
not independent of R(Q°(V, W), (X, Y¥)') up to a zero trace. Because
of 4.5, 4.y w)(®, ¥) is not a split monomorphism, which ends the proof.

Remarks. (a) In proving sufficiency of our condition we cannot
argue simply that if (4, ») is a left inverse of 4y (@, v), then (4, ») 4y ) i8
a left inverse of (¢, ). This is because, as can be shown by simple
examples, (u, ») Ay, wy 18 not always continuous from the given topo-
logical system (V, W) to (X, Y). (In particular 4 ;) is not generally
continuous from (V, W) to the algebraic system QP(V, W).) The fact
that a left inverse (u,») of 4y ) (¢, ) making (u, ») 4y, ) continuous
does indeed exist is a consequence of both parts of the above proof.

(b) When V and W are metrizable, so is V®,X ® W®,Y', and one
prefers to take for D the natural numbers.

COROLLARY 5.3. Given a homomorphism (p, v) as in 5.2, the following
statements are equivalent:

(a) (@, v) is a split monomorphism.

(b) Ay (9, ¥): (X, Y)>Q"(V, W) is a split monomorphism for
every direoted set D.

(¢) Q@2(¢p, v): QP(X, X)>QP(V, W) is a split monomorphism of
algebraic CN-systems for every directed set D.

Proof. (a)<(b). In the necessity proof of 5.2 no use was made of
any particular property of the directed set.

(a) = (c), since QP is a functor on systems.

(c) > (a). With the particular D of 5.2, the assumption and the fact
that by 5.1 4y is a split monomorphism imply that Q°(p, )4 x y

= Av,m)(p, v) is also a split monomorphism. Hence (a) follows from
Theorem 5.2. .

6. Reduction to finite-dimensional 'indecomposable sources

Given CV-systems (X, Y) and (V, W), we denote the set of homo-
morphisms (¢, y): (X, Y)—>(V, W) which are not split monomorphisms
by NIi((X, Y), (V, W)) (for “Not left-invertible?). A CN-system is said
to be indecomposable in case it is not a zero system and it has no direct
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summands except the trivial ones — itself and the zero subsystem. Our
aim is to reduce the determination of Nli((X, Y), (V, W)), where (X, X)
is finite-dimensional, to the case that (X, Y) is finite-dimensional and
indecomposable. Of the various ways to achieve this reduction we prefer
to use the last section because the special case that (V, W) is algebraic
follows easily from former papers.

THEOREM 6.1 (Krull-Schmidt, Fitting).

(a) Let (X, Y) be a finite-dimensional indecomposable C~-system.
Then every endomorphism of (X, Y) is either nilpotent or an automorphism.
The algebra End (X, Y) of endomorphisms of (X, Y) is local with the unique
maximal ideal N1((X, Y), (X, Y)) consisting of the nilpotent endomor-
phisms. We have a decomposition

End(X, Y) = €1y p+Nli((X, ¥), (X, T))

(a8 C-subspaces).
(b) Let (X, Y) be a finite-dimensional CV-system. Then (X, Y) is

a finite direct sum > -(X;, X;), where the subsystems (X, Y;) are indecom-
i=1

o
posable. If (X,Y) = > (U,,Z,) is any other decomposition with the
k=1

(Ugy Z,) indecomposable, then p = n and there exists a permutation = of
{1,...,n} such that for all j=1,...,n, (U;,Z;) ~ (Xyy) Yu;) ond

j n

(X, Y) = 2 '(Xn(z)a Yn(l))+ 2 (U Zy).

1=1 I=j+1

Proof. Since the category of algebraic CV-systems is equivalent to
a category of modules.and since a finite-dimensional CV-system (X, Y)
is of finite length dim X + dim ¥, Fitting’s lemma and the Krull-Schmidt
theorem are applicable to finite-dimensional CV-systems. Alternatively,
one may easily imitate the classical proof (see e.g. [9], Chapter 5, and
[3], Chapter 8, 2.1). This yields the theorem except for the last statement
of (a). However, denoting for the moment Nli((X, ¥), (X, ¥)) by M,
it is evident that C -1y, yyN M = 0. Since End (X, Y)/M is a finite-dimen-
sional division algebra over the subfield (C -1y y)+M)/M ~ C and the
latter is algebraically closed, End (X, Y)/M coincides with this subfield,
ie., End(X, ¥) = C1x y+ M. ,

PRrOPOSITION 6.2. Let (X, Y) and (V, W) be CN-systems with (X, Y)
[finite-dimensional and indecomposable. Then Nli((X , Y), (V, W)) is a sub-
space of Hom ((X, Y), (V, W)).

Proof. It is clear that Nli((X, ¥), (V, W)) is stable under multi-
plication by complex numbers. Suppose that (¢;, vy), (s, ws) € Nli ((X , Y),
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(V, W)) while (¢, ) = (p1, v1) + (@2, ¥2) is a split monomorphmm Let
(o, 7) be a left inverse of (¢, ). Then

(0, T) @1y 1) + (o) T)(@2y ¥2) = (0, T)(p, p) = 1(X.F)-

Since End(X, Y) is a local ring, at least one of the endomorphisms
(o, 7)(9;, v;) has an inverse (u,v). But then (x, v)(o, 7) is a left inverse
of (¢;, v;); against assumption.

LEMMA 6.3. Let (X,, Y,), (X,, Y,) and (V, W) be algebraic CN-systems,
where (X,, ¥,) and (X,, Y,) are finite-dimensional, indecomposable and
not isomorphic. Let (g;, y;) e Hom((X;, ¥;), (V, W)), j =1,2, be split
monomorphisms. Then (@1 91) (X1, Y1)+(¢p2, v)(X,, Y,) is a dzrect sum
which 48 a direct summand in (V, W).

Proof. Let (U,Z) be any finite-dimensional subsystem of (V, W)
such that

(P1y 91) (X 1y X)) +(@2y 92)(Xay ¥,) = (U, Z).

Since (g;, v)(X;, ¥;) are direct summands of (V, W), they are direct
summands of (U, Z) with finite-dimensional supplements. Decomposing
such supplements, we obtain representations of (U, Z) as direct sums of
indecomposable subsystems:

n P
(U,2) = ) Gy, Hy) = Y (Uy, Zy),
i= k=1
where (G, H,) = (91, v1)(X,, ¥,) and (Up7Zp) = (@ay ¥2)(Xay Y4). By
6.1 (b), p =n and there exists a permutation = such that (U;, Z))
I (Gn(j)7 Hﬂ(j))’ j = 1, ceey '";’ and
n—1

(1) (U,2) = ) (Guyyy Hyg) + (U, Z,).

Jj=1

Since (¢;, ¥;), § = 1, 2 are monomorphisms, the assumption implies that
(G4, H,) is not isomorphic to (U,, Z,). Hence = (n) # 1, and there exists
Jo < n—1 with #(j,) = 1. Thus (1) shows that the sum (¢,, v,)(X,, X,)+
+ (@ay ¥2)(Xq, Y,) = (G4, H,)+(U,,Z,) is direct and a direct summand
of (U, Z). That it is a direct summand of (V, W) follows from Theorem
5.5 of [2], which states that a pure finite-dimensional subsystem of an
algebraic system is a direct summand. (In [2] this is formulated for
C?-gystems. However, the proof is valid for CV-systems.)

Let (X, Y) and (V, W) be C¥-systems with (X, Y) finite-dimensional
and indecomposable. A family ((¢;, ¥;));oy of homomorphisms of (X, ¥)
into (V, W) is said to be linearly independent modulo Nli((X, Y), (V, W))
in case no finite non-trivial C-linear combination of the (¢;, %) 8 belongs
to Nli((X, Y), (V, W)), ie., (¢ v)+Nli((X, X), (V, W)))es is linearly



30 Direct summands of systems

independent in the complex vector space Hom (X, Y), (V, W))/Nli((X, Y),
(V, W)).

LEMMA 6.4. Let (X, Y,))iex be a finite family of finite-dimensional
indecomposable CN-systems of distinct isomorphism types, and let (V, W)
be an algebraic CN-system. For each ke K, let (o ¥ir));e sy be a finite
family of homomorphisms of (X, X,) into (V, W). Then in order that each

(95 ¥i) be a monomorphism and the sum D' Y (¢, viu)( Xy, Yi) be
keK jed(k)
a direct sum which is a direct summand of (V, W) it is necessary and

sufficient that for every ke K the family ((9;, ¥jr))jesuy be linearly inde-
pendent modulo NIi((X,, Y,), (V, W)).

Proof. This follows from Section 4 of [5] and in particular Theorem
4.2 there. Although [5] discusses only C2-systems, no changes arc required
to make this section valid for CV-systems (indced for modules). Whenever
Theorem 4.2 mentions a pure subsystem (sec footnote (1), p. 6), under the
conditions of the, present lemma this subsystem is finite-dimensional.
Hence, by [2], 5.5, it is a direct summand. Conversely, it is evident that
any direct summand is pure. In particular, the sets D(X,, ¥,; V, W)
of Theorem 4.2, consisting of homomorphisms of (X,, ¥,) into (V, W)
which are not pure monomorphisms, coincide for finite-dimensiona,
(X, Y,) with our Nli{(X,, ¥,), (V, W)).

In [5] a family ((‘Pn wj))je_, of homomorphisms from an algebraic
system (X, Y) to an algebraic system (V, W) is said to be linearly inde-
pendent modulo D(X,Y; V, W) in case

(2) Z(qaj, vi) (B, %) € D(X,Y;V,W), J o Ifinite,(y;,»;) € End(X,Y),
jel

implies that none of the (4, %) is an automorphism. If (X ,>Y) is finite-

dimensional, indecomposable, then by 6.1 (a) we have for jel

(l‘j’ ;) = ajl(x,r)‘l‘(o';a %), a; € C, (“j’ 7;) € Nli((X, Y), (X, Y))-

Since the (o, 7;) are not monomorphisms, (g, v;)(0;, 7;) belong to
Nli (X, X), (V, W)). Thus it follows from 6.2 that (2) is equivalent to

D a;(gy, v) e NI (X, X), (V, W)).

JeI

Since (u;, #;) is an automorphism if and only if o; 7# 0, we see that for
a finite-dimensional indecomposable source the linear independence con-
cept of [6] coincides with the one introduced here.

As to the hypothesis of 4.2, our Lemma 6.3 shows that it is satisfied
for homomorphisms with non-isomorphic sources; while by [5], Theorem
4.3, and [2], Theorem 5.5, it is satisfied also for homomorphisms with
a common source.
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Our remarks show that indeed the present lemma is a special case
of [5], 4.2.

Remark. By Fitting’s lemma, if (X, Y) is finite-dimensional and
indecomposable, then Nli (X, Y), (X, Y)) is the radical of End(X, Y);
i.e., of Hom((X, Y), (X, Y)) as a right module over End(X, ¥). However,
even for (V, W) of finite dimension Nli((X, ¥), (V, W)) need not equal
the radical of Hom((X, ¥), (V, W)) as a right module over End(X, Y).
For example, if (X, Y) is of type III® (see introduction or Section 7),
there clearly exists a non-zero epimorphism (¢, y): (X, Y)—(V, W) which
is not monomorphic; so that Nli((X, ¥), (V, W)) # 0. Yet the radical
in question vanishes, because End (X, Y) ~ C.

THEOREM 6.5. Lemma 6.4 stays valid if the condition that the CN-system
(V, W) be algebraic ts removed.

Proof. Let (X, Y) be a CM-system of the form
(3) (X, Y) = D DXy T),
keK jeJ(k)

where there exist isomorphisms (&, ()i (X Yp) ~ (X, ¥,). Let

(9, ) e Hom((X, Y), (V, W)) be defined by the requirement that for

all k € K, j € J (k) the restriction of (¢, ) to (X;r, Y,) 18 (@5, i) (&9 Cin)-
Consider the following statements:

(a) At least one of the (g, ¥;) is not a monomorphism or the sum
22 @y v ( Xy, X,) is not direct or it is not a direet summand of (V, W).

(b) (¢, v) e Nli((X, X), (V, W)).
(c) There exists a directed set D such that

Ap,m (9, v) e NL((X, Y), QP(V, W)).

(d) There exists a directed set D such that at least one of the

Av.w) (@ i) is DOt a monomorphism or the sum ZEA(V"W)(%,‘, W) X
X (X, Y,) is not direct or it is not a direct summand of Q2 (V, W).

(e) There exist a directed set .D and k e K for which we have a non-
trivial linear dependence relation

D @y APy v1) € NI (X, Tp), QO(V, W)).
JeJ(k)

(f) There exists a & in K for which we have a non-trivial dependence
relation

N (95> vi) € N (X, Ty, (V, W)).

It is clear that (a)<>(b) and (c)<>(d); the latter because the restriction

of A, (9, ) to (Xjes Yy 18 A ) (®ins Yie) (8415 Egie)- Corollary 5.3 yields
(b)<>(c) and, upon factoring 4 z, out of the dependence relation of
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(e), also (e)<>(f). By Lemma 6.4, (d)<(e). Hence the negations of (a) and
(f) are equivalent, as we wanted to show.

Since every finite-dimensional C¥-system (X, Y) is a finite direct
sum of indecomposable subsystems we can represent it in the form (3),
where ((X, ¥;)iex is a finite family of pairwise non-isomorphic CV-
systems. Given (¢, y) e Hom((X, ¥), (V, W)), let (g, vr) be (e Lp) ™"
followed by the restriction of (¢, ¢) to (X, ¥X;). Then (¢, y) and the
(@sy ¥p) are related as in the proof of Theorem 6.5, and the equivalence
of (b) and (f) shows how to determine NIli ((X , Y), (V, W)) in terms of
Nl ((X,, ¥,), (V, W)), ke K. Hence, we are interested now in finding
Nli (X, X¥),(V, W)) when (X, Y) is finite-dimensional and indecomposable.
The following two sections treat special cases of this problem.

7. The broken chain condition for C*-systems

In [2] all the isomorphism types of finite-dimensional indecomposable
C’-systems are characterized in terms of chains. Conditions expressed
in terms of chains are given for a homomorphism from an indecomposable
finite-dimensional C*-system (X, Y) to an algebraic CY-system (V, W)
to be a split monomorphism. Equivalently, Nli((X, ¥), (V, W)) is deter-
mined. The purpose of this section is to determine Nli((X, X), (V, W))
for (V, W) a general topological C’-system.

We first review some of the terminology and results of {2]. Hence-
forth, (a, b) will be a fixed basis of C* Let (V, W) be a C*-system, and
let n denote a positive integer. _

(i) A pair of tuples ((€y,..., %), (Y1y.-rsYp_y)) I V*XW*! ig
a chain of type I"™ in (V, W) whenever the equations

0 =aw,, br;=y;=ax;,, for ¢=1,...,n—-1, by, =0
hold true.

(i) A pair of tuples ((®, ..., 2,), (Y1) .., ¥,)) in V*xW" is a chain
of type 11} for some 6 € CU {0} whenever the equations

Y = ax,, (b—0Oa)x; =vy;, =aw;,, for +=1,...,n—1,
(b—ba)z, =0
in case 0 e C; or
Y, = bz, ' av; = y;., =bx,,, for ¢=1,...,n—-1, ax, =0

in case 6 = oo, hold true.
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(iii) A pair of tuples ((@;, ..., %, 1)y (H1y..+y¥,)) 0 V*1 xW" is
called a chain of type I1I™ whenever the equations

Yy = ALy, br; = y; ., =amy, for ¢=1,...,0—-2, bx,_, =9,

hold true. In case n =1 (#,...,%,_,) denotes the empty sequence.

For a chain ((2;), (y;)) of type I", ITy or III" in (V, W) let X and
Y be the respective spans of the ;s and y,’s. The subsystem (X, Y)
of (V, W) is then called the subsystem spanned by the chain ((@;), (y;)).
In case the #;’s and y;’s form bases of X and Y respectively, (X, Y) is
itself called a C*-system of type I", II% or III", depending on the type of
chain which spans it. Chains can be represented by the following kind
of diagrams. '

Type I™:
" x N cas xn
AVAVANNAN
0 2 » Vs Yt 0
Type 1I5:

X\ X2 X3 Xa
»n » » B R 0

(Here by, = b—fa, and if 6 = oo, the understanding is that b replaces
a and a replaces bg.)
Type I11I":

Xi X2 X3 ves ) X1
»n » »s wo e yr
In [2], Proposition 2.6, Theorem 4.3, one can find a proof of the
following theorem of Kronecker.

THEOREM 7.1. A finite-dimensional C*-system is indecomposable if
and only if it is of one of the types I™, 11 or II1I™.

3 — Dissertationes Mathematicae CLXI
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Let Q2 denote any one of the types I", IIj or II1I". Chains of type
2 in a C?*system (V, W) may be added and multiplied by scalars com-
ponentwise (e.g., ((«}), (¥)))+((#}), (¥7) = ((@i+23), (¥j+9))) to form
the vector space of chains of type 2 in (V, W), which we denote by
CQ(a,b; V, W) :

ProposITION 7.2. If (X, Y), (V, W) are C?*systems and (X, Y) s
of type 2, the space Hom (X, Y), (V, W)) is isomorphic to CQ(a,b; V, W).

Those (p, v) e Hom((X, Y), (V, W)), which are split monomorphisms,
correspond exactly to those chains in CQ(a,b; V, W) spanning direct
summands of type 0.

Proof. If (=), (y;)) is a chain of type Q spanning (X, Y) and
(¢, v) e Hom ((X, Y), (V, W)), then ((¢=,), (yy;)) is a chain of type Q in
(V, W). The-association (¢, y)—((p2;), (yy;)) is linear. Conversely, a chain
((v;), ('w,-)) eCQ(a,b; V, W) determines a homomorphism (¢, ¢): (X, ¥)
—~(V, W) given by extending the assignments ¢(z;) = v;, v(y;) = wy
linearly. Here, since (X, Y) is finite-dimensional, ¢ and y are continuous,
and we have our isomorphism. '

Now suppose (¢, p) is a split monomorphism. As we noted in section 2,
the subsystem (¢X,yY), spanned by the chain ((¢x;), (yy,) in (V, W),
is a direct summand of (V, W) isomorphic to (X, Y), and hence of type L.
Conversely, suppose the chain ((¢x;), (yy;)) of type Q2 spans (pX, pX)
as a system of type Q (i.c., the ¢z’s form a base of ¢X, the yy,’s form
a base of »Y), which is a direct summand of (V, W). Then (¢X, pY)
~ (X, Y), and a projection of (V, W) onto (¢X, »Y) followed by this
last isomorphism is a left inverse of (¢, v).

For each of the types Q = I* II;, III" and a C*system (V, W),
we now describe a subspace dQ(a, b; V, W) of CQ2(a,b; V, W), as in
[2], Definition 6.1. '

(i) Let CI™(a,b; V, W) consist of the chains in CI*(a,b; V, W)
which decompose into a sum of two chains of type I" in (V, W), one of
the form ((0, v, ..., ?;), (0,w;,...,w, ,)) and the other of the form
(('vf) seey 'vi-laAO)’ (“’%7 teey wi—h 0))

(ii) Let CII(a,b; V, W) consist of the chains in CIIj(a, b; V, W),
which are a sum of two chains of type IIj in (V, W), one of the form
((®}y ..y Vp_1, 0), (), ..., wh_,, 0)) and the other of the form ((»}, ..., 22),
(w3, ..., w})), where w} = (b— 6a)v; for some o in V. (In case 6 = oo,
w} = avd.)

(iii) Let COIII"(a,b; V, W) consist of the chains in CIII"(a, b;
V, W), which arc a sum of two chains of type I1I" in (V, W), one of the
form ((}, ..., v5_,), (w},...,w,)), where w] = bv; for some v} eV, and
the other of the form ((v3,...,2_)), (w?,..., w?)), where %’ = av’, for
some ;€ V.
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The following result is a special casc of [2], Theorem 6.6 (see also
Theorem 5.5 there). :

THEOREM 7.3. A subsystem (X, Y) spanned by a chain I' of type
Q =1 II} or III" inside an algebraic C-system (V, W) fails to be
a direct summand of type 2 inside (V, W) if and only if I' e CQ2(a, b; V, W).

We are now in a position to give the broken chain condition.

THEOREM 7.4. Let (¢, y): (X, Y)>(V, W) be a homomorphism of
topological C*-systems, where (X, Y) is of type Q = I*, IIy or III". Let

= ((w,), (¥;)) be & chain of type Q spanning (X, Y). Then (p, v) € Nli((X,
17), (v, W)) if and only if for some directed set D (alternatively, for D as
in Theorem 5.2) the chain

Ay w !l = ((4pga,), (AWWj))
belongs to CQ(a b; QP(V, W)).
Proof. By 5.3, (¢, v) eNh((X Y), (V, W)) if and only if there is
a directed set D such that :
Ay.me, v) e Nli((X, ¥), Q°(V, W)).

(By 5.2 it suffices to consider one directed set D of an order type specified
there.) According to 7.2, this is the case if and only if A, y,I" fails to
span a direct summand of type £ in the algebraic system QP(V, W).

By 7.3, this in turn happens if and only if 4y ) I e (:'.Q(a, b; Q°(V, W)).

We now interpret Theorem 7.4 in the case 2 = 11}, 6 € C, in a manner
which explains the choice of the terminology “broken chains”. Analogously,
one may expound the other cases £ = I", I1I" or 117, . The result obtained
for (X, Y) of type III® (and V, W metrizable) was already given in the
introduction. For simplicity, we formulate the next proposition only in
terms of arbitrary directed sets.

PROPOSITION 7.5. Let (¢, w): (X, Y)—>(V, W) be a homomorphism of
C"’ -systems, where (X, Y) s of type 11y, 6 € C, and is spanned by a chain

= ((®)%, (y))?) of type II;. Then (p,y)e Nli((X, ¥), (V,W)) if and
only if for some directed set D there ewist n nets {(Voa)ecps - -+ (Vn—1,0)een}
satisfying

(%) (b— 6a)vo,+ av .~ Yy, avy,—(b—0a)v;,—~0
forj=1,...,n—-2, (b—6a)v,_,,~0
as a runs over D. '
Proof. By 7.4, all we have to verify is that the existence of n nets
satisfying (+) is equivalent to Ay, u, I € CII}a, b; QP(V, W)).
Suppose such nets exist. Then 4y I is the sum of the following
two chains of type II;:

(((vla)ael) + Vf? B Y e Ve, 0))(("'”1a)aeD + WoD) ey (@0, ) 2)aept lei)i 0))
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and
((('Pa’n —Via)aen+ Vo g ooey (@981 —Vp_1a)eep + Ve, AV(pwn)? :
((Wl - a'vla)aeD +W1?’ LA ] (WTL a’vn—l,a)aeD +W0D’ Aﬂ’ ')Oyn))
with
('P?/x - cwla)ueD + WOD (b - Ga) ((UOa)aeD + VOD) .

Thus Ay w1 belongs to the required subspace
Conversely, suppose that 4 ,I' is the sum of two chains of type
II7 in QP(V, W), one of the form
25 0),
( ’}L—l u)aED+W?’ O)))

' ('v:z—l,a)aED + Vﬂ
((wll.a)aED + W(?’ ceey \W

(Vidacn + Vs -
and the other of the form
(((’vfa)aED + VOD) M ("’ia)aep + VOD) i ((wga)aED +W(?, A ] (wazm)aeD + W(?)) '
here (Wi)eep = (b—08) ((Whadacp+V7) for some (v})up+ V7 € QP (V)
Then the » nets _
‘ {(vga)aED’ (’v}a)aeD’ LR} (Iv:l.—-l,a)aED}
in the given order satisfy relations (x), as desired
The conditions of 7.5 can be expressed by the following “broken chain”
diagram. In this diagram it is to be understood that b, = b — 6a, sum-

On-1a
am, bavza o aun-m baUH-

ane by via
. @Xn-1=Un~1a

dta ¢X1 —Dia @X2~Wa
FANE
b,
Wn- —QVn-\a Wn“bcvu-ll 9’}'#

u"' ~ana W2~ bevia wyz ana Yy - bavz. .

AA M

bd?/;

oo W1
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mation is taken term by term, and the nets of differences between terms
joined by the mark \_ / always tend to zero.

Theorem 6.5 and the remarks following it show how to formulate
in terms of broken chains the condition that a homomorphism of C*-sys-
tems (¢, y): (X, Y)—(V, W) belong to Nli((X, Y), (V, W)) for the case
in which (X, Y) is finite-dimensional but not necessarily indecomposable.

8. An example for computation of NIi((X, Y), (V, W))

This section deals with a specific example of a finite-dimensional
C’-system (X, Y). The intention is to illustrate the use of Theorem 4.5
in testing for the left-invertibility of homomorphisms (¢, v): (X, Y)
—(V, W), in case (V, W) is algebraic. The conditions obtained are com-
parable to the result of [2], Theorem 6.6, which has been quoted earlier
as Theorem 7.3, for C*-systems. The generalization to the case that (V, W)
is topological can then be done as in the last section. .

Let X be 2-dimensional with a basis (,, #,), and let Y be 3-dimensional
with a basis (y,, ¥, ¥s)- Let a, b, ¢ form a basis of C>. Because of linearity,
the action of C* from X to Y is fully described by specifying the values
of ax,, ax,, bx,, bx,, cx,, cx, in ¥. Take these values as specified by the
following chain diagram:

(1) / \
N

The resulting C*-system (X, Y) is indecomposable.
The dual (X, Y) = (¥, X') of (X, Y) can be described by the chain
diagram:

» Y3 0

where (@, %;), (¥, Yz, ¥;) are the dual bases.
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According to Theorem 4.5, a homomorphism (¢, y): (X, Y)>(V, W),
where (V, W) is algebraic, is a split monomorphism if and only if the terms
(p2; @, 0), (0, vy, Qy,) InV @ X'@® W ® Y’ are independent of the space
R of tensor relations up to a zero trace. From the definition of R it follows
that this subspace is spanned by clements of the form

(3) (v®ay’, —av®Y’), (vQbY’, —bvQY’), (v@cy’, —ev®Y),

whereve Vandy e Y. If2,,2,e VX ® WQ® Y are congruent modulo
R, ie., 2, —2, € R, we write 2, = z,.

LeMMA 8.1. With the notations as above, and for ¢,j =1,2,k,1 =1,
2,3, the following hold:

(i) (g, ®{Dj', (’}) = (0, W{@?/})’
(1i) 0, v, ®y)) =0 when k #1,
(i) (0, vy, ®¥r) = (0, vy, QY)).

Proof. Only one case from each of (i), (ii) and (iii) is presented. The
other cases all. follow the same pattern. The form (3) of the elements
spanning RE and the equalities inherent in the chain diagrams (1), (2)
yield :

(i) (g2, @y, 0) = (‘Pm2®a?/;,,0) = (0, agr, ®y,) = (0, yaz, ®Y;)

= (0, vy, ®¥;),

= (0, yaz;, @y;) (0, apz, ®Y,) = (g, ®a'?/;’ 0)

= (gw; @bys, 0) = (0, ybo, ®Y;) = (0, yar, @Y,)
E(‘Pm2®a’y;1 0) (p2.®0,0) =0,

(iii) (0, vy, ®Y3) = (0, 'I’(ml,®i’/;) = (0, cpz, ®?/:’i) = (g2, ®0?/:'n 0)
= (pm, ®%;, 0) = (0, vy, ®Y)).

PROPOSITION 8.2. With notations as above, the homomorphism (¢, y):
(X, XY)—~(V, W) fails to be a split monomorphism if and only if (0, yy, ®y,)eR.

Proof. If (0, vy, ®¥,) € R, then the zero trace condition of Theorem
4.5 is clearly violated. Therefore (¢, y) cannot be a split monomorphism.

If (¢, ) eNli((X, Y¥), (V, W)), then by Theorem 4.5 there exist
scalars ¢, d;, with ¢,j =1,2,%k,1 =1,2,3, such that

(4) 2%"*‘ Zdlck #0

while
(5) D) eilgm, @), 0)+ D) (0, vy, @) € R.
Due to Lemma 8.1, the sum in (5) is congruent modulo R to

Z%(O; VY ®y;)+2dim(0; VY OY3).
This in turn is congruent modulo R to

(,Zcii+2dkk)(07 VY1 ®Y1),

(ii) (0, vy, ®:)

e
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which then must be in R. From (4), it follows that (0, yy, ®¥,) € R, as
desired.

From Proposition 6.2 it is known that, since (X, Y) is indecomposable,
Nli((X, Y), (V, W)) is a subspace of Hom ((X, ¥), (V, W)). The result
just proved makes this fact transparent.

One can carry Proposition 8.2 one step further by using the fact

that according to formula (4) of Section 4, R is generated by elements
of the form

(v@ayy, —aw @Y}, (28bY;, —WWOTL), (VBeY,, —v DY),

where v € V and % = 1, 2, 3. Using diagram (2) to evaluate ay,, etc., we
see that F is generated by the collection of the following 9 types of vectors
of TRXOWRY': '
(v @), —aQYy), (VOB;, —ww®Y,), (0, —aw®Y,),
(0, —bv®y;), (v ®w;1 —bv ®y;), {v ®m;1 —bv ®y;)7
(07 —0‘0@:&/;), (0’ —C”®y;)1 (1)®£0;, —6”D®y;).
These generators can be replaced by
(v®m1) —av ®y;)) (QJ@CD;, —a"v®y;)v (0! a'v®y;),
(0, v ®y,), (0,2 @y, —av ®y)), (0,bvQY;—avByY,),
(0, cv ®?/;)’ (0, co ®y,), (0, cv ®y;_a” ®y’1)-
For each of the last 9 types of generators of R, v can vary freely through V.
Thus the set of generators of a fixed type is a subspace of R; and R is
the sum of these 9 subspaces.
ProroSITION 8.3. The homomorphism (¢, v): (X, Y)—>(V, W) is not

a split monomorphism if and only if there exist seven vectors vy, vy, ..., 0,
in V satisfying

Yy, = bva—a(vy+v;)+cv;, 0 =0bv,—av,+cvg, 0 = av,+bv,+cv,.

Proof. By the last remark we have (0, py, ®¥;) € R if and only if
there exist v,, v5, ..., ¥ in V such that

V) QY= av; @Y+ bV, @Y; + (v, @Y, — av, ®Yy) + (bv, @Y — av, @Y,) +

+ v @Y1 + V6 @ Y; + (00, @Yy — av; ®Y;) — AV, QY — AV, QY
and ' '

0 = 0@z, + 9, @,.

The last equation implies v, = v, — 0. Bquating coefficients of ¥, ¥,
and y, on both sides of the first equation then provides the answer.
The above technique can be carried out for several types of finite-
dimensional indecomposable CV-systems described by chain diagrams.
For example, we state the result of applying the above process to a C*-8ys-
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tem (X, Y) of type II? (see Section 7). Let (a, b) be a basis of C? and
let ((@y,...,%,), (¥1y...,Y,) be a chain of type II} spanning (X, ).
The following can be deduced from the zero trace condition of Theorem 4.5.
ProprosITION 8.4. For (X, Y) as above, a homomorphism (¢, y):
(X, Y)—~(V, W) of algebraic C*-systems is not a split monomorphism if
and only if there exist vy, Vy,y ..., 0, _, € V satisfying
¥y = bv,+av,,
0 = bv, —av,,

0 = bv,— av,,

-----------

This result is exactly the statement quoted in Theorem 7.3 that the
chain I' = ((¢p@y, ..., 92,), (¥Y1, ..., vYy,)) inside (V, W) fails to span
a direct summand of (V, W) if and only if I" e (3113 (a,b; V, W). Indeed,
the conditions of Proposition 8.4 state that the chain I" is the sum of
the type II chains

(('vn Vay eeny U1y 0), (avy, av,, ..., a0, |, 0)}
and
((‘pml — U1y Pl —Vgy ooy PLy_1 —Vp_y, ‘p"‘vn)i
(WY, —avy, wyY,—avg, ...y Y, 1 —00,_,, 'P?/n)) )
where yy, —av, = by, for some v, in V.
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