TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 2 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

COMPLETE CUBICS IN ENUMERATIVE GEOMETRY

ULRICH STERZ

Sektion Mathematik, Martin-Luther-Universität Halle, G.D.R.

The construction of the variety of complete plane cubics is described by a sequence of five blow-ups. A coordinate description is given of each of the varieties obtained by the blow-ups. Homology bases and homology relations in codimension 1 for these varieties are given.

1. Introduction

In the enumerative geometry of conics problems concerning contact conditions were the occasion of a completion of point conics to the variety M_5 of complete conics or point-line conics [9, 11]. A point conic in the plane P_2 is given by $\sum p^{ik} x_i x_k = 0$ with symmetric coefficients p^{ik} , i, k = 1, 2, 3, and (p^{ik}) is regarded as a point in P_5 . The minors L_{ik} of the symmetric matrix $((p^{ik}))$ determine the equation $\sum L_{ik} w^i w^k = 0$ (in coordinates (w^i) of a line in P_2) of the set of tangents of a reduced conic (p^{ik}) , so we have in P_5 the condition $(P_5|B_4)$ of simple contact for conics.

The regular projective transformations

(1)
$$x_i = \sum t_i^k \bar{x}_k, \quad w^i = \sum \tau_k^i \bar{w}^k$$

of P_2 induce the group $T(P_5)$ of transformations by

$$p^{ik} = \sum \tau_m^i \tau_n^k \bar{p}^{mn}.$$

For codim $B_4 = 1$ a variety A in P_5 is a degeneration with respect to B_4 or with respect to simple contact if $A \subseteq t(B_4)$ for all $t \in T(P_5)$ [5], that is, if all minors L_{ik} vanish on A. In P_5 the Veronese surface V_2 is a degeneration with respect to simple contact, and $\varphi: M_5 \to P_5$ is a blow-up of P_5 with center V_2 . A generic

This paper is in final form and no version of it will be submitted for publication elsewhere.

224 U. STERZ

point of M_5 is $(p, l) = (p^{ik}, l_{mn})$ with $l_{mn} = \varrho \cdot L_{mn}$ [11], and the transformations of $T(M_5)$ are given by (2) and $l_{ik} = \sum t_i^m t_k^n \overline{l}_{mn}$.

On M_5 there is no degeneration with respect to simple contact, that is with respect to the proper transform $(M_5|B_4)$ of $(P_5|B_4)$; M_5 is complete with respect to simple contact.

A cubic in P_2 over the complex numbers with equation $\sum p^{ijk} x_i x_j x_k = 0$ is regarded as a point (p^{ijk}) in P_9 , and the condition $(P_9|B_8)$ of simple contact is given by $\sum L_{ijklmn}(p) w^i w^j w^k w^l w^m w^n = 0$. The L(p) are forms of degree 4 in p^{ijk} , explicitly, given in [8], I, p. 50. By (1) the transformations of the group $T(P_9)$ are

$$p^{ijk} = \sum \tau_l^i \tau_m^j \tau_n^k \bar{p}^{lmn},$$

and, moreover, we have

$$L_{ijklmn} = \sum t_i^{\alpha} t_j^{\beta} t_k^{\gamma} t_l^{\delta} t_m^{\varepsilon} t_n^{\varphi} \overline{L}_{\alpha\beta\gamma\delta\varepsilon\varphi}.$$

The degeneration on P_9 with respect to simple contact is the variety $(P_9|D_4)$ of nonreduced cubics; $(P_9|D_4) \subseteq t(P_9|B_8)$ for all $t \in T(P_9)$. On $(P_9|D_4)$ all the forms L(p) vanish.

Analogously to conics we can regard the variety of point-line cubics, given by the generic point (p, l), $(l) = \varrho \cdot (L(p))$ [8], I, [13], but this variety is not smooth, on $(P_{9}|D_{4})$ the variety $(P_{9}|A_{2})$ of triple lines is singular.

2. The sequence of five blow-ups

In [8], II, we constructed, by means of five blow-ups

$$(4) P_9 \leftarrow M_9 \leftarrow N_9 \leftarrow R_9 \leftarrow S_9 \leftarrow \check{Q}_9,$$

a smooth variety which is complete, that is, without degenerations with respect to simple contact; we will describe this construction now.

If $V_9^{(i)}$ is a variety in (4), then a degeneration on $V_9^{(i)}$ is a variety which is in $t(V_9^{(i)}|B_8)$ for all $t \in T(V_9^{(i)})$, where $T(V_9^{(i)})$ is induced by (1) and $(V_9^{(i)}|B_8)$ is the proper transform of $(P_9|B_8)$. We choose a nonsingular center W for the next blow-up $\varphi_{i+1} \colon V_9^{(i+1)} \to V_9^{(i)}$ among the degenerations on $V_9^{(i)}$, and we write down forms which define W; this gives the coordinates for $V_9^{(i+1)}$. In [8], II, it is demonstrated that the local parameters for the blow-up are found among these forms. The same blow-ups were obtained by P. Aluffi [1] from a different point of view.

We choose the variety $(P_9|A_2)$ of triple lines for the center of the first blow-up $\varphi_1: M_9 \to P_9$. The variety $(P_9|A_2)$ is defined by the forms B_{ij}^{rs} , where

$$B_{ii}^{rs} = \frac{1}{2} (p^{rjj} p^{skk} - 2p^{rjk} p^{sjk} + p^{rkk} p^{sjj}),$$
(5)
$$B_{ij}^{rs} = \frac{1}{2} (p^{rik} p^{sjk} - p^{rik} p^{skk} + p^{rjk} p^{sik} - p^{rkk} p^{sij}),$$
for $i, j, k = 1, 2, 3$; $i \neq j \neq k \neq i$; $r, s = 1, 2, 3$.

The B_{ij}^{rs} are the coefficients of the first covariant and contravariant form $\sum B_{ij}^{rs} x_r x_s w^i w^j$ [2, 4], which describes for the cubic (p) and for a point (x) the tangents (w) to the polar conic from (x) with respect to (p) [12].

 M_9 is given in $P_9 \times P_{35}$ by the generic point $(p^{ijk}, b_{lm}^{rs}), (b_{lm}^{rs}) = \varrho \cdot (B_{lm}^{rs})$. Let $(M_9 | A_8)$ be the exceptional divisor, and let $(M_9 | D_4)$ and $(M_9 | B_8)$ be the proper transforms of $(P_9 | D_4)$ and $(P_9 | B_8)$ respectively.

From (1) we get the transformations (3) and $b_{kl}^{ij} = \sum t_k^r t_l^s \tau_m^i \overline{b}_{rs}^{mn}$ in $T(M_9)$. Analogously we can get the transformations for the varieties described below.

The forms $L_{ijklmn}(p)$ of degree 4 in p^{ijk} , vanishing on $(P_9|D_4)$, can be written using (5) as forms L_{ijklmn} of degree 2 in b^{ij}_{kl} given (in [8], II, p. 124). These forms in b^{ij}_{kl} can also be got as follows. For given (x) or (w) the two pairs (x, w), described by

$$\sum b_{kl}^{ij} x_i x_j w^k w^l = 0, \qquad \sum w^i x_i = 0,$$

coincide on $(M_9|D_4)$. This coincidence occurs for some (w) if $\sum L_{ijklmn} w^i w^j w^k w^l w^m w^n = 0$ with the forms L_{ijklmn} of degree 2 in b_{kl}^{ij} , and it occurs for some (x) if $\sum L^{ijklmn} x_i x_j x_k x_l x_m x_n = 0$ and the L^{ijklmn} are of degree 2 in b_{kl}^{ij} too (see [8], II, p. 125). Therefore on $(M_9|D_4)$ we have $L_{ijklmn} = 0$ and $L^{ijklmn} = 0$.

There are two degenerations on M_9 with respect to simple contact, that is, with respect to $(M_9|B_8)$, namely the variety $(M_9|D_4)$ and a variety $(M_9|C_4) \subset (M_9|A_8)$ of dimension 4 too, such that on $(M_9|C_4)$ we have $p^{ijk} b_{rs}^{lm} = p^{ilm} b_{rs}^{jk}$. We choose the variety $(M_9|C_4)$ for the center of the second blow-up $\varphi_2 \colon N_9 \to M_9$. $(M_9|C_4)$ is defined by the forms $G^{ijklm} = p^{ijk} b_{rs}^{lm} - p^{ilm} b_{rs}^{ik}$ and the L_{ijklmn} , or in homogeneous form by

$$^{(1)}M^{ijklm\,\mu\nu}_{\ rs\ \sigma\tau}=G^{ijklm}_{\ rs}\cdot b^{\mu\nu}_{\sigma\tau},$$
 $^{(2)}M_{ijklmn}^{\ lphaeta\gamma}=L_{ijklmn}\cdot p^{lphaeta\gamma}.$

The variety N_9 is given by the generic point (p, b, m), $(m) = \binom{(1)}{m}, \binom{(2)}{m}$ $= \varrho \cdot \binom{(1)}{M}, \binom{(2)}{M} = \varrho \cdot (M)$. Let $(N_9|C_8)$ be the exceptional divisor, $(N_9|D_4)$, $(N_9|A_8)$, $(N_9|B_8)$ be the proper transforms of $(M_9|D_4)$, $(M_9|A_8)$, $(M_9|B_8)$ respectively. Now there are two degenerations on N_9 with respect to $(N_9|B_8)$, the variety $(N_9|D_4)$ and the 7-dimensional variety $(N_9|E_7) = (N_9|A_8) \cap (N_9|C_8)$.

We choose the variety $(N_9|E_7)$ for the center of the third blow-up φ_3 : $R_9 \to N_9$. $(N_9|E_7)$ is defined by the forms G_{rs}^{ijklm} and $^{(2)}m_{ijklmn}{}^{\alpha\beta\gamma}$, or in homogeneous form by

$$^{(1)}N^{ijklm}_{\ \ rs}^{abcde} \,_{fg\ \sigma\tau}^{\mu\nu} = G^{ijklm}_{\ \ rs} \,^{(1)}m^{abcde}_{\ \ fg\ \sigma\tau}^{\mu\nu},$$

$$^{(2)}N_{ijklmn}^{\alpha\beta\gamma\mu\sigma\tau}{}^{ab}_{\ \ cd}^{ab} = {}^{(2)}m_{ijklmn}^{\alpha\beta\gamma} \cdot p^{\mu\sigma\tau} \cdot b^{ab}_{cd},$$

and R_9 is given by the generic point (p, b, m, n) with $({}^{(1)}n, {}^{(2)}n) = \varrho \cdot ({}^{(1)}N, {}^{(2)}N)$. Let $(R_9|E_8)$ be the exceptional divisor, and $(R_9|D_4)$, $(R_9|C_8)$, $(R_9|A_8)$, $(R_9|B_8)$ 226 U. STERZ

the proper transforms of $(N_9|D_4)$, $(N_9|C_8)$, $(N_9|A_8)$, $(N_9|B_8)$ respectively. We find one degeneration on R_9 with respect to simple contact, the variety $(R_9|D_4)$, which will be the center of the fourth blow-up $\varphi_4\colon S_9\to R_9$ and which is defined by the forms $^{(2)}n_{ijklmn}{}^{\alpha\beta\gamma}{}^{\mu\sigma\tau}{}^{ab}_{cd}$ and by the forms L^{ijklmn} of degree 2 in b^{ij}_{kl} , or in homogeneous form by

$$(1)R^{\alpha\beta\gamma\delta\epsilon\varphi} _{rs}^{ijklm} _{fg}^{abcde} _{pv} = L^{\alpha\beta\gamma\epsilon\varphi} _{rs}^{(1)} n^{ijklm} _{rs}^{abcde} _{fg}^{\mu\nu} _{\sigma\tau} ,$$

$$(2)R_{iiklmn}^{\alpha\beta\gamma} _{cd}^{\mu\sigma\tau} _{cd}^{ab} _{ef}^{af} _{ef} = (2)n_{iiklmn}^{\alpha\beta\gamma} _{cd}^{\mu\sigma\tau} _{ef}^{ab} _{ef}^{bf} _{ef}^{af} .$$

The variety S_9 is given by the generic point (p, b, m, n, r) with $\binom{(1)}{r}$, $\binom{(2)}{r}$ = $\varrho \cdot \binom{(1)}{R}$, $\binom{(2)}{R}$, and we have the exceptional divisor $(S_9|D_8)$ and proper transforms $(S_9|E_8)$, $(S_9|C_8)$, $(S_9|A_8)$, $(S_9|B_8)$.

Finally, there is one degeneration on S_9 with respect to simple contact, the variety $(S_9|Z_4) \subset (S_9|D_8)$, which will be the center of the fifth blow-up φ_5 : $\check{Q}_9 \to S_9$. This variety is defined by the $^{(2)}r$, which we will be denoted by S_{ijklmn} aby $_{cd\ gh\ st}^{\alpha\beta\gamma\ \mu\sigma\tau\ ab\ ef\ qr}$.

 \check{Q}_9 is given by the generic point (p, b, m, n, r, s), $(s) = \varrho \cdot (S)$, and we have the exceptional divisor $(\check{Q}_9|Z_8)$ and proper transforms $(\check{Q}_9|D_8)$, $(\check{Q}_9|E_8)$, $(\check{Q}_9|E_8)$, $(\check{Q}_9|B_8)$, $(\check{Q}_9|B_8)$. There are no degenerations on \check{Q}_9 with respect to $(\check{Q}_9|B_8)$, that is, \check{Q}_9 is complete with respect to simple contact.

3. Relations for simple conditions

The relations

(6)
$$(M_5|L) \sim 2(M_5|P) - (M_5|V_4)$$

and

(7)
$$(M_5|B(c, 1)) \sim 2(M_5|P) + 2(M_5|L)$$

for complete conics are among the first relations of numerical equivalence in enumerative geometry [3, 6, 7]. $(M_5|V_4)$ is the exceptional divisor on M_5 ; $(M_5|P)$ is the condition to contain a point, in other words $(M_5|P)$ is the subvariety given by one linear equation in the coordinates p^{ik} ; $(M_5|L)$ is the condition to contact a line, that is, $(M_5|L)$ is the subvariety given by one linear equation in the coordinates l_{ik} ; and $(M_5|B(c, 1))$ is the condition to contact a given conic.

Following van der Waerden [10], for the condition $(Q_9|Y_8) = (Q_9|L)$ and for $(Q_9|Y_8) = (Q_9|B(c, 1))$ we will exhibit on Q_9 a homology relation

(8)
$$(Q_9|Y_8) \sim \alpha_1(Q_9|X_8^{(1)}) + \dots + \alpha_m(Q_9|X_8^{(m)})$$

in codimension 1 with $(Q_9|X_8^{(i)})$ basic elements and α_i integers. According to

Schubert [7] the integers α_i are called the characteristic numbers of the simple condition $(Q_9|Y_8)$. We compute them by intersecting (8) with suitable one-dimensional subvarieties. Analogously we can get relations on the other varieties $V_8^{(i)}$ in (4) (see [8], III, p. 171).

Let $(P_9|P)$, $(M_9|B)$, $(N_9|M)$, $(R_9|N)$, $(S_9|R)$, $(\check{Q}_9|S)$ be the 8-dimensional varieties given by one linear equation in the coordinates p^{ijk} ; b^{rs}_{ij} ; ${}^{(1)}m$, ${}^{(2)}m$; ${}^{(1)}r$, ${}^{(2)}r$; and s, respectively. If we already have $(V_9^{(i)}|Y_8)$, then $(V_9^{(i+1)}|Y_8)$ is the proper transform on $V_9^{(i+1)}$ in (4). Also we get $(Q_9|Y_8)$ from $(\check{Q}_9|Y_8)$, and $(Q_9|L)$ is the variety on Q_9 given by one linear equation in the coordinates l_{ijklmn} on Q_9 .

Starting with the homology group $H_{16}(P_9)$, we compute in [8], III, step by step the homology groups $H_{16}(M_9)$, $H_{16}(N_9)$, $H_{16}(R_9)$, $H_{16}(S_9)$, $H_{16}(Q_9) \cong H_{16}(Q_9)$ to be free abelian groups of rank 2, 3, 4, 5 and 6 respectively.

Basic elements on M_9 (that is, elements whose classes form a basis of $H_{16}(M_9)$) are $(M_9|P)$, $(M_9|A_8)$ or $(M_9|P)$, $(M_9|B)$, and there is a relation $(M_9|B) \sim 2(M_9|P) - (M_9|A_8)$.

Basic elements on N_9 are $(N_9|P)$, $(N_9|B)$, $(N_9|M)$ or $(N_9|P)$, $(N_9|A_8)$, $(N_9|C_8)$, and there is a relation $(N_9|M) \sim (N_9|P) + 2(N_9|B) - (N_9|C_8)$.

On R_9 we have basic elements $(R_9|P)$, $(R_9|B)$, $(R_9|M)$, $(R_9|N)$ or $(R_9|P)$, $(R_9|A_8)$, $(R_9|C_8)$, $(R_9|E_8)$, and $(R_9|N) \sim (R_9|P) + (R_9|B) + (R_9|M) - (R_9|E_8)$.

On S_9 we have basic elements $(S_9|P)$, $(S_9|B)$, $(S_9|M)$, $(S_9|N)$, $(S_9|R)$, or $(S_9|P)$, $(S_9|A_8)$, $(S_9|C_8)$, $(S_9|E_8)$, $(S_9|D_8)$, and $(S_9|R) \sim 2(S_9|B) + (S_9|N) - (S_9|D_8)$.

Finally, basic elements on Q_9 are $(Q_9|P)$, $(Q_9|B)$, $(Q_9|M)$, $(Q_9|N)$, $(Q_9|R)$, $(Q_9|L)$ or $(Q_9|P)$, $(Q_9|A_8)$, $(Q_9|C_8)$, $(Q_9|E_8)$, $(Q_9|D_8)$, $(Q_9|Z_8)$, and we have the relations $(Q_9|S) \sim (Q_9|R) - (Q_9|Z_8)$, $(Q_9|L) \sim (Q_9|S) - 3(Q_9|B) - 2(Q_9|P)$ and

(9)
$$(Q_9|L) \sim 4(Q_9|P) - 2(Q_9|A_8) - 3(Q_9|C_8)$$

$$-6(Q_9|E_8) - (Q_9|D_8) - 2(Q_9|Z_8).$$

(9) corresponds to (6) and differs from Zeuthen's relation [13] (see [8], IV, p. 102). In [8], IV, we have shown that the relation

$$(Q_9|B(c, 1)) \sim 2(Q_9|P) + 2(Q_9|L),$$

corresponding to (7) for complete conics, is valid for complete cubics too.

References

- [1] P. Aluffi, The enumerative geometry of plane cubics 1: smooth cubics, preprint (1988).
- [2] S. Aronhold, Theorie der homogenen Functionen dritten Grades von drei Veränderlichen, J. Reine Angew. Math. 55 (1858), 97-191.
- [3] M. Chasles, Construction des coniques qui satisfont à cinq conditions. Nombres des solutions dans chaque question, C. R. Acad. Sci. Paris 58 (1864), 297-308.

228 U. STERZ

- [4] A. Clebsch und P. Gordan, Über cubische ternäre Formen, Math. Ann. 6 (1873), 436-512.
- [5] K. Drochsler and U. Sterz, On completeness of varieties in enumerative geometry, Beiträge Algebra Geom. 26 (1987), 53-71.
- [6] S. L. Kleiman, Chasles's enumerative theory of conics. A historical introduction, Studies in Algebraic Geometry, MAA Stud. Math. 20, (1980), 117-138.
- [7] H. Schubert, Kalkül der abzählenden Geometrie, Teubner, Leipzig 1879.
- [8] U. Sterz, Berührungsvervollständigung für eben Kurven dritter Ordnung I, Beiträge Algebra Geom. 16 (1983), 45-68; II, 17 (1984), 115-150; III, 20 (1985), 161-184; IV, 21 (1986), 91-108.
- [9] E. Study, Über die Geometrie der Kegelschnitte, insbesondere deren Charakteristikenproblem, Math. Ann. 27 (1886), 58-101.
- [10] B. L. van der Waerden, Topologische Begründung des Kalküls der abzählenden Geometrie, ibid. 102 (1930), 337-362.
- [11] -, Zur algebraischen Geometrie. XV. Lösung des Charakteristikenproblems für Kegelschnitte, ibid. 115 (1938), 645-655.
- [12] H. S. White, Conics and cubics connected with a plane cubic by certain covariant relations, Trans. Amer. Math. Soc. 1 (1900), 1-8.
- [13] H. G. Zeuthen, Déterminations des caractéristiques des systèmes élémentaires de cubiques, C. R. Acad. Sci. Paris 74 (1872), 726-730.