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Introduection

This paper (called here ETD II) contains an introduction to the
theory of distributions of several variables. The case of a single variable
was the subject of “The elementary theory of distributions, I” (called
here ETD I)(*). For teaching reasons, particularly as regards beginners,
it is advisible to read ETD I before ETD II. However, the exposition
in ETD II is complete and does not presuppose any knowledge of ETD 1.

The main idea is the same in the two papers, but some modifica-
tions introduced in the case of several variables are of striking advan-
tage. In ETD I, distributions are defined, roughly speaking, as limits
of sequences of continuous functions. The same could be done for sever-
al variables, but this would cause complications due to the necessity
of introducing a superflous auxiliary notion of generalized derivatives
of continuous functions. That notion can be avoided by using infinitely
derivable functions or polynomials. But polynomials have no local pro-
perties, which — as we have verified experimentally — spoils the ele-
gance of the theory. Thus we have decided on infinitely derivable func-
tions as the starting point ot the theory.

Another modification is that in ETD I (except for the last Section)
we dealt with distributions of finite order, while in ETD II this restric-
tion is dropped.

ETD II contains a theory of elementary operations on distribu-
tions, such as addition, multiplication, derivation, substitution. It is
worth remarking that substitution is presented here more generally than
in earlier papers. Other operations, as the integral, convolution, the Fourier
transform, will be introduced in ETD III.

The abbreviation “iff” is used instead of “if and only if”.

(*) Rozprawy Matematyczne XII, Warszawa 1957.



§ 1. Terminology and notation

Given two systems of finite or infinite numbers

a = (ay,...;a5), b=(By,..y8),
we write
a<b,
iff
a;<f; for j=1,...,4q.
Similarly we write

a<b,
iff
ajgﬁ,- for j=1,...,q.
If real numbers &,, ..., & are finite, then

T = (&E1y...y &)

can be interpreted as a point of the g-dimensional Euclidean space.
The above convention enables us to denote the ¢g-dimensional open
intervals
("J'<Ef<ﬂ1 (j:]7-~-7Q)
by
a<w<b,

just 28 in the one-dimensional case. Similarly, if a; and f; are finite, then
the g¢-dimensional closed interval

av'g‘s:igﬂi (j:1,...,q)
will be denoted by

a<xz<hbh.

Unless the contrary is explicitly stated, by an interval we always
understand a bounded interval. Usually the word “interval” means
“open interval”. An interval a < x < b is said to be inside an open set O
iff the closed interval a << < b is contained in 0.

We adopt the usual notation

d"i‘?f = (&1 N1y eeny EgT14), z—Y = (13— N1y--vy Eg—Mq),
A= (REy, ..., 0E), ol =VE+ .. +&,

where ¥ = (n,,...,7,) 2nd 1 is & number.
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Functions defined on subsets of a g-dimensional space will usually
be denoted by symbols ¢(x), f(z), F(x),... instead of ¢(&,,..., &),

f(€1y.oy &)y F(&yy..y &), ... All functions under consideration are de-
fined on open subsets of the ¢-dimensional Euclidean space, unless the
contrary is explicitely stated.

Let F (z) be 2 continuous function in an interval I, let #, = (&5, ..., o)
be a fixed point in this interval, and let ¥ = (x,, ..., »,) be a system of non-
negative integers. Integrating F(z) first », times in £,, then », times
in &,, and so on, we obtain the iterated integral of order %

Eq Taz 61 711
f d‘tq,,q J dzg ... f dry,, - f At F(Tyyy ooy Taa) -
f0g éoq fo1 ‘01

This integral will be denoted shortly by
[ F@at,
Zo
or, in the particular case k = (1,...,1), by
[Fyar.
o
Observe the obvious formulae

[#®at = [f(Ha* (4 number),
To Zy

f(f(t)+g(t))dt" = [fwydt+ fg(z)dtk,
To z o

o T+t g 2 i . f(
—_— t)yat® = f(x).
O ... 083 z!f() )
Infinitely derivable functions will be called smooth functions. If ¢(x)
is a smooth function and % = (x,, ..., %;) is a system of non-negative
integers, then by its derivative of order k we understand the function

L) & '|"¢q

(k) .
¢ (z) = 9En ... 0% P(Ey ey &)

Generally we understand by order any sequence k = (x,,..., %g)
of non-negative integers. It will be convenient to use also the notation
¢, =(1,0,...,0), 0 =(9,0,...,0),

e, =(0,1,...,0), 1=(1,1,...,1),
........... 2=(22,..,2),
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Instead of 0 one may also write 0, which does not lead to a mis-
understanding.

§ 2. Uniform and almost uniform convergence

Given any set I, we say that a sequence of functions f,(z) converges
uniformly in I to f(zr) and we write

@) f(w) in I,
itf the function f(2) is defined on I and, for any given number ¢ > 0,
there is an index 7, such that for every n > n, the function f,(x) is defined
on the whole set I and satisfies there the inequality |f.(z)—f(z)| < e.
Thus for initial indexes » the functions f,(z) need not be defined in I.
We write

fol®)Z  in I,

iff there exists a function f(z) such that f,(z) = f(z) in I. We shall use
this symbol when it is not necessary to evidence the limit function.
We write
Ja®) 2" gn(®) in I,

iff both sequences f,(x) and g,(z) converge uniformly on I to the same
limit.

A sequence f,(x) is said to converge to f(x) almost uniformly in an
open set O iff f, (x)Z f(x) on every interval I inside O. The limit func-
tion is defined in the whole set O, but according to the definition none
of the functions f,(z) need be defined in the whole set O. If O, is the
open set where f,(z) is defined, then for every interval I inside O there
exists an integer m, such that I is inside O, for n > n,.

§ 3. Fundamental sequences of smooth functions

Let O be an open set in the g¢-dimensional space.

A sequence ¢, (x) of smooth functions is said to be fundamental in O
iff for every interval I inside O there exists an order ¥ and smooth
functions @,(z) such that

(F) (@) = gu(a),

(Fy) Dp(x) in I.

The order k and the sequence @, (z) depend, in general, on I. According
to the definition, none of the function ¢, () need be defined in the whole
set O. If O, is the open set where ¢, (x) is defined, then for every interval
I inside O there exists an index =, such that I is inside O, for n > n,.
The functions @,(x) are defined in I for » > n, and satisfy there (F,)
and (Fy).
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It follows immediately from the definition (for ¥ = 0) that:

3.1. Every sequence of smooth functions convergent almost uniformly
tn O 18 fundamental.

Differentiating (F,) m times, we find that:

3.2. If ¢,(2) is a fundamental sequence, so is ¢\"().

It is useful to observe that the order ¥ which occurs in the condition
(F',) can, if necessary, be replaced by any greater order. This results
from the following statement:

3.3. If D,(x) satisfies (F;) and (F,) and of | > k, then the sequence
of smooth functions

b (2) = [D,()a* (3 in I)

satisfies also (F,) and (F,), where k is replaced by .
Observe also that:

3.4. If a sequence o, (x) is8 fundamental in every tnterval I inside O,
it 48 fundamental in O.

For, if I is any interval inside O, there is an interval I’ inside O such
that I is inside I'. Since the sequence ¢,(r) is fundamental in I', there
are smooth functions &, (x) and an order % such that (F,) and (F,) hold in 1.

§ 4. The definition of distributions

We say that two sequences ¢,(r) and y,(r) fundamental in O are
equivalent in O and we write

on (@) ~ yu(2),
iff the interlaced sequence

P1(®), v1(@), @a(2), vu(2), ...

is fundamental.

Evidently, the following condition is necessary and sufficient that
@, () and p,(z) be equivalent: For every interval I inside O there exist
sequences of smooth functions @,(z) and ¥, («) and an order & such that

(E)) OP@) =ga(@) and PP (@) = ya(a),

(E,) D,(2)2CVP,.(x)in I.

The sequences &,(z) and ¥, (x) and the order k depend, in general,

on I.
From 3.3 it follows that

4.1. The order k in the condition (E,) can, if necessary, be replaced
by any greater order l.
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It is easy to see that the relation ~ is reflexive and symmetrie, i.e. that

1° @u(@) ~ @n(@),

2°  @n(®) ~ y,(x) implies y,(x) ~ @, ().
It is also transitive, i.e.

3° @n(T) ~ po () and y,(x) ~ &, (x) imply @,(z) ~ &,(2).
In fact, the supposition in 3° means that, for every interval I inside O,
there exist an order ¥ and smooth functions &,(x) and ¥, () satisfying
(E,) and (E,), and there exist an order ! and smooth functions ¥, (x),
@, (z) such that

V@) = po(2), ON@) =9,(2), ¥,(2)2 L6, (2).

By 4.1 we may assume that k& = I. The sequences @,(z) and 6,(z) =
=¥, ()P, (#)+6,(z) converge uniformly in I to the same limit,
and O (r) = @, (x), OY(z) = 9,(x), which proves that g¢,(z)~ 9,(z).

The relation ~ being reflexive, symmetric and transitive, the set
of all sequences fundamental in O gets decomposed into disjoint classes
(equivalence classes of the relation ~) such that two fundamental se-
quences are in the same class iff they are equivalent. These equivalence
clagses are called distributions (defined in 0). Thus the notion of distribu-
tion is obtained by identification of equivalent fundamental sequences.

The distribution determined by a fundamental sequence ¢,(z),
i.e. the class of all fundamental sequences equivalent to ¢,(z) will be
denoted by the symbol [¢,(x)]. Two sequences ¢,(r) and y,(z) funda-
mental in O determine the same distribution iff they are equivalent. Thus

[2a(@)] = [yn(@)] It @n(2) ~ yu(®).

Distributions will be denoted by f(x), g(z), etc., as funections. It should
be emphasized that this notation is purely symbolic and, in general,
it does not allow us to substitute points for the variable =z.

§ 5. Multiplication by a number

The operation Ap(x) of multiplication of a function ¢(r) by a number
A has the following property:

1° If ¢,(z) is a fundamental sequence, so is Ag,(z).
This property enables us to extend the operation onto arbitrary
distributions f(z) = [¢,(z)] by assuming
Af(@) = [Apn(@)].

In order to verify the uniqueness of the product A¢ (x) we have to show
that the product does not depend on the choice of the fundamental se-
quence ¢,(«). In other words:
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2° If @u(@) ~ @, (2), then Ap,(z) ~ Ap,(2).
In fact, the sequence
‘pl(m)!.‘;}l(m)! P2 (2), P2 (), ...
is fundamental. Thus by 1° so is the sequence
Apy (), Apy(x), Ape(®), Aps(x), ...,
which implies the assertion.

§ 6. Addition

The operation ¢(r)+y(z) of addition of two functions ¢(z) and
y(x) has the following property:

1° If ¢,(z) and y,(x) are fundamental sequences, 8o is ¢, (z) v, (®).

In order to prove 1°, suppose that, for any interval I inside O, there
are orders ¥ and ! and functions @,(x), ¥,(z) such that

¢(k)(w) = @, (2), ?D,.(2) 2,
PNa) = ya(a), Po(a)2.

We can assume that k& = [ since each of the orders ¥ and ! can be
arbitrarily enlarged (see 3.3). Since

(D (@) + P, (2)° = gu(@)+val@), Bu(@®)+Pu(®) 2,
the sequence ¢, (z)+vy,(r) is fundamental.
Property 1° enables us to extend the addition onto arbitrary dis-
tributions f(z) = [¢,(z)] and g(z) = [¢,(x)] by assuming
f(m)—,—g(m) = [‘;"n(m)+'l’n(w)]-

The sum so defined is unique, for it does not depend on the choice
of fundamental sequences ¢,(z) and w,(x). In other words:

2° If gn(®) ~ @n(2) and y,(2) ~ 9, (2), then
Pn () 190 (@) ~ 9u (@) +9n(2).
In fact, the sequences
?1(®)y 9.(7), ¢:(@), @al@), ...,
v1(®), ¥1(2), v2(2), va(@), ...
are fundamental. By 1° so is the sequence
?1(2)+91(2), ¢1(2)+¥1(2), Pa(@)+y2(®), Pal@)+y,(@), ...,

which implies the assertion.



10 Elementary theory of distributions (II)
§ 7. Regular operations

Multiplication by a given number 4 is an operation on a single fune-
tion (or distribution). Addition is an operation on two functions (or dis-
tributions). Generally, we may consider operations on an arbitrary number
of functions and extend them onto distributions. The method of exten-
gion is similar. It would be tedious and unnecessary to repeat the argu-
ment in every particular case. In this Section it will be shown generally
that the extension is feasible for a large class of operations.

Denote by

Alp(@), y(@), ...)

an operation on a finite number of functions ¢(z), y(z), ... Suppose
that this operation has the following property:

1° If ¢,(2), p.(®), ... are fundamental sequences, so is

A(‘Pn(m)y v (), -)
Such an operation is extended onto distributions f(z) = [¢.(2)],
9(z) = [ga(2)], ..., by assuming
A(f(‘v)v g(m)y ) = IA “Pn(fv), V’n(w), )l

The extension is unique, i.e. it does not depend on the choice of the fun-
damental sequences ¢, (z), v.(Z), ... In other words:

2° If
(1) @ (@) ~ @ (@), ¥ (@) Ni’n(m)r seny
then
(2) A(‘Pn(m)7 v (), ) ~ A(?_’n(-'”)7 ¥ (@), )

In fact, by supposition, the sequences

?1(7), @,(@), @:(7), 52(47), ceey
v, (2), ii’l("ﬂ? va(2), —V-’z(m)y ceey

ooooooooooooooooo

are fundamental. By 1° so is the sequence

A(‘P1(-”7)’ v.(2), )1 A(&l(a’)’ v, (@), )y A(‘Pa(“")s v (), )a ceey

which proves the assertion.

All operations A(p(z), p(2), ...) with property 1° will be called
reqular operations. Every regular operation defined on smooth functions
is extended automatically onto distributions. This extension is always
unique.

Multiplication by a number and addition are regular operations, as
we have seen in Sections 5 and 6.
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§ 8. Subtraction, translation, derivation

We are now going to give further examples of regular operations.
Subtraction. The subtraction ¢(»)—y(x) is a regular operation.
In fact, if ¢,(«) and y,(z) are fundamental sequences, 80 i8 ¢, () —y,(®).
The proof is analogous to that in Section 6. Thus we define the difference
of two distributions f(z) = [p,(2)] and g¢g(z) = [y,(@)] by the formula

f(@)—g(@) = [pn(®)—vn(@)].

Translation. The translation ¢(z-+k) is a regular operation. More
exactly, if ¢, (x)is @ fundamental sequence in the open set O, then ¢,(z1h)
is a fundamental sequence in the translated set O,, which consists of all
points » such that #+»% is in O. Thus, if f(z) = [¢,(x)] is a distribution
defined in O, then

f@+h) = [pn(z+h)]

is a distribution defined in 0,.

Derivation. The derivation ¢'™ (z) of an arbitrary order m is & reg-
ular operation. In fact, by 3.2, if ¢,(2) is 2 fundamental sequence, so
is ™ (2). Thus we define the derivative of order m of any distribution

f(@) = [pa.(»)] by assuming

F"™@) = ¢ (2)].
Evidently:

8.1. Each distribution has derivatives of all orders.

Property 8.1 is of striking advantage in calculations with distri-
butions, and makes them easier and more elegant than the calculations
in Classical Analysis.

§ 9. Multiplication of a distribution by a smooth function

The multiplication ¢(x)y(x), when considered as an operation on
two functions ¢(#) and y(x), is not regular, for if the sequences ¢, ()
and y,(r) are fundamental, their product ¢,(z)y,(r) need not be fun-
damental.

However, multiplication may also be considered as an operation
on 2 single function, the other factor being kept fixed. Denote by w(x)
that fixed factor. We shall prove that, if w(z) is a smooth function,
multiplication «(x)p(x) is a regular operation on ¢(z). In other words,
if the sequence ¢,(z) is fundamental, so is w(2)g,(®).
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In fact, since ¢,(r) is fundamental, for every interval I inside O
there exist an order k¥ and smooth functions @,(x) such that

P (z) = ¢, () and P, (z) in L

For every order m and every smooth function w(z) the sequence w(z) @4,")(x)
is fundamental in I. The proof is by induction. The case m = 0 follows
from 3.1. If the sequence is fundamental for some m, then the sequence
is also fundamental for m |e;, since

w (@) d).(:m+8j)(m) — (w(a}) ¢£Z'L)(w))(6j)_w(cj)(m) ¢£::»)($)

and the right side is the difference of two sequences which are fundamental
by 3.2 and the induction hypothesis. For m = k we find that «(x)g,(z)
is fundamental in I. The interval I being arbitrary, the sequence w(x)gp, ()
is fundamentzl in the whole set O, on account of 3.4. Thus we have proved
that multiplication by a smooth funection o(x) is a regular operation.

According to the general method, we define the product of an arbi-
trary distribution f(x) = [¢,(x)] by 2 smooth function w(z) by means
of the formula

w(@)f(®) = [o(@)g,(@)].

Occasionally we shall also write f(z)w(x) instead of o(x)f(x).
Observe that if w(x) is 2 constant funection, then the multiplication
just defined coincides with that from Section 5.

§ 10. Substitution

Let o(x) be a fixed smooth function in an open ¢-dimensional set O
such that

(1)

2 - 2
(0 () Ly o,

9&, &,

suppose that the values of o(x) are in an open set O’ of real numbers y.
The substitution

(o (@)

is a regular operation on ¢(y) (o(x) being fixed). More precisely, we
shall show that if ¢,(y) is fundamental in 0, so is g,(o(z)) in O.

Let I be any interval inside O. The function o(x) maps I onto an
interval I’ inside O’.

Observe first that if, for some smooth functions @, (y), the sequence
?,(o(2)) is fundamental in I, so is the sequence @,(o(z)). In fact, from

9 , 9 .
o D, (o(z) = ¢n(o(w))356(w) G=1..,9
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we find by algebraic calculations
n(o(w)) o(w)+ + P, (o (2))-

aa(w)) ( 60(.’0))
(asi Tt at,

d
Here the derivatives L ®,(o(z)) form fundamental sequences, by 3.2.

i

=7 (@)

65 0&,

(2) Pylo(a) =

a
Also the products of those derivatives by smooth functions — o(2)

1
are fundamental sequences, since multiplication by smooth funections

is & reguler operation. Thus the numerator in (2) is a fundamental sequence,
a8 the sum of fundamental sequences. Finally, the whole fraction on the
right side represents a fundamental sequence, for it can be represented
as the product of the numerator by the inverse of the denominator.

By induction, if @,(c(x)) is fundamental, so is @’ (o(x)) for every
non-negative integer k.

Now, let @,(y) be a sequence of smooth functions such that, for
an integer k > 0

(y) = ga(y) and P,(y)Z in I'.

Then @,(o(x)) in I. Thus @,(c(z)) is a fundamental sequence and
80 is qﬁ""(a(m)), i.e. p,(o(x)). Since the interval I is arbitrary, the sequence
wn(a(w)) is fundamental in the whole set O, on account of 3.4.

Thus we have proved that the substitution of a given smooth function
o (z) satisfying (1) is a regular operation. According to the general method
we define the substitution of o(z) into an arbitrary distribution
f(y) = [¢.(¥)] in O’ by the formula

flo(@) = [gu(o (@)}

The distribution f(y) is one-dimensional, i.e. is defined in a one-dimen-
sional set, the distribution f(o(z)) is g-dimensional, i.e. is defined in a
q-dimensional set.

~ In Section 25 we shall also consider the more general case where
the outer distribution f(y) is p-dimensional, 1 < p <gq.

§ 11. Product of distributions with separated variables

The product of two smooth functions ¢(&,,..., &), w(m, ...y )
can be written. in the form ¢(x)y(y), where z = (§,..., &), ¥ =
= (N1, .-+, 0y). If @(x) is defined in an open subset O’ of the g-dimensional

space, and y(y) is defined in an open subset O’’ of the r-dimensional space,
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then the product (v)e(y) is defined in the open set O of all points
(&1y --vy &gy M1y -+, ) Such that (§,,..., &) isin O’ and (%,, ..., n,) i8 in 0",

It is evident that the product ¢(2)y(y) is a regular operation on two
functions ¢(x) and y(y). It is therefore extended onto arbitrary distri-
butions f(x) = [gn(2)], 9(¥) = [¥a(y)] by assuming

f(2) 9(y) = [pn(@) va(y)]-

The distributions f(x) and g(y) being defined in 0’ and O’ respectively,
their product is defined in O. The distributions f(z) and ¢(y) are ¢-dimen-
sional and r-dimensional, their product is (¢+7)-dimensional.

§ 12, Convolution by a smooth function vanishing outside
an interval

First we shall show that there exist smooth functions vanishing
outside a given interval I, but non-vanishing everywhere.
The funection

0 for £<0,
Qe =1
et for £>0
is smooth, positive for £ > 0, and vanishing for & < 0. The product
Q(&—a) Q(B—%)

is also smooth, positive for a < £ < # and vanishing elsewhere.
For any interval I:

a<aez<b, a=(ay...,q), b=(f,...,H),
we define the function £2;(x) by the following formula:

q
(@) = [[ 2(5—a)Q(8—¢)).

=1

This function has the required properties: is smooth, positive in I, and
vanishing elsewhere.

If f(2) is continuous or locally integrable in an open set 0 and w(x)
is continuous everywhere and vanishing outside an interval a < 2 < b,
then by the convolution of f(2) by w(z) we understand the function

b
(1) fa)so(@) = [ fla—t) olt)dt,

defined in the open set O’ of all points # such that the interval
zta<t< ao+b
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is inside O. Convolution (1) can be written in the form

[fle—tomdt o [ flyo@—t)dt,

by adopting the convention that the product is equal to zero if one of the
factors is equal to zero, no matter whether the second factor is defined
or not.

The convolution of a continuous or locally integrable function f(z)
by a smooth function w(z) (vanishing outside a < # < b) is a smooth
function and

(2) (f@)*r o (@)™ = fa)*"(z)

for every order m.
If f(x) is smooth, then also

(3) (f@)* o (@)™ = f™(@)*w ()
for every order m.

If fo(2)7 f(#) in an interval a,+a < # < b,+b, then
(4) Fu(@)xo (@) f(2)*w(z)

in ay < # < b,. Hence it follows that

12.1. If ¢,(z) is fundamental in O and o (z) i3 8mooth then @, (z)*w ()
converges almost, uniformly in O’.

In fact, let I': @y < # < b, be an interval inside O’; then the interval
I:ay+a < z<by+b is inside 0. Since ¢, (x) is fundamental in O, we have

gul(®) = OM@) and B,(2)= in I.
Hence, by (3), (2) and (4),
P (@) 0(7) = (D (@)% 0 (2)® = B, (2)*0®(2)Z in I

It follows from 12.1 and 3.1 that convolution by a smooth function
vanishing outside an interval is a regular operation.

According to the general method, we define the convolution of an
arbitrary distribution f(#») = [¢,(2)] by a smooth function w(»), vanish-
ing outside an interval I, by means of the formula

f@) (@) = [pa(@)* 0 (@)].

Occasionally we shall also write w(2)»f(®) instead of f(2)*w ().
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§ 13. Calculations with distributions

In calculation various identities are useful, e.g.
(¢ (@) —v (@) +-p(2) = ¢(),
Mo (@) +y(@) = dp(a)+2y(2),
(1) (@) p(@)) = N z)p(2)+w(2) ¢ (),
o(o(@) = ¢’ (o(x)) (),
((2)rp (@)™ = o™(@)4p (@) = w(x)*xp"™(x).

All these formulae and many others can be extended onto distributions.
We need not justify the correctness of this extension for each formula
separately. We shall give 2 simple rule which permits to indicate a large
class of formulas, valid both for smooth functions snd for distributions.
The rule is based on the concept of iterations of operations. For instance,
the expression A(f(x)+g(z)) is an iteration of addition and multiplication
(by the number 1).

Generally, by iteration of operations we understand the expression

A(Blp(@), p(@), ..), Clx(@), ¥(®), ...}, ...,

where A, B, C,... are given operations. In each of the five examples
quoted at the beginning of this Section there are equalities between itera-
tions of operations, provided the identity operation .# (v,v(w)) = @(x) is admit-
ted. The identity operation is trivially a regular operation. In examples
(1) there appear iterations of regular operations only. It follows directly
from the definition of regular operations that iterations of regular oper-
ations of regular operations are again regular operations.

The meaning of formulas (1) is that the left and the right sides of each
equality represent the same operation. All those operations are regular,
and thus their extensions onto distributions are unique. This implies
that the same formulas hold if we replace smooth functions ¢(z), p(x)
by distributions.

Algso iterations of second order, i.e. iterations of iterations of regular
operations, are regular operations, and so are iterations of an arbitrary
finite order, i. e. any finite iterations of regular operations. Thus the
following general rule holds:

13.1. If an equality whose sides are both finite iterations of regular
operations holds for smooth functions, then it also holds for arbitrary distri-
butions.

This rule is not merely of theoretical but above all of practical impor-
tance, for it allows to perform calculations on distributions in the same
way as on smooth functions, provided all operations occurring in those
calculations are regular.
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§ 14. Delta-sequences and delta-distribution

If Q,(x) is the function defined in Section 12, the function

wr(®) =y~ 21(@),
where

y= [ Q)0

i8 smooth, positive in I, and vanishing elsewhere. Moreover, it has the
property

-]

[ wr(z)da = 1.

Let a, be positive numbers such that a, - 0. There exist smooth
functions §,(x), non-negative for |z| < a, and vanishing elsewhere, such
that

f%mM=L

The existence of such sequences is ensured by the preceding example.
Any sequence 6, (x) with the above properties will be called &-sequence.
Every é-sequence is fundamental. In fact, the sequence

do(@) = [ 8,(0)at*

converges uniformly everywhere and AP (z) = 6,(x).

All é-sequences are equivalent, for the interlaced sequence formed
of two d-sequences is again a d-sequence.

Thus the J-sequences determine a distribution

d(@) = [8a(@)];

this is called the g¢-dimensional Dirac delta-distribution. The dimension
of §(x) is indicated by the dimension of the variable .

If w(x) is a smooth function, then w(x) é(x) is a fundamental sequence,
equivalent to w(0)d,(w). In fact, if ¢ > 0, there exists an index n, such
that for n > n,

lo@)—w(0))<e n —aql<<a<a,l
Hence

If(w(t)—w(O))a (t)dt] e [ oo =,

BU 2
w/
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which proves that the integral converges uniformly to 0. Hence
®(x)8,(2)—w(0)d,(r) ~ 0, and consequently

w(2)8,(r) ~ w(0)d,(z).

Since the left and the right side are fundamental sequences for the
products w(zx)d(r) and «(0)dé(z) respectively, we obtain the formula

w(7)8(2) = w(0)d(z).

14.1. If 6,(z) is a 8-sequence and f is a continuous function in O, then
the sequence of smooth functions

()b, (x)

converges to f(z) almost uniformly in O.

In fact, let I be any interval inside 0. For every positive number ¢
there is an index =, such that for n > n,

If(e—t)—f(x))<e for zin I and —a,I<t< a,l.

Hence
f@mdu(@)—f@) < [ Ifla—t)—f(@)|s, (D)t <&

for n>mn, and » in I,

This proves that f(x)é,(x) converges to f(x) almost uniformly in O.
The following generalization of 14.1 is useful:

14.2. If 6,(x) s a b-sequence and f,(z) ts a sequence of continuous
functions, convergent to f(x) almost uniformly in O, then the sequence of
smooth functions

Ja(@)xd, ()

converges to f(xz) almost uniformly in O.
To prove this, remark that

fu(w)"'an(m) = f({”)*an(w)'*"(fn(w) —f(m))"an(w)!

where the first member on the right side converges almost uniformly to
f(z), by 14.1. It suffices to prove that the sequence

Pa(@) = (fol@) —F(@))%5,(2)

converges almost uniformly to 0. In fact, given any interval I inside O
and any positive number ¢ > 0, we have, for sufficiently large =,

Pn(®)] < e%d,(x) =¢ in I.
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This Section will be completed by a simple remark on the product
of delta distributions. The product

8n(&1) ... 0u(&)
of one-dimensional d§-sequences is evidently 2 g¢-dimensional d-sequence.

Hence, by the definition of the product of distributions with separated
variables, we obtain

8(2) = 8(&) ... 8(&) for @ = (&, ..., &)

8§ 15. Distributions in subsets

Any distribution in the open set O can be interpreted, if necessary,
a8 a distribution in any open subset O’, since the functions of any funda-
mental sequence representing f(x) can be interpreted as functions in the
subset. Thus every distribution defined in O is also defined in any open
subset O’.

If we write

f(@) =g(®) in 0,

then we always understand that the open set O’ is contained in each

of the open sets where the distributions f(«#) and g(x) are defined end

that f(z) and g(z), when interpreted as distributions in O’, are equal.
If we write the mere equality

f(z) = g(=),

we shall understand, if no particular explanation is added, that the distrib-
utions on both sides are equal in the common part of the open set where
they are defined, and that this common part is not empty.

15.1. If f(z) = g(x) in every interval inside O, then f(z) = g(x) in O,

In fact, let f(x) = [p,(x)] and g¢g(x) = [y.(2)]. The equality f(z)
= g(x) in every interval inside O implies that the sequences ¢,(z), v,(x)
satisfy conditions (E,) and (E,) in every interval inside an interval inside O,

and consequently in any interval inside O. Thus the sequences are equi-
valent in O.

§ 16. Distributions as a generalization of the notion
of continuous functions

Every continuous function may be considered as & distribution.
In this way theory of distributions will embrace Classical Analysis.

In order to obtain the identification of continuous functions with
distributions, we need two preparatory lemmas.
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16.1. If, in an interval a < & < b, @, () = 0 and ¢(@) =, then (1) = 0.
This is true for ¥ = 0. Argue by induction. Suppose that the asser-
tion holds for 2n order k, and that ¢,(z) 20, ¢¥*% = f(#) in a < < b.

Then
] n
oa+ne) —gz) = [glk*Ma-+le)d ™ [f(z+Le)dl
0 [

in a+|nle; < < b—|nle;. By the induction hypothesis, the last integral
vanishes. The number » being arbitrary, we obtain f(x) = 0.

16.2. Almost uniformly convergent sequences of smooth funclions are
equivalent iff they converge to the same continuous funetion.

In fact, if-sequences ¢,(x) and y,(z) converge almost uniformly
to f(z), then they satisfy conditions (E,) and (E;) with % = 0. Thus
@a (@) ~ y,(2). Conversely, if ¢,(z) ~ y,(z), then for every interval I
ingide O there exist smooth functions &, (r) and ¥, (z) and an order k such
that conditions (E,) and (E,) are satisfied. Hence @, (x)—W¥,(z)_ 0
on I. By 16.1, ¢,(#)—v,(x) Z 0 on I. Thus the limits of ¢, () and y,(x)
are equal.

Now we are in a position to establish the correspondence between
continuous functions and some distributions.

By 14.1, for every continuous function f(z) there exists a sequence
of smooth functions ¢,(») which converges almost uniformly to f(z).
By 3.1, this sequence is fundamental. Thus to every continuous funetion
f(@) there corresponds a distribution [¢,(z)]. By 16.2 the correspondence
is one-to-one.

In the sequel we shall always identify the continuous function
f(z) with the distribution [¢,(x)].

In particular we can write, after 14.1,

(1) f(@) = [f(z)*d,(2)]

for every continuous function f(x) and any é-sequence 4, ().

Of course, 2lso smooth functions ¢(z) are distributions, and for
them we have a simpler identity

o (@) = [g(a)].

In particular, the zero distribution, i.e. the distribution identified
with the function vanishing everywhere, will be denoted by 0.

By the identification assumed here distributions are a generalization
of the notion of continuous function. This justifies using for them the
notation f(z), g(z), ..., as for functions.

16.3. The convolution f(®)*w(z) of a distribution f(x) by a smooth
function w(x) 8 a smooth funclion.
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In fact, let f(#) = [¢.(2)]. By 12.1, the sequence ¢, (z)*w(2) con-
verges almost uniformly to a continuous function g(«). Moreover, for
every order m, the sequence (g, (#)xw(x))™ also converges almost uni-
formly on account of 12.1 and formula (2) in Section 12. By a classical
theorem, ¢(z) has continuous first partial derivatives viz. the limit
of (tp,,(m)tw(w))(ei) is the jth derivative of g(z). By the same argumeunt,
g(z) has all second derivatives, all third derivatires, etc. Thus ¢(z)
is a smooth function. On the other hand, f(z)*w(x)= [@,(z)*w(z)] =
= g(x) by the definition of convolution and identification of continuous
functions with distributions.

Now, we can write the identity

(2) p(x) = p(@)*d(2)
for every smooth function ¢(z). In fact, replacing in (1) f(») by ¢(z),
we got
¢(2) = [@(@)*d,(2)] = @(2)*[5,(7)] = p(@)*d(x).
We are also in a position to prove the following generalization of (1):
16.4. If 6,(z) is a d-sequence and f(x) any distribution, then

(3) f(@) = [f(z)*d, ()]

In fact, for every interval I inside the set O, where f(x) is defined,
there exist an order k¥ and a continuous function F(z) such that F®(x)
= f(z) in I. By (1),

F(v) = [F(z)*d,(v)] in I.

Hence, differentiating k times, we obtain (3) in I. By 15.1 formula (3)
holds in the whole set O.

Since 0 = ¢(z)*0 for overy smooth function ¢(z), it follows from
(2) that 6(») is not equel to the zero distribution when considered in the
whole space. Observe, on the other hand, that

0(z) =0 for x#£0

(l.e. in the open set of all # # 0) since every 4-sequence 4, (x) converges
almost uniformly to 0 for = # 0.

§ 12. Operations on continuous functions

In Sections 5-12 we have defined several operations on distributions.
Now, continuous functions are distributions, and thus operations defined
earlier for distributions are also defined for continuous functions. How-
ever, the operations are also defined directly on continuous functions.
The question arises whether the two definitions are compatible.

Before we prove the compatibility of direct operations and distribu-
tional operations, we shall use in this Section different symbols for them.
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If A denotes a direct operation, the corresponding distributional opera-
tion will be denoted by 4. This double notation was not necessary before
the identification of continuous funetions with distributions, since direct
operations were performed on continuous funetions and distributional
operations on distributions, and no misunderstandig could arise.

17.1. If A(p,vy,...) i8 a regular operation, then
(1) Alp,yy...) = Alpy 9y ...)

for smooth functions @, vy, ...

In fact, thanks to identification we can write ¢ = [¢], v = [¥], ...,
and A(p,y,...) =[4A(p,y,...)]. On the other hand, by the defini-
tion of distributional operations, we have A(p,y,...) = [4d(p, ¥,...)].
This proves (1).

Given a regular operation A4, we shall say that continuous functions
fy 9, ... satisfy the continuity condition for A if A(f,g,...) is defined
directly for those functions and, moreover, there exist smooth functions
Pny Yny ... Such that ¢, f, v,2g,... and A(pn, vs,...) 2 A(f,9,...).

17.2. If continuous functions f,g,... satisfy the continuity condi-
tion for a regular operation A, then

(2) A(.f191°'-)=1(f197--')~

In fact, on account of identification, we then have A(f,g,...)
= [A(@ny ¥n,y ---)]- On the other hand, by the definition of distributional
operations, A(f,g,...) = [A(¢n, ¥n,-..)]. This proves (2).

The continuity condition is satisfied by all continuous functions
in the case of operations introduced so far, except for derivation. Con-
sequently, those operations coincide with ordinary operations on con-
tinuous functions. Moreover, all calculations on continuous functions,
except for derivation, may be performed in the usual way.

It is easy to see that every function f(x) which is continuous with
its ordinary derivative f)(z) satisfies the continuity condition for deri-
vation. Thus for such functions the ordinary derivative f%)(z) coincides

7]
with the distributional one. Both notations, f(z) and 3 f(z), may
j

be used as equivalent. By induction we have more generally:

17.3. If f(z) i8 a continuous function and its ordinary derivative
0 0
55: g 5

i8 continuous, and if all the derivatives occurring in the step-by-step dif-

ferentiation in the arrangement indicated are continuous as well, then the
derivative (3) coincides with the distributional derivative of the same order.

(3)

fla)
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It follows from 8.1 that every continuous function has distributional
derivatives of all orders. If such a derivative is gontinuous, and if all
the derivatives of minor orders are continuous as well, it coincides with
the ordinary derivative. However, it may happen that 2 distributional
derivative of a continuous function f(x) is a continuous function but
the ordinary derivative of the same order does not exist at all, no matter

9
what is the ordering of symbols T
1

For instance, if a continuous function ¢(£) of one real variable is

non-differentiable (in the ordinary sense), then the function

fl@) = g(&)+9(&,)

02 0%
J@)y, =/
0£,0¢, 0404,
responding distributional derivatives are equal, because the distribu-

does not have ordinary derivatives f(@). The cor-

0
tional derivatives do not depend on the ordering of symbols i To find
i

a ad
the distributional derivative in question, let us remark that 9E ﬁ (&) =0
1 2

in the ordinary and consequently in the distributional sense. Similarly

we have

g(&) = 0 in the distributional sense. Since the or-
0&, 0§,

i
dering is irrelevant, we have also g(é,) =0 in the distri-

o0&, 0§,
butional sense. Hence we obtain, as the distributional derivative,
02

05,08,

d
f(z) = 0. It is interesting to note that neither TN f(x) mnor
1

PT: f(z) are functions. This example shows that there are distributions
2

which are not functions, but some of their derivatives are continuous
funetions.

17.4. Evwery distribution in O 18, in every interval I inside O, a deri-
vative of some order of a continuous function.

In fact, let f(2) = [¢.(2)]. By (¥,), (F,) there exist an order %k, smooth
functions 9, (z), and a continuous function F(z) such that in [

OP(x) = g,(®) and D, (2) 3 F().
Hence F(x) = [P,(2)] in I and

fl@) = [#(@)] = [Pn(@)]® = FO@) in I.
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§ 18. Locally integrable functions

As we have seen in Section 17, distributions are a generalization
of continuous functions. Now we shall show that they embrace also a lar-
ger cless of functions, viz. all locally integrable functions. Sections 18
and 19, which are concerned with those functions, ean be omitted by
readers not acquainted with the theory of Lebesgue Integral.

We recall that a function f(z), defined in 0, is said to be locally integr-

b

able in O iff the integral f f(t)dt exists for every interval a < # < b inside O.
a

Observe first that if f(«) is a continuous function in an interval I,
then in I

(1) ([foat) =f@ (2 in I),
Zo

where the sign ’ denotes derivation of order I. If we do not assume the
continuity of f(») but its integrability only, then the integral f f(t)dt is

also a continuous function. In this case equality (1) holds a.lmost eve-
rywhere, the derivative on the left side being defined as the usual limit
(for a -+ 0, a > 0) of the expression

z4 4z

@) o) =— [ foa,

1 1
where Az = (a, ..., a) = al and v denotes —. The left side of (1) can
a
also be interpreted as a distribution which is the distributional deriva-
tive of order I of the continuous function f f(t)at. 1t is easy to verify

that this distribution does not depend on the choice of z, in I.
This suggests the following identification: A distribution is said
to be equal to a function f(x) locally integrable in O iff, for every inter-

T
val I inside O, that distribution is the distributional derivative ( [ f(t)dt)’
To

(2w In I).

It follows from 15.1 that this distribution, if it exists, is determined
uniquely by the locally integrable function f(w). We shall prove that
it always exists, for the distribution

(3) [f (z) %6, (2)],

has the required property, 8,(z) being any dJ-sequence.
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In fact, let I be any interval inside O and let
z
F@)= [fWdt (a in I),
Zo

By 14.1, the sequence F(z)*d,(x) converges to F(z) almost uniformly

in I. Hence, by the identification of continuous functions with distri-
butions,

[F(z)%8,(x)] = F(2) in I,
and consequently [F'(z)#d,(x)] = F'(=), ie.
[f(2)*d,(2)] = F'(z) in I.

Thus we have proved that every locally integrable function f(z)
can be identified with the distribution [f(2)*d,(x)].

If f(x) is & continuous function, then f(w)%d,(r) converges almost
uniformly to f(z) by 14.1; thus the identification of integreble functions
coincides in this case with the identification in Section 16.

The identification of locally integrable functions with distributions
.makes the following definition necessary: locally integrable functions

b
f(z) and g(z) are equal iff they are equal as distributions, i.e. iff [ f(t)dt =
a
b
= [ g(t)dt for every interval a < t < b inside O, i.e. iff f(#) = g(») almost

everywhere.
§ 19. Operations on locally integrable functions

As in the case of continuous functions, the question a2rises whether
the distributional operations on locally integrable functions coincide
with operations defined directly.

We shall say that a sequence of smooth functions ¢,(z) is L-con-
vergent to a locally integrable function f(=) if it converges to f(x) almost
everywhere in O, and, moreover, if in every interval I inside O

(1) [ et)dt= [ft)dt  (ain D).

If ¢,(z) is L-convergent to f(z), then ¢,(z) is fundamental and
[pn(2)] = f(x). In fact, (1) implies that [ [, (t)dt] = [f(t)dt. Hence, by

differentiation of order I, we get [¢.(z)] = f(@) in every interval I in-
gide 0, and consequently in the whole set O.

Given & regular operation 4, we say that locally integrable func-
tions f, g, ... satisfy the integrability condition for A if the operation
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A(f,g,...) is defined for those functions and, moreover, if there exist
sequences of smooth functions ¢,, ., ..., L-convergent to f,g,... res-
pectively, and such that A(g,, y,,...) i8 L-convergent to A(f,g,...).
As in Section 15, let A denote the distributional extension of the
operation A.
19.1. If locally tniegrable fumctions f, g, ... sattsfy the integrability
condition for a regular operation A, then

(2) A(fyg’-")=l(f1g1~--)-

In fact, we then have for every interval I inside O

xT A
J A@ny )23 [ Alfy 9,000 (@ in D).
a a
This implies that in I
[_f A(Pny Yn, "')dt] = fA(f)g’ .ou)ddt

and by the identification principle

[A(@ns ¥ny-.-)] = A(f,9,...) in I.
On the other hand, by the definition of distributional operations,

(A (®ns ¥ny.-)] = j(fv gy.-)-

Hence equality (2) holds in I. Since I is arbitrary, (2) holds in O.

The integrability condition is always satisfied by all locally integr-
able functions in the case of operations introduced here, except for der-
ivation. The proofs have nothing in common with the theory of distri-
butions, and we need not enter into details. Consequently, all calculations
on locally integrable functions, except for derivation, may be performed
in the usual way.

It can happen that both the ordinary derivative of a locally integr-
able function and its distributional derivative exist but are different.
For instance, the ordinary derivative of the Heaviside function of one
real variable

0 for <0,
H(») = )

for x>0

is the zero distribution but the distributional derivative of H(z) is equal
to the one-dimensional Dirac delta distribution é(z) for if J,(») is any

z
é-sequence, then [ d,(t)dt is L-convergent to H(z) and consequently

— 00

b(a) = [8u(@)] = | [ su(t)dt| = H'ta).
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In the Theory of Distributions the ordinary derivative plays a minor
role. Therefore, if no remark is added, the derivation of functions will
always be understood in the distributional sense.

The only locally integrable functions f(x) of one real variable which
satisfy the integrability condition for the derivation of order I are absol-
utely continuous functions, i.e. functions with locally integrable deriv-
ative f'(x), such that in every interval I inside O

(3) f@)—f@) = [f@®)d (s in I).
To

Thus the following statement holds:

19.2. If f(x) i an absolutely continuous function, then its distribu-
tional derivative f'(x) coincides with its ordinary derivative.

Analogous conditions may be stated for derivatives of higher
orders, but we shall not enter into details here.

§ 20. Sequences of distributions

We say that a sequence of distributions f, (v) converges in O to a dis-
tribution f(z) and we write

fa@) = f(®) in O or lm f,(z) =f(2) in 0,

iff the distribution f(x) is defined in O and, for every interval I inside O,
there exist an order k¥ and continuous functions ¥ (x) and F,(z) such that
in I

F®(@) = fo(@) for n>n,

(1) .
F¥z) =f(a) and Fo(@)2 F(a).

According to this definition the limit distribution f(z) is defined
in the whole set O, but this is not necessary for the distributions f,(x)
(see Section 2).

It is useful to observe that the order t which occurs in (1) can be,
if necessary, replaced by any order ! > k. In fact, if conditions (1) hold,
then also

FQ(2) = fu(@) for n>mn, FOz)=fz) and F,(a)2 F(z),

where

z T

P, (z) = f F,(di-*, F(z) = f F@)at-* (a, in I).

%y Ty
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The limit, if it exists, is unique. In order to prove it, we need the
following auxiliary theorem:

20.1. If continuous functions f,(») converge to f(z) almost uniformly
in O and if fi™@) =0, then f™(x) = 0.

By 14.1, for every interval I inside O, there exist smooth functions
@ (z) such that

Pen (@) ::fn(w) and <p$',§"(w) =0 in 7

1
Let 7, be such that |g, .(z)—fa(2)| < - in I. Then ¢, .(z)Z f(s) and

therefore f(#) = [¢,,.(x)] in I. Differentiating m times, we obtain f™(z) =
‘= [@{7(#)] = 0 in I. Since I is arbitrary, we have f™)(z) = 0 in the whole
gset O.

Now we are in & position to prove the uniqueness of the limit. Let
I be any interval inside O. If f,(z) are distributions such that f, () - f(z)
and f,(z) > g(z), then there exist continuous functions F,(z), G.(z)
and orders %, ! such that F,(z); F(z), G,(»)  G(x) in I and

F(@) = fo(x), F®2)=f(2),
and Gg)(w) = fn(a’)y G(l)(m) = g(w)

We may assume that ¥ — ! (for otherwise we could replace both
orders by a greater order). Since (F,(2)—@,(2))" = 0 and F,(x)—G,(2)
2 F(2)—Q(2), we have (F(z)—G(x))® = 0, on account of 20.1, which
implies f(z) = g(#) in I. Since I is arbitrary, the limit is unique.

Directly from the definition of the limit it follows that:

20.2. If a sequence of continuous functions converges almost uniformly,
then it converges also distributionally to the same limit.

20.3. If fa(m) - f(z), then f, (z) - f(x) for every sequence r, of posi-
tive tnlegers such that r, - oo.

20.4. If fo(2) > f(®) and g,(z) > f(®), then the interlaced sequence

fr(@), g,(@), fo(@), gs(@), ...
converges also to f(m).

20.5. If f,(®) > f(x), then Af,(x) = Af(z) for every number A. If f,(w)
- f(@) and g,(2) - g(z), then f,(2)+g.(2) > f(2)+g(2).

20.6. If f.(x) > f(a), then f{"(z) - f™ (2) for every order m.

This simple theorem is of striking advantage for calculations on
distributions, in contrast to the classical Differential Calculus, where
additional restrictions are necessary.

20.7. If f.(®) > f(2) in every interval inside O, then f (@) —» f(z) in the
whole set O.
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For any interval I inside O there exists an interval I’ ingide O such
that 7 is inside I'. Since f,(z) — f(z) in I', there are an order k and con-
tinuous functions F,(2), F(x) such that conditions (1) are satisfied. But
this proves that f,(z)— f(x) in O.

We say that & sequence of distributions f,(») is convergent in O iff
for every interval I inside O there exist an order ¥ and continuous func-
tions ¥,(w) such that

F® = f () and F,(@) 1in I.

20.8. If a sequence of distributions is convergent im O, then 4t con-
verges to a distribution tn O.

Suppose that f,(2) is convergent in O. Let 4,(x) be any 4-sequence.
We shall prove that the sequence

Pn(2) = fr()*d,(2)

is fundamental in O and that f,(r) converges to [¢,(®)].

In fact, let I be an arbitrary interval inside O and let I’ be an inter-
val inside O such that I is inside I’'. There exist an order k¥ and contin-
uous functions F,(z), F(z) such that

FO@z) = f.(x) and F,(x)=F(@) in I'.
By 14.2, we have
(2) F,(z)»d,(w) S F(z) in I.
Since
(Fr(2)%6,(2))® = gn(a),

the sequence ¢, () is fundamental in 0. It represents therefore a distri-
bution f(2) in 0. By (2), we can write

F,(v)*d,(v) > F(») and [F,(2)*6,(#)]= F(») in I.
Hence, differentiating % times, we obtain
ga(@) > FO(@) and [pu(2)] = FM@) in I
Consequenfly
ea() » f(#) in I.
Since F,(2)—F,(x)*é,(x) 0 in I, differentiating % times we obtain
fal@)—@a(®) >0 in I.

Thus f,(z) —» f(#) in I. Since I is arbitrary, it follows from 20.7 that
fo(®@) > f(2) in O.
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§ 21. Convergence and regular operations

For distributions, the limit is commutative with all regular opera-
tions introduced so far. In other words, the following formulae are true:

lim f, (@) = Alimf, (a),
n;h{g(fn(a?)ﬂn(w)) = nli_l.lolofn(w) +,1.1;.rfog” (@),
Lim(f, (2) —gn (@) = limf,(z)—limg, (),

limfa) = (limf, (2))™,

lim o (2)f,(2) = w(2)-limf,(3),

n—-0

”limmf,. () galy) = gn;fn(w) -Efoyn(y),
lim(f, (z)sw(2)) = limf,(2)sw(z).

In the case of substitution, the symbol limf,(o(z)) has two inter-

n—20
pretations: as the limit of the sequence f,(o(z)) and as the substitution
y = o(«) in the distribution limf,(y). The commutativity of the limit

—-00

with the substitution means that both interpretations coincide. Similarly
for translation.

The verification of commutativity is trivial for multiplication by
a number, addition, subtraction, translation, derivation, multiplication
of distributions with separated variables, and convolution by a smooth
function vanishing outside an interval. The commutativity of the limit
with product by a smooth function and with substitution results from
the following two stronger theorems.

21.1. If o{™(x) converges almost uniformly to '™ (x) for every order m,
and if f,.(x) > f(z), then w,(2)f.(2) > «(z)f(2).

For every interval I ingide O, there are continuous funections F,(a),
F(z) and an order k such that F,(x)= F(2), F¥(2) = f.(x), and
F®(3) = f(x). Thus w,(s)F,(®) = w(x) F(z) in I. Since every uniformly
convergent sequence is distributionally convergent, we can also write
(4) wn(2) Fp(2) > o(z) F(2).

Similarly we have

(6) wiN@) Fy (@) > 'N@) F(2).
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Differentiating (4), we obtain
ol (@) F,, (2)+ w, (z) F)(z) » (2) F(2)+o(2) F9(z).
Hence, in view of (5),
wq (@) FP () > o (@) F€ (7).
By induction we obtain

©n (2) F (4) - o (x) F¥(z),
i.e.

(6) 0n (%) fr(2) » ©(2) f(2)

in I. Since the interval I is arbitrary, (6) holds in the whole set O.
Another proof of 21.2 follows from the formula

w(z) gM(@) = v (—1) (m)(w(m)(w)w(:v))(""")
oS
where () = (12)... (1) snd (=" = (=0t = Gy ey ),

m = (1, ..., ptq)). The verification of this formula for smooth functions
w(z) end ¢(z) is 2 question of routine calculations. If w(z) is fixed, both
sides of the formula are iterations of regular operations; thus the for-
mula holds if ¢(x) is replaced by any distribution or continuous funec-
tion. In particular, we have

() PO (5) = v (— 1)’"( )(w(m)(.’b‘)F (w))(k‘m)

0<m<k
and hence (6) follows in every interval I inside O, and econsequently
in the whole set O.

21.2. If o™(x) converges almost uniformly to o"™(z) for every order m
(on(2) and o(z) having property (1) from Section 10), and f,(y) - f(y),
then fu(on(2)) > flo(2)).

The proof of 21.2 will be based on formula (2) from Section 10. That
formula involves regular operations only, and thus it holds also if @,(y)
i8 replaced by any distribution f(y). Thus

f(a(w)) a—gl"(mH + 38 f(a(w)) —a?qo(w)

( da(z) ) (ﬂo(m) )2
+
£, 0%,
Suppose that o(z) is defined in an open set O and that the values
of o(x) are in an open set O’ of real numbers y. The distribution f(y)

0,

(1) flo@) =
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is supposed to be defined in O’. Let I be any interval inside 0. The func-
tion o(x) maps I onto an interval I’ inside O’. The sequence o™ (x) con-
verges uniformly in I to ¢™(x). There is a2n interval I’ inside O’ such
that I’ is inside I'’, and that the values of o,(z) lie in I"" for sufficiently
large indices n. For that interval I’ there exist functions F,(y), F(y)
and a non-negative integer k¥ such that F,(y) 3 F(y) in 1", F‘,f’(y) =
= fa(¥), F®(y) = fly). Evidently F,(o.(z) 2 F(o(z)) in I. Since uni-
formly convergent sequences are distributionally convergent, we can
also write

(8) F,(0n(2)) > F(o(2)) in I.

Applying formula (7) to distributions F,(s,(z)) and F’(o(z)), we
obtain in view of (8) and 21.1

Fp(on(z)) > F'((o(2x)) in I.
By induction we get
F (o, (z) » F®(o(z) in I,

i.e. fo(o.(2)) = flo(2)) in I. Since I is arbitrary, theorem 21.2 follows.
The question whether the limit is commutative with any regular
operation will not be discussed here.

§ 22. Distributionally convergent sequences
of smooth functions

First we shall prove that:

22,1. A sequence of constant functions converges distributionally +ff
it converges in the ordinary sense.

In fact, if constant functions converge in the ordinary sense, then
they converge uniformly, and, by 20.2, also distributionally.

Conversely, suppose that a sequence ¢, of constant functions con-
verges distributionally. Then this sequence is bounded. For if other-
wise there would exist a subsequence ¢, such that 1/c,, converges in the

1

usual sense to 0 and we would have 1 = —-¢, — 0. Suppose that o,
n

does not converge in the ordinary senmse. Then there exist two subse-

quences which converge to different limits. Thus those subsequences
converge distributionally to different limits, which contradicts 20.3.

22.2. A sequence of smooth functions @,(x) s fundamental in O iff
for every interval I inside O there exist conlinuous functions F,(x) and
an order k such that in I

(1) FP(@) = ga(@) and F,(2) 2.
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In fact, if ¢,(z) is fundamental, there exist, for every interval I
inside O, smooth functions &,(z) and an order %k such that in 7

(2) O, (@)= and  OP(@) = pu(a).

Since smooth functions are continuous, the condition is satisfied.

Suppose, conversely, that (1) holds for every interval I inside O.
Let I be fixed arbitrarily inside O and let I’ be an interval inside O such
that I is inside I’ There exist functions F,(z) and an order % such that
(1) holds in I'. Let

Bpp (@) = (Fu(@)— [ @a(t)dt’)d, (@) + [onlt)@t*,
Zy Zo

where 2, is in I and 8, (2) is a é-sequence as in Section 14. Then ®&(z) =
= @, () in I for sufficiently large r, say r > p,,. Moreover, by 14.1 we have
D, (z)2 F,(r) in I for r » co. Let F(z) denote the limit of F,(x).
Since F,(z) F(»), there is a sequence of positive integers r, > p, such
that

B (a) = Do, (2) 2 F(a) in 1.

Evidently ®®(z) = ¢,(2) in I; thus the functions &,(w) have the re-
quired properties.

22.3. A sequence of smooth functions converges - distributionally to
a distribution f(») iff it <8 fundamental for f(x).

In fact, if @,(2) is @ fundamental sequence for f(x), then for every
interval I inside O there exist smooth functions &,(x), a continuous
funetion F(z), and an order k& such that

Po(2) 3 F(a), PP (@) = ga(@)

3

) and F®g)=f@) in I.

The first two conditions follow from the definition of fundamental se-

quences, The third one is obtained by differentiating % times the equal-

ity F(z) = [P, (x)], which follows from the first condition. Since smooth

functions are continuous funetions, (3) means that ¢,(z) - f(#) in O.
Conversely, if ¢,(z) » f(#) in O, then for every interval I inside O

there exist functions F,(2), F(x) and an order % such that in I

Fo(@) 3 F(), F(@)=g,(@) and F¥a)=f(2).

Thus, by 22.2 the sequence ¢,(r) is fundamental. As we have just
proved, every fundamental sequence converges to the distribution which
it represents. This implies that f(2) = [p.(z)].
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§ 23. Locally convergent sequences of distributions

It may happen that we know the following property of a sequence
of distributions f,(z): For every point z, in O there exists an interval inside
0, containing z,, in which f,(2) is convergent. The aim of this Section
is to show that then f,(x) is convergent in 0. We shall also state some
important corollaries.

If continuous functions ¢,(«) and ¢,(z) are defined in sets O; and O,,
then their product ¢,(z) ¢,(x) is defined in the common part of 0, and O,.
We adopt, further on, the convention that this product is also defined
and has the value 0 at all points where at least one of the factors ¢,(z)
and ¢,(x) is defined and has the value 0.

In the following two lemmas, w(x) denotes a smooth function de-
fined everywhere and vanishing outside an interval I inside a given open
get 0. and I’ is an interval inside O such that I is inside I'.

LemMMA 1. If @,(x) i8 a fundamental sequence in O, then w(z) ,(z)
i8 fundamental everywhere. .

In fact, there are smooth functions @,(x) and an order % such that
dP(z) = p,(®) and D,(z) = in I'. Evidently w(z) P,(x) ~ everywhere.
Thus the sequence w(wx) ®,(z) is fundamental. Similarly w)(z)®,(z) is
fundamental. Consequently the sequence

(z) PL (@) = (w(2) Py(2)) — (@) B, (2)

is fundamental everywhere. By induction, the sequence w(x)®¥(z),
i.e. w(x)p,(z) is fundamental everywhere.

By Lemma 1, if f(z) = [¢,(#)] in O, then the distribution o (2) f(x) =
= [w(2) ¢,(2)] is defined everywhere.

LEMMA 2. If a sequence of distributions f,(z) is convergent in O, then
the sequence w(x) f,(x) converges everywhere.

In fact, there are continuous functions F,(z) and an order % such
that F¥(z) = f,(z) and F,(x) = in I'. Evidently w(x) F,(s) _ everywhere.
Thus w(x) F,(x) is distributionally convergent everywhere. Similarly
ol(z) F,(») is distributionally convergent everywhere. Consequently
the sequence

(@) Fi(@) = ((0) Fy(2)) — 0N 2) F,(2)
is distributionally convergent everywhere. By induction, the sequence
o (z) F¥(z), i.e. w(z)f,(x), is convergent everywhere.
23.1. If every point x, in O 8 in an interval I, such that a sequence
of distributions f,(xz) 18 convergent in I,, then f,(z) is convergent in O. In
other words: locally convergent sequences of distributions are convergent.

In fact, let I be any interval inside O. There exists an interval J
ingide O such that I is inside J. We can divide J into a finite number
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of subintervals j (in this proof j will denote intervals, not numbers)
such that every subinterval j is inside an interval I; in which f,(z) is
convergent.

Let g;,(x) denote the characteristic function of j, i.e. a function such
that

1 onj,
g;(w) = 1
0 outside j.
Similarly let g,(x) denote the characteristic function of J. If 4,(») is a
é-sequence (see Section 14), we can choose an index p such that

¢;(®) = g;(w)*d,(x) = 0  outside I;,

@y (@) = g;(@)*d,(x) =1 on I.
Evidently

;@) = D gi(a) and g, (@) = Dg;(a).
] ]

Since f,(z) is convergent in I;, the product ¢;(z) f,(z) is convergent
everywhere, by Lemma 2. Since the number of intervals j is finite, also
the sequence

¥a(@) = D 9;(2) fo(3) = 95 () fu(®)
i

is convergent everywhere. But y, (%) = f,(z) in I, and thus f,(z) is con-
vergent in I. Since I can be chosen arbitrarily inside O, f,(x) is conver-
gent in 0, by 20.7.

By 22.3, a sequence of smooth functions converges distributionally
iff it is fundamental. Thus we immediately obtain the following corollary:

23.2. If every point z, in O 18 in an interval I, such that ¢,(x) is fun-
damental in I,, then @,(x) is fundamental in O. In other words: locally
Sfundamental sequences are fumdamental.

We are also in a position now to prove the following important
theorem:

23.3. Let O bo the union of open sets O. If in each of the sets @ there
18 defined a distribution fo(z), so that distribulions on overlapping sels
are equal one to another, then there exists a distribution f(x) defined in the
whole set O such that f(z) = fq(x) in every set 6.

In fact, let 6,(x) be a dJ-sequence. For every fixed n, smooth
functions fg(x)#4,(x) coincide one to another at the points where they
are both defined. Thus those functions can be unified to a single funec-
tion ¢,(2) (depending on n), defined in the union of open sets in which
fo(z)*d8,(2) are defined. The sequence ¢,(®) is fundamental in every
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interval which is inside at least one of the sets @. Since the union of
all such intervals is O, ¢,(z) is fundamental in O, by 23.2. The distri-

bution f(z) = [¢,(x)] has the required property, for in every set ©
J(@) = [fo(2)*8,(0)] = fol@).

§ 24. Distributions depending on a continuous parameter

We say that a continuous function f,(r), depending on a continuous
parameter a, converges for a —» a to f(@) uniformly on a set I, and we
write

fo@)Zf(®) (a—>a) onl,

iff the function f(x) is defined on I and, for any given number ¢ > 0,
there is & number 5 > 0 such that for every a satisfying |a —a,| < 7 the
function f,(x) is defined on the whole set I and satisfies there the in-
equality |f,(z)—f(z)| <e.

We say that the function f,(®) converges for a —» a, to f(») almost
uniformly in an open set O iff f, (x)Z f(») (e » a) on every interval
inside O.

We say that a distribution f,(2), depending on a continuous para-
meter a, converges for a - a, to a distribution f(#) in an open set O iff
f(z) is defined in O, and if for every interval I inside O there exist an
order k¥ and continuous functions F,(z), F(z) such that, for a sufficiently
near to ay,

F¥2) = f.(x), F™o)=f(z) and F,(2)2F(@) (a—a) in .
We then write
fui@ > f@) (a>q) in O,

or
f(®) = lim f,(#) in O.

a—ag

The limit f(z), if it exists, is unique. The proof is similar to that
for sequences.

In the above definition it is irrelevant whether a is a real or a complex
parameter. It may also be a variable point of a multidimensional space.
Then, of course, the symbol ja—a,| is to be read as the distance between
the points a and a,. Similarly we define the limit when ay = 4 oo.

Of course,

24.1. If a continuous function f(x) with parameter converges almost
uniformly, then it converges distributionally to the same limit.
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As for sequences, we can prove that the limit can be interchanged
with all regular operations introduced here. Also the analogues of the
theorems from Sections 21 and 23 remain true.

Now we can define the derivative of distributions in the same way
as in the case of functions. In fact,

24.2. For every distribution f(»),

ﬁ‘f’(m) — Lim f(@+ae;)—f(2) .
a

a—0

Let I be any interval inside O and let I’ be an interval inside O such
that I is inside I’. Then there exist an order k¥ and a continuous function
F(x) with a continuous derivative F)(x) such that F®(z) = f(x) in I'.
Since in I

F (x4 ae;)—F (z)

a

2 FY9) for a-0,
we have in I

f(w+a2)—f(w) =(F(fv+“ﬂ—F @) (F @) = [ a).

a

Since the interval I is arbitrary, the convergence holds in the whole set O.

§ 25. Multidimensional substitution

Let o,(x), ..., 0,(z) be smooth functions defined in an open subset
O of the ¢-dimensional space such that the transformation

o(z) = (0'1(“’)1 ey o'p(a’))

maps O into an open subset O’ of the p-dimensional space, p < ¢q, and
at every point » of O at least one of the jacobians

do, do,
9g, ' ag
0(0yy ...y 0p) ' ’ . .
J. ) = — |e o s s 4 o s o o < v <<
Tt (2) (&, ey &) (J1 J»)
A
&, §in

does not vanish, i.e.
J(z) = 2 I, .ip(@P >0 in O.
7.1'1...<7.p

We are going to show that the substitution ¢(o(z)), where ¢(y)
is a smooth function defined in O’, is a regular operation on ¢(y) (o(») be-
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ing kept fixed). The proof is similar to that of an analoguous statement
in Section 10.

Observe first that if, for some smooth functions @, (y), the sequence
&, (o(x)) is fundamental in an open set, so is the sequence @4/ (s()).
In fact, from

D
b, (a(w))“"') -\ q)gfi)(g(m)) . M
§=1 a 51'.
we find by algebraic calculations
Jfl T fp (w) ‘ ¢1(:;)(G(m)) = Jn,i;il, ...,1p (w) b
where

3(0'17 cory 07_1y Pu(0)y 05y oney 0'17)
a(fip very Eip)

I 1501, (B) =

Hence

1
& (o () =7@ Z Iitretp (@) In iy, 1 (@) 5
71<...<ip

which proves the fundamentality of & (z).

By induction, if a sequence &, (s(x)) is fundamental in an open set,
so is the sequence Qﬂ"(a(w)) for every order Z.

Every point z, in O is contained in an interval I, inside O such that
the trensformsation ¢(x) maps I, into an interval I, inside O’. Now let
®,.(y) be smooth functions such that, for an order #,

N (y) = ga(y) and &D,(y) in I,.

Then @, (o(x)) 2 in I,. Consequently the sequence P (a(z)), i.e. ¢,(0()),
is fundamental in I,. By 23.2, ¢,(o(2)) is fundamental in O.

Observe that the hypothesis on o(z) and the above proof can be
simplified in the case ¢ = p. It suffices then to deal with one jacobian
only,

0(0yy ...y 0g)
0(E1y -y &)
which should be different from 0 in O.
We have proved that substitution is a regular operation. It can

therefore be extended onto distributions f(y) = [p,(y)] defined in O’,
by assuming

flo(@) = [pulo(@)].

When p = 1, the above definition coincides with that in Section 10.
When p = ¢ and o(2) = #+h, it coincides with the definition of trans-
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lation in Section 8. In the case where f(y) is a continuous or locally inte-
grable function, the distributional substitution f(or(w)) coincides with
the ordinary substitution of functions, provided p < ¢q. If p > ¢, then, in
contrast to the case of functions, the substitution f(o(2)) is not always
feasible.

Theorem 21.2 remains true also for multidimensional substitutions.

§ 26. Distributions constant in some variables

A distribution f(z) in O is said to be constant in variables £, ., ..., &
or independent of &,.,,..., & (0 < p < ¢) iff it can be represented in the
form [¢,(z)] where the smooth functions ¢, (#) are constant in &, ,, ..., &.

It follows immediately from the definition that

26.1. If f(x) is comstant in £,y ..., &, then f9%x) =0 for j=
=p+1,...,q.

The converse statement is not true, even for functions, in the case
of an arbitrary open set @.

In fact, let O be a two-dimensional set, defined by the inequality &, < [&,]
(fig. 1) and let
0 for ¢;,<0,
f(w)=f($1.52)=l g for 0<E <,
—& for O0<E <— &

(fig. 2). The function f(x) is continuous in O, and

fE)z) =0 in O.

It is also easy to see that f(z) is constant in &, in every interval I in O, but it is
not constant in &, in the whole set O.

The converse statement is true, for functions and for distributions,
in the case of an open interval:
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26.2. If f®2) =0 for j =p+1,...,q in an interval I, then f(x)
18 constant in &, 1, ..., & in I.

In fact, for any d-sequence of functions é,(x) vanishing outside
|2| < @, (a, = 0), we have (f(x)*6,(x))? = f)z)xs,(z) = 0 in the inter-
val I, such that the distance of points in I, from points outside I is
greater than a,. Thus the smooth functions ¢,(z) = f(x)*d,(x) are con-
stant in &,,,,..., & in I,. Since f(z) = [p,(@)], the distribution f(») is
constant in &,,,,...,§ in I.

For any order k = (%,,...,%,), k, will denote the order
kp = (%19 000y %p,0y0..,0) =Fk—2p, 16,1 —...—28,.

The following lemma plays fundamental part in the investigation
of distributions constant in &, ,,..., &:

26.3. If ¢,(x) are smooth functions constant tn &,.,,...,& and, for
an interval Iy, there exist an order k and smooth functions @,(z) such that

O(@) = ga(2), Pu(@  in I,

then for every interval I imside I, there emist smooth functions ¥, (z) constant
i Epi1y ..oy &g and such that

PiP(@) = pu(@), Ya(2)Z in I.
If %, >0, let

Bo(a) = = (0, (a-+ 10~ (o).

We have

P~ V@) = pal@) and  Bn()3.
By induction we obtain smooth functions &,(z) such that

P ¢d(2) = gu(2) and  Bn(2) 3.
The funetions

Y, (@) = B, (&, ..., £&,_1,7) (y constant)

are consfant in &,
(1) Pl @) = g,(x) and ¥, ().

If %, = 0 we can write directly ¥, (x) = ®,(&1,..., &_1, ¥) and then (1)
also holds.

Similerly, in the case of p < ¢—1, we obtain smooth functions ¥, (x)
constant in &,_,, &, and such that

Plr-1%-17"(z) = @, (z) and ¥, (z)2.
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By induction, there exist smooth functions ¥,(z) constant in &,.,, ..., &
and such that

glls‘k_,;‘,+lap+l—..-—”q9q)(m) — (pn(m) alld Wn (m) -_-:‘

If the number 7 is sufficiently small in all the inductive steps, the last
conditions hold in I.

26.4. If a distribution f(z) constant in &, ., ..., &; 18, in an interval I,,
the derivative of an order k of a continuous function, then in every interval 1
tngide I, the distribution f(x) is the derivative of the order k, of a conlinuous
Sfunction constant in &p.,, ..., &.

Let 4,(z) be any 8-sequence. If f(z) = F*(z) in I,, then the smooth
functions

on () = f(2)4d,(0), Pp(2) = F(2)*d,(2)

satisfy the hypotheses of Lemma 26.3, I, being an interval inside I, such
that I is inside I,. Thus there exist smooth functions ¥, (z) constant in
£pi1y -+, & such that P¥P(z) = @, (#) nad ¥, (#) = G(z) in I. The continu-
ous function G(o) is also constant in £,,,,..., §. Since G(x) = [y, ()],
we have

G"P(z) = [p,(2)] = [P, (2)]? = F¥(2) = f(#) in I.

26.5. A distribution f(x) s, ¢n an interval I,, constant in &,,,, ..., &
tff, in every interval I inside I,, f(2) 3 a derivative of a continuous function
constant i &,,,,..., &.

In fact, if f(z) = F®(g) in I and F(z) = 0 for j = p+1,...,q,
then f“)(z) = (F)(2))*) = 0 in I. Since I is arbitrary, we have f)(z) =
= 0 in the whole interval I,, j = p+1,...,q. By 26.2, f(z) is constant
in &1y .eey & in I,.

The remaining part of theorem 26.5 follows from 17.4 and 26.4.

Of course, all the considerations of this Section remain true if we
replace £y, ..., & by an arbitrary set of variables &; , ..., &, (1 <7 <g¢).

§ 27. Dimension of distributions

Distributions defined in an open subset of the g-dimensional space
are called q-dimensional distributions or distributions of ¢ variables. To
emphasize the number of variables, if necessary, we write f(&;,..., &)
instead of f(z). Now we are going to examine relations between p-di-
mensional distributions and g¢-dimensional distributions constant in
Eprrr -y S (P < Q).

Every function ¢(¢,,...,&,) of p variables determines uniquely a
corresponding function of ¢ variables ¢ (&, ..., &) whose value at a point
($1y ++-y &) i8, for all real &,,,,...,&;, equal to the value of ¢(¢,, ..., &)
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at the point (&,,..., &). Thus, if a p-dimensional function ¢(£,,..., &,)
is defined in an open subset O’ of the p-dimensional space, then the
corresponding g-dimensional function ¢(§,, ..., &) is defined in the open
set O of all points (&,,..., &) of the g-dimensional space such that
(615 ...y &p) i8 in O, and @(&,, ..., &) i8 constant in &,,,, ..., &.

It is easy to see that, if ¢,(&,, ..., &) i8 & sequence of p-dimension-
al smooth functions fundamental in O’, then the sequence ¢,(&,, ...,&,)
of the corresponding ¢g-dimensional smooth functions is fundamental in O.
The converse follows easily from 26.3. Thus:

27.1. A sequence of p-dimensional smooth functions @,(&, ..., &p)
18 fundamental in O' iff the sequence of corresponding gq-dimensional
functions @,(&,, ..., &) 8 fundamental in O.

Hence, by the definition of equivalent sequences,

27.2. Two sequences of p-dimensional functions ¢,(&,,..., &) and
Yo(&1y ...y &) are equivalent in O’ iff the corresponding sequences of q-dimen-
sional functions @, (&y, ..., &) and v, (&, ..., &) are equivalent in O.

By 27.1 and 27.2, every p-dimensional distribution f(&,,..., &) =
= [@n(&1y ..., &)] in O’ determines a corresponding g-dimensional distri-
bution f(&y, ..., &) = [@a(&1y ...y &)] in O, constant in &,,,, ..., &, and
this correspondence is one-to-one. Moreover, every distribution in O,
constant in &,,,,..., &, corresponds to a distribution in O’.

The question arises whether operations performed on p-dimensional
distributions yield the same result as operations performed on corres-
ponding g¢-dimensional distributions. In order to answer this question,
denote by

B(‘?(El) veey Ep)) = @(&1y oovy &)

the g¢-dimensional smooth function corresponding to a p-dimensional
smooth function ¢(&,, ..., §,). By definition, B is an operation performed
on p-dimensional smooth functions, its result being a g¢-dimensional
smooth function. This operation is regular. Thus it is extended onto
distributions f(&,,..., &) = [ga(&1y ...y &)] Dy assuming

B(f(£1y -9 &)} = [Bloal£ry -y &)

By defmition, B(f(&,, ..., &,)) is the ¢-dimensional distribution f(&,, ..., &)
corresponding to the p-dimensional distribution f(é,, ..., &,).
Suppose that another regular operation A (g, v, ...) is given and that

B(A(p,v,...)) = A(B(e), B(p), .. ).

This equality is a precise formulation of the fact that the operation A
performed on p-dimensional smooth functions yields an analogous
result to that obtained on the corresponding g¢-dimensional functions.
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Both sides of the above equality being iterations of regular operations,
the same formula holds for distributions:

B(A(f,g,...)) = A(B(f), B(g), ...)-

Our result can be formulated more intuitively as follows:

Every regular operation performed on p-dimensional distributions
yields an analogous result when performed :on the corresponding
¢-dimensional distributions provided the same situation holds for
smooth functions.

The following theorem shows that the limit of a sequence of p-dimen-
sional distributions exists iff it exists for the corresponding ¢-dimension-
al distributions and that, moreover, the limits correspond each to another.

27.3. A sequence of p-dimensional distributions f.(&,...,&,) con-
verges in O’ to f(&y, ..., &) iff the sequence of the corresponding
g-dimensional distributions f.(&,,..., &) oonverges in O to the disiri-
bution f(&,,..., &) corresponding to f(&,,..., &).

It is evident that the convergence of the p-dimensional sequence
implies the convergence of the g-dimensional sequence to the correspond-
ing limit.

Conversely, suppose that in O
(2) Jn(61yoeny &) = f(61y .oy &)

Let I' be any interval inside O’, let I be the interval of all points (£,,..., &)
such that (&,,..., &) is in I' and |§| < 1 for j = p+1,...,4q, and let I,
be any interval inside O such that I is inside I,. It follows from (2) that
all the distributions f,(§,, ..., &) are derivatives of a fixed order k =
= (%, ...y %,) Of continuous functions in I,. By 26.3 there exist functions
F,(&,..., &) constant in &,,,,..., & such that in I

F(Eyy ooy &) = falbyy ooy £,
ie. in I, for k' = (%, ..., %,),

FNEryoeny &) = fallay ey &)
Let ®,(¢&,, ..., &) be smooth functions such that
(3) Pnlbry vy Ep)—Fr(bry .0y §) 30,
and lef

Pulbry ooy &) = P&y ooy £p).

Differentiating (3) %’ times, we obtain

(4) ‘Pn(El) crey £p)_fn(£1’ ey Ep) - 0.
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Hence it follows, by the part of 27.3 just proved, that in I

Pn(&1y ooy fq)_fn(‘fu cey &) > 0.
Consequently, by (2),

Palry ooy EQ) 2 [(Eny ooy &)y
and by 22.3

lon(1y .ony EJ] = S(&yy ..oy £o).

Hence, for the corresponding p-dimensional functions and distribution,
we have in I’

[Pn(1y ...y Ep)] = f(&1y ouny Ep)’
and by 22.3

Pnl(€ry ooy ‘511) _’f(fu vesy Ep)‘
Thus, by (4),

f'n(Elr RS | 5}1) _’f('fu eoey 5;;)'

Since the interval I’ is arbitrary, the convergence holds in O’.

If no ambiguity occurs, g¢-dimensional distributions constant in
Epi1y--+y &g can be denoted by the symbol f(&,, ..., ¢,) like p-dimen-
sional distributions. A similar convention is widely used for functions.

Of course, all the considerations of this Section remain true if we
replace &,.,, ..., & by an arbitrary set of variables & ,..., &, (1 <7 <¢q)

§ 28. Distributions with vanishing -m-th derivatives

In order to find a general form of a distribution satisfying the con-
dition f™(z) = 0, we shall prove three auxiliary theorems: 28.1, 28.2
and 28.3.

28.1. If f(z) t8 a distribution such that f**’(z) = 0 in the interval
a—ee; < ® < b+ce;, then, for [n| < e,

7 7!
Sf@)+ ... + ———f*1~(a)

f(@+ne) = fla)+ (1)

ma<az <b.
In fact, if 8,(x) is a d-sequence and ¢, (w) = f(2)*4d,(»), then f(z) =

= [gn(®)] 2nd ¢*(z) = 0. Thus the above formula follows from the
analoguous Taylor expansion of ¢,(z-+7%¢), by adding the brackets [ ].
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28.2. If f"*)z) = 0 in Oy, m = (Uyy ..., fg)y #y = 0, then in every
snterval I inside O the distribution f(z) can be represented in the form

f(@) = g()+h(z),

where ¢ (2) = 0 and B™(z) = 0 in I. Moreover, if f(z) i3 a smooth con-
tinuous or inlegrable function in I, we may assume that g(x) and h(z) are
also such functions.

In fact, the interval I is inside an interval I, inside 0. If f™+%) () = 0
in 0, then, by 26.2, f™(z) is constant in & in I,. By 26.5, there exist an
order k = (%, ..., %), % = 0, and a continuous function F'(2), constant
in &, such that F®(2) = f™(2) in I. We may assume that k>m. The
distributions g(x) = F*™(p) and h(2) = f(@)—g(z) have the required
properties.

If f(») is & smooth, continuous or integrable function, we can obtain
g(x) directly from f(z), by replacing in f(x) the variable £; by a constant y.
Then g(z) is smooth, continuous or (with properly chosen y) integrable,
respectively, and so is h(x) = f(x)—g(v). Moreover, ¢“)(z) = 0. It remains
to verify that h™(z) = 0, i.e. that f™)(z) = g™ (z). This is clear when
f(z) is smooth. If it is continuous, there exists a sequence of smooth
functions ¢,(z), almost uniformly convergent to f(z), such that
¢"+%)(z) = 0. Replacing in ¢,(z) the variable £ by y we get a sequence
of smooth functions y,(x) almost uniformly convergent to g(). Since

f(.’D) = [‘Pn(m)]’ g(a") = ['I’n(a;)]
and  ¢i"(2) = (@),
it follows that
f™@) = [e(@)] = [y{(@)] = ¢™(2).

If f(=) is integrablé, the proof is the same but the almost uniform con-
vergence must be replaced by L-convergence.

28.3. If f™ @) =0 in O, m = (g, ..., ), f; >0, then in every
interval I inside O the distribution f(z) can be represented in the form

f@) = &g(@)+h(a),

where g™ (z) = 0 and h™(z) = 0 in I. Moreover, when f(®) i3 a smooth,
oontinuous or integrable function, we may assume that also f(x) and g(w)
are such funotions.

In fact, let

1
(1) g(w) = P (fl@+ne)—f@), k(@) = fl@)—&g().
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For 7 sufficiently small, g(z) and h(x) are defined in I. Moreover, if f(2)
i8 a smooth, continuous or integrable function, so are g(x) and k(o).
Since f™**)(x) = 0, we have f™(x+7e) = f™(z) in I, by 28.1. This
implies that ¢™(z) = 0. Differentiating the second formula of (1), we
find that

W™@) = f™(@)—pg™ N (2) = f™2)+ f‘m“”(“’)_%f( ™=@+ ne).

Since f™*%)(x) = 0, the right side vanishes, on account of 28.1.

28.4. The equality f™(x) = 0 holds in O iff in every interval I inside O
the distribution f(z) can be represented in the form

p—-1

(2) flo) = D Eful@)+...+ 2 Eifu(@),

1=0 i=0

where the distributions f;;(z) are constant in &;. Moreover, if f(@) i8 a smooth,
continuous or integrable function, we may asswme that all the coefficients
fi(x) are such functions. (In formula (2), if u; =0 for some j, then the
corresponding sum must be replaced by 0).

In fact, it is a question of an easy verification that, if (2) holds
in I, then f™(») = 0 in I. Since I is arbitrary, we have f™(x) = 0 in 0.
Conversely, if f™(2) = 0 in O, we prove (2) by induction. First we remark
that (2) is trivially satisfied in the case of m = 0. Suppose that it is satis-
fied for some m > 0. It suffices to show that the corresponding formula
holds also for m+e¢;. In fact, if x; = 0, the statement follows from 28.2;
if u; >0, the statement follows from 28.3.

Let us remark that representation (2) is not unique. For instance,

m = (1,1) and f(@) = &,+ &,, we can also write f(z) = (&, +1)+-(&;—1).
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