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The rings of the title, semigroup rings formed from inverse semigroups, are
a natural generalization of group rings. Inverse semigroups were first con-
sidered by V. V. Vagner (1952) and G. B. Preston (1954), in Vagner’s case the
motivation coming from differential geometry. Such semigroups have been
studied intensively — probably more so than any other type apart from groups.

The account that follows is a slightly expanded version of two lectures
given at the Stefan Banach International Mathematical Center, Warsaw, in
March 1988 during the Semester on Classical Algebraic Structures. For
convenience, various key definitions and some basic results on inverse
semigroups have been gathered together in an introductory section. The second
section is concerned with nil ideals in inverse semigroup rings over a field, while
the third deals with the link between an inverse semigroup ring and the group
rings of the maximal subgroups of the inverse semigroup in the case where the
semilattice (semigroup of idempotents) of the latter satisfies a certain finiteness
condition. Virtually all of the results mentioned have been published and a list
of references is supplied.

1. Introduction

An inverse semigroup is a semigroup S in which, for all ae S, the equations
axa=a, Xxax=x

have a unique common solution in S. This solution is usually denoted by a~*
and called the “inverse” of a. It should be noted that S need not have an
identity element; furthermore, for each a€ S, the elements aa™! and a™'a are
idempotents, but these may be distinct.

Examples of inverse semigroups include groups, semilattices (by which we
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mean commutative semigroups consisting of idempotents), the semigroup of
n x n matrix units together with zero, and the semigroup .#, consisting of all
one-to-one partial transformations of a set X under composition of relations.

A useful alternative characterization of inverse semigroups is provided by
the following result.

PROPOSITION 1.1. A semigroup S is inverse if and only if (1) Vae S, acaSa
and (i) all idempotents commute.

Partial one-to-one transformations play the same réle for inverse semi-
groups as permutations do for groups. In particular, we have an exact analogue
of Cayley’s theorem:

PROPOSITION 1.2. Every inverse semigroup S can be embedded in ¥

Now let S be an inverse semigroup. It can be shown that the inverses of
elements of S satisfy the conditions below: for all a, beS,

i) (@YY t=aq, ((a*=a=a'=a, (i) (@) '=>b"'a"'.

Of these, (i) and (i) are aimost immediate from the definition, while (iii) is easily
proved by using Proposition 1.1.

We shall also be interested in certain special subsemigroups of §.
1. Eq: = {eeS: e =e).

Proposition 1.1 guarantees that Eg is a subsemigroup. It is partially
ordered by the rule that

e[ = e=¢f (=fe)

moreover, for all e and fin Ej, ef is the greatest lower bound of {e, f} under
this ordering. We call Eg the semilattice of S.

2. (VeeEg) P,.={xeS: xx ' =e and xe = x}.

For each ec Eg, P, is a right cancellative subsemigroup of S with identity e.
3. (VeeEg) H:={xe8: xx ' =e=x""x}].

For each e€ Eg, H, is a subgroup of S with identity e and it contains every
such subgroup. The groups H, (e€ Eg) are called the maximal subgroups of S.

Remark. For all ee E¢ we have H, = P_; but, in general, H, # P,. It can
also be shown that S = | ). H, if and only if Eg is central in S.

Finally, we consider the relation £ on S defined by the rule

1

x2y <> (zeS) xx ' =zz7' and z 'z=y ly.

PROPOSITION 1.3. Let S be an inverse semigroup.
() 2 is an equivalence on S.

(i) Each 2-class of S contains a maximal subgroup of S and all maximal
subgroups in a given %-class are isomorphic.
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We say that S is bisimple if and only if & is the universal relation. Groups
are bisimple inverse semigroups. So also is the bicyclic semigroup, which can be
defined as the monoid generated by two elements p and ¢ subject to the single
defining relation pg = 1.

For a fuller discussion of the ideas introduced above, see [4, Chapter V].

To conclude this section, we establish some notation which will be used
without further comment in the remainder of the paper.

Notation: R—a ring with a unity (not necessarily commutative),
S —an inverse semigroup,
R{S]—the semigroup ring of § over R,
E —the semilattice of S (= Ey),
M —the set of all maximal subgroups of S,
J(A)—the Jacobson radical of a ring A.

2. Nil ideals in inverse semigroup rings over a field

In this section we restrict ourselves to the case where R = F, a field. The
characteristic of F will be denoted by char F.

The earliest result on group rings is generally believed to be Maschke’s
theorem (1899), which, in its modern form, gives necessary and sufficient
conditions for the group ring of a finite group to be semisimple. The first result
on inverse semigroup rings is the analogue of this. It was established
independently by Ponizovskii [13], Oganesyan [11] and the author [5] and
dates from the mid 1950s.

THEOREM 2.1. Let S be finite. Then F[S] is semisimple if and only if
char F = 0 or char F = p > 0, where p does not divide the order of any subgroup
of S.

This is the starting point for a theory of matrix representations of finite
inverse semigroups. The basic problem is to construct the irreducible represen-
tations of S from those of the groups in .#.

With the development of the theory of group rings of infinite groups from
1950 onwards, it seemed natural to look also at semigroup rings of infinite
inverse semigroups. It turns out that many of the group ring results extend; but
sometimes the prools are substantially harder. In this section, I shalt focus
attention on nil ideals in F[S].

The following concept will be useful in this context. By a p-element of §,
where p 1s a prime, we shall mean an element of order a power of p in some
subgroup of S.

The main result [8, Theorem A] is

THEOREM 2.2. Let char F = O or char F = p > 0, where S has no p-elements.
Then F[S] has no ronzero nil ideals.
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I shall give a brief sketch of the method of proof later. There is, however,
a short argument (based on a technique for group rings) that covers an
important special case [7] and it is perhaps instructive to consider this first. We
require two lemmas.

LEMMA 23. Let T be a finite subset of S and let e be maximal in
{xx~': xe T} under the usual partial ordering. Then

(Vx, yeT) xy '=e = x=y.

1 1

Proof. Suppose that xy !=e (x,yeT). Then xx le=xx"'xy~
= xy~} = e; that is, e < xx 1. Hence, by the maximality of e, e = xx ™! and so
ex =x. Also yx ! =(xy™!)"! = e~ ! = e. Thus, as above, e = yy~! and so

y“le=y"'. Hence, from the underlined statements, xy 'x ='x and
y~'xy~!=y7!, from which it follows that x =(y~™!)7!' = y.

LEMMA 2.4. Let F be a subfield of C that is closed under complex conjugation
z—Z (eg. F=Q,R, C). The mapping ». F[S] — F[S] defined by

(L ax)* =2 ax""  (a.eF)

xeS xeS

is an involution and, for all ae F[S], aa* =0 implies a = 0.

Proof. It is clear that = is an involution. Let a = ) 7_, a,x;€ F[S]\0, where

Xy, ..., X, are distinct elements of S and a,, ..., a,€ F\O. Let e be maximal in
{xxi':i=1,...,n} and suppose, without loss of generality, that, for some
rzl,e=x;x;'=...=x.x"", while et x;x;! if i >r. Now

aa* —Za ajxx; ")

and so, by Lemma 2.3, the coe[ﬁcwnt of ¢ in aa* is ) [~ |a;|*, which is strictly
positive. _

Lemma 2.4 was obtained independently by Shehadah [16].

We now establish the following special case of Theorem 2.2.

THEOREM 2.2'. Let F be a subfield of C closed under complex conjugation.
Then F[S] has no nonzero nil ideals.

Proof. Suppose that A4 is a nonzero nil ideal of F[S] and let ae A\0. By
Lemma 2.4, aa* # 0. Hence there exists m > 1 such that (aa*)™ = 0, while
(aa*)" ! # 0. Write b = (aa*)"~!. Then b =b* and so bb* = (aa*)*" 2 =0,
since 2m—2 = m. Thus, by Lemma 24, b =0, which is false.

The argument given above does not extend to the case of an arbitrary field
F of characteristic zero; nor does it adapt to the case in which F has prime
characteristic. However, we can deduce from Theorem 2.2’ that if char F = 0
then F[S] is semiprime.

A completely different method was used to establish Theorem 2.2 in full
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generality [8]. The main ingredients are the next three lemmas, which we state
without proof.

Recall that for a =) .sa,x€ F[S] (a,eF) the support of a, suppa, is
defined by suppa = {x€S: a, # 0}. Thus |suppa| < o; and suppa = @ if and
only if a=0.

LEMMA 2.5. Let A be a nonzero ideal of F[S]. Then there exist ec E and
ae A such that (i) eesuppa < eSe and (i) (suppa)n(P,\H,) = 9.

‘LEMMA 2.6. Let ecE, let char F = p > 0 and let ae F[S] be such that a is
nilpotent and e e supp a < eSe. Then either (i) (supp a) © H, contains a p-element
or (ii) (suppa)n(P,\H,) # O.

From Lemmas 2.5 and 2.6 we see easily that Theorem 2.2 holds for the
case where F has prime characteristic. To deal with the zero characteristic case
we also need a result depending on the theory of places (see [12, Chapter 2,

§ 2D).

LEMMA 2.7. Let char F = 0 and let ae F[S]\O be nilpotent. Then there is an
infinite set &, of primes such that, for all p in &, there exists a field F, of
characteristic p and a nonzero nilpotent element b in F ,[S] with supp b = supp a.

Let char F = 0 and suppose that 4 is a nonzero nil ideal of F[S] By
Lemma 2.5, there exist eeE and ae A such that eesuppa < eSe and
(suppa)n(P\H,)=. Let pe ¥, By Lemma 2.7, there is a field F, of
characteristic p and a nilpotent beF,[S] with suppb = suppa. Hence
eesupp b < eSe and (suppb) n (P, \H,) = J. Thus, by Lemma 2.6 (applied to
F [S]), (suppb) n H, contains a p-element. But this is impossible since & is
infinite and (suppa)n H, is finite. Hence Theorem 2.2 holds for fields of
characteristic zero.

The restriction on charF in Theorem 2.2 is not necessary for the
nonexistence of nonzero nil ideals, as is demonstrated by examples due to
Teply, Turman and Quesada [17] and Ponizovskii [14].

Finally, we can use Theorem 2.2 to obtain a result on semiprimitivity (that
is, semisimplicity in the sense of Jacobson), following the standard route used
for group rings.

Let S' denote the semigroup obtained from S by adjoining an identity if
S has none; otherwise take S' = S. With this notation we have the following
key result essentially due to Amitsur and Passman (see [12, Theorems 7.3.4 and
7.3.6)).

THEOREM 2.8. Suppose that F is not algebraic over its prime subfield P and
that, for all field extensions K of P, K[S'] has no nonzero nil ideals. Then
J(F[S]) =0.

Remark. This holds for an arbitrary semigroup S and is derived from two
general theorems on algebras.
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Theorems 2.2 and 2.8 combine to give an important result on inverse
semigroup rings due to Domanov [2]:

THEOREM 29. Let F be nonalgebraic over its prime subfield and if
charF = p >0 let S have no p-elements. Then J(F[S]) = 0.

CoroLLARY 2.10. J(R[S]) =0 and J(C[S]) = 0.

From Theorem 2.9 we can deduce the classical results on the semi-
primitivity of group rings.

3. A class of inverse semigroup rings

Throughout this section we allow R to be a nontrivial ring with unity (not
necessarily commutative).

Theorem 2.9, at the end of the previous section, was not originally
obtained in the manner indicated there. Concerned only with the characteristic
zero case (although the prime characteristic case is similar), Domanov deduced
Theorem 2.9 by combining Amitsur’s theorem [1] on the semiprimitivity of
group rings with the following striking result [2, Theorem 17:

Tueorem 3.1. If, for all G in ., JR[G]) =0 then J(R[S]) = O.

In his proof of Theorem 3.1, Domanov restricts himself to the case where
R 1s a field; but his argument—which consists of constructing a so-called
“faithful family™ of irreducible R[S]-modules from similar families for the
group rings RG] (G e #)—works equally well for R a general ring with unity.

There is a related result concerning primitivity. This can be derived from
the proof of Theorem 3.1, as was pointed out by I. S. Ponizovskii.

THEOREM 3.2. If S is bisimple and there exists G in .4 such that R[G] is
primitive then R[S] is primitive.

It turns out that the converses of Theorems 3.1 and 3.2 are both false.
Counterexamples to the converse of Theorem 3.1 appear in [17] and [14],
while a counterexample to the converse of Theorem 3.2 was given by the
author in [9].

Can we find sufficient conditions on S for the converses of these theorems
to hold? The answer is “yes”: a fairly natural “finiteness” restriction on E (the
semilattice of S) is enough. This condition on E was first considered by Teply,
Turman and Quesada [17].

For all ee E, write

é ={feE: e>f and there is no g in E with e >g>f}.
We say that E is pseudofinite if and only if

(1) for all e, ge E with e > g there exists feé such that f > g;
(i) for all e€E, |é| < wo.
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Evidently if E is pseudofinite then é = @ if and only if e is the zero of E.
Further, we note that E is pseudofinite in each of the following cases:

(a) if |Ee|] < oo for all e€E,
(b) if E is inversely well-ordered,
(c) if S is a free inverse semigroup of finite rank.

Let E be pseudofinite. We now show how to construct a set of pairwise-
orthogonal idempotents in F[S] in one-to-one correspondence with the
elements of E. For all ee E define o(e)e R[E] by the rule

[Tte=f) ifé#0,
0'(6) = 4 fet .
e if é=0.

This concept is due to Rukolaine [15], for E finite. Observe that the definition
makes sense since (a) the factors e—f commute and (b) |é] < 0. If |é]|=n >0
then ole) =e—s;,+s,—S,+...+(—1)s,, where s, denotes the sum of all
products of r distinct elements of é (r=1, ..., n).

LEMMA 3.3. Let E be pseudofinite. Then {o{e): ec E} is a set of pairwise-
orthogonal idempotents in R[S].

These “Rukolaine idempotents” provide a useful tool for analysing the
structure of R[S].

We now introduce some further notation.

1. Let A be a ring and let K be a nonempty set. Then A, denotes the ring
of all bounded K x K matrices over A (that is, K x K matrices over 4 with at
most f{initely many nonzero entries) under the usual matrix operations.

2. Let E be pseudofinite and let D be a %-class of S (see Section 1). Write

ID):= Y R[S]ole).

ecEnD

Proofs of the next four theorems (excluding that of the second part of
3.4 (iii)) may be found in [10].

THEOREM 3.4. Let E be pseudofinite.
(i) For all @-classes D of S,

ID)= Y o(e)R[S]

ecEnD
and is a two-sided ideal of R[S].
(1) For all 2-classes D of S, I(D) = (R[G]))g, where K = EnD, Ge .# and
G = D. (Recall Proposition 1.3 (i1).)
(i) The sum Y ,I(D) is direct and is an essential ideal of R[S].
Two natural questions arise when E is pseudofinite. When do the

Rukolaine idempotents generate R[E]? When does the sum of the ideals I(D)
coincide with R{S]? These are answered below.
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THEOREM 3.5. Let E be pseudofinite. The following statements are equivalent.

() |Ee|l < oo for all ecE.
(ii) {o(e): ecE} is a basis of R[E].
(ii)) Y pI(D) = R[S].

Let us now return to the matter of partial converses for Theorems 3.1 and
3.2. Using Rukolaine idempotents we can prove

THEOREM 3.6. Let E be pseudofinite.

(1) J(R[LSD =0 if and only if, for all G in #, J(R[G]) =0.

(11) R[S] is primitive if and only if S is bisimple and, for some (every) G in .#,
R[G] is primitive.

For the special case in which E is central in S, (i) was proved by Teply et
al. in [17].

A similar result holds with “semiprime” and “prime” replacing “semi-
primitive” and “primitive” respectively.

THEOREM 3.7. Let E be pseudofinite.
(1) R[S] is semiprime if and only if, for all G in #, R[G] is semiprime.

() R[S] is prime if and only if S is bisimple and, for some (every) G in 4,
R[G] is prime.

Necessary and sufficient conditions for a group ring to be (a) semiprime
and (b) prime were obtained by I. G. Connell.

We conclude with a brief mention of free inverse semigroups and their
semigroup rings.

Inverse semigroups, in common with groups, form a variety of algebras
with one binary and one unary operation. It follows that, for a given nonempty
set X, the free inverse semigroup FI, on X exists. It is a somewhat more
difficult object to describe than its group-theoretic counterpart. Some of its
properties are listed in the lemma below. (For the details, see, for example, [6].)

LEMMA 3.8. Let X and Y be nonempty sets.

(i) FI, = FI, if and only if |X|=|Y]|.

(i) Every subgroup of Fly is trivial.

(i) FI, has infinitely many 2-classes.

(iv) The semilattice of FI, is pseudofinite if and only if X is finite.

We call |X| the rank of FI,.

Our final result [10] is easily deduced from Theorems 3.1, 3.6 and 3.7 and
Lemma 3.8. Part (i) first  appeared in [7].

THEOREM 39. Let S be free.
(@) If J(R)=0 then J(R[S]) = 0.
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(ii) If S has finite rank and J(R[S]) =0 then J(R) =
(i) If S has finite rank then R[S] is not prime (and so not primitive).

The third part is somewhat surprising in view of a theorem of Formanek
[3] which states that if T is a free group or a free semigroup of rank at least two
and F is a field then F[T] is primitive.

The question of whether R[S] can be prime when S is a free inverse
semigroup of infinite rank remains open.
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