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In this survey we provide the highlights of sequential analysis, tracing the
new developments in testing hypotheses and point and interval estimation.

1. Introduction

1.1. Brief historical background. Sequential statistics grew out of nec-
essity during World War II and the sequential methods were simultaneously
developed in England by George Barnard and in the United States by the
Princeton Research Group. Darling (1976) and Wallis (1980) trace the origins
of sequential analysis, the latter providing a well-documented description of
its origin. From Wallis’ account it was Captain G.L. Schyler who suggested
to Wallis in 1943 that one should be able to achieve some economy in
sampling by applying the single-sample test sequentially. W. A. Wallis and M.
Friedman had several discussions about this sequential setup, both with each
other and with J. Wolfowitz and E. Paulson. H. Hotelling pointed out the
close analogy between the problem of stopping in sequential sampling and
the heat flow in the presence of an absorbing barrier and contributed the
term “sequential” to describe the method of analysis. After realizing that the
sequential method might require sophisticated mathematical tools, Wallis
and Friedman brought the problem to the attention of A. Wald who put the
finishing touches to the sequential test known to us as the sequential
probability ratio test (SPRT). W. E. Deming remarked that sequential ana-
lysis is similar to the work of Lord Rayleigh on the problem of random walk
in physics.

1.2. Sampling inspection. The ecarliest sequential procedure is the
double sampling plan proposed by Dodge and Romig (1929) for sampling

(') Formed the basis of four lectures delivered at the Banach International Mathematical
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inspection. The rule is given as follows: Sample one item at a time, reject the
lot as soon as the number of defectives in the sample is > ¢, and accept the
lot as soon as the number of effectives 1n the sample is = n—c+ 1, where ¢ is
a prescribed positive integer. The required sample size is random, and is at
least ¢ (if all the items are defective) and is at most n. The sampling plan is
called curtailed inspection.

13. Stein’s two-stage procedure. Let X be normally distributed having
unknown mean 8 and unknown variance 2. Testing H,: 8 = 0, against the
alternative H,: 8 > 0, is known as the Student’s hypothesis-testing probiem.
It is of interest to devise a test of Student’s hypothesis whose power function
does not depend on o. However, Dantzig (1940) has shown the nonexistence
of meaningful fixed-sample test procedures for this problem. Stein (1945)
proposed a two-sample test with the above property, the size of the second
sample depending on the result of the first.

Moshman (1958) investigated the proper choice of the initial sample size
m in Stein’s two-stage procedure. However, the optimum choice of m that
maximizes a given function involves an arbitrary parameter which needs to
be specified by .the experimenter from nonstatistical considerations.
Juretkova (1981) also investigated the optimum choice of m. The study of
Blumenthal and Govindarajulu (1977) indicates that Stein’s two-stage pro-
cedure is quite robust against mixtures of normal populations differing in
location parameters.

1.4. Wald’s sequential probability ratio test (SPRT). Let X,, X,, ... be
a sequence of independent and identically distributed (i.i.d.) random vari-
ables having probability density f(x). We wish to test Hy: f = f, versus H,:

f=/f. Let
Ay = T] LA XV fo(X)1.

Then Wald’s SPRT can be described as follows: Choose two constants A4
and B such that 0 < B < 4 < oo. If experimentation has proceeded to stage
n, accept H, if A, < B; reject Hy if A, = A; continue sampling if B < A, < A4
(n=1,2,..). The following theorem will ensure the finite sure termination
of the SPRT.

THEOREM 14.1 (Wald (1947), Stein (1946)). Let Z =In{f, (X)/fo(X)}.
Then Walds SPRT terminates finitely with probability one provided
P(Z=0)<1.

Now, we shall explore whether it is possible to express the bounds A4
and B explicitly in terms of « and f (the type I and ‘type II error
probabilities) where

a=Y PoB<dA,<Aj=1,...,i—1 and A, > A) (1.4.1y
i=1
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and
f=Y P, B<A;<A,j=1,...,i—1 and A, < B) (14.2)
i=1

However, these expressions are not easy to calculate and hence, in general,
there is no hope of solving for A and B in terms of & and . However, Wald
(1947) has obtained very simple bounds for 4 and B in terms of the error
probabilities. '

THeorREM 1.4.2. For Walds SPRT
A < (1-p)/a and B2 ff1—a). (14.3)

In obtaining the above bounds for A and B, it is assumed that the
SPRT terminates finitely with probability one. However, according to Hall,
Wijsman and Ghosh (1965, p. 586) it can be shown that the inequalities
given by (1.4.3) constitute approximate bounds irrespective of whether ter-
mination is certain or not, provided the error probabilities are small. Also
B =f and A = l/a can serve as reasonable bounds.

The inequalities in Theorem 1.4.2 are almost equalities since A, does not
usually obtain either a value far above A4 or value far below B. So, suppose
we take 4 = A"’ =(1—p)/x and B = B’ = /(1 —a). When approximations A’
and B’ are used in the place of A and B we may not have the same error
probabilities 2 and . Let the effective error probabilities be «' and §. Then
one can easily show that

afl1—B)=a'/(1-F) and  BAl—a)= f/(l—2a), (1.4.4)
from which it follows that

at+f=a +p. (1.4.5)

That is, at most one of the error probabilities could be larger than the
nominal error probability. Further, one can show that when a and f are
small, any increase in o [f#] is not beyond a factor of 1+ f[1+a]. Both &
<a and B < B, imply that the test (B, A) requires substantially more
observations than the test associated with (B, 4). Since B > f/(1 -«) and
A < (1—p)/a, we have increased the continue sampling region. Hence, there
will be an increase in the number of observations required to come to a
terminal decision. However, Wald (1947, pp. 46-48) points out that the
increase in the sample size caused by the approximation will be only slight.

A nice feature of the SPRT is that the approximations to A and B are
only functions of « and f and can be computed once and for all free of the
underlying density. Also note that when B = /(1 —a) and A =(1—f)/a it is
trivial to show that B <1 < A (since a+ f§ cannot exceed unity).
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1.5. The operating characteristic function (OC function). Wald (1947)
devised an ingenious method of obtaining the operating characteristic (prob-
ability of accepting H,) of an SPRT. Consider an SPRT of H,: f
= f(x; 8y) versus H,: f = f(x; 0,). If 6§, and 6, are the only two possible
states of nature, then there is no point in considering the OC function.
However, if the above hypothesis-testing problem is a simplification of, for
example, H,: 0 < 0* versus H,: 6 > 0* then one would be interested in the
OC function for all possible values of 6.

Let 0 be fixed and determine as function of that 6 a value of h (other
than zero) for which

Eo[1f(X; 0.)/f(X;00)}"] = 1. (1.5.1)

This expectation is 1 when h = 0 but there 1s one other value of h for which
it is also 1 (see Govindarajulu (1981, pp. 604-605) or Wald (1947, pp. 158-
159)). Note that h =1 when 6§ =8, and h= —1 if § =6,. Let

[0 0) =Lf (s 01/ (x5 06)1" f (x; 0).
Considering the auxiliary problem of testing
H:f=/f(x;0 versus H*: [ = f*(x;0),
one can obtain that
Py(accept Hy) = Py(accept H) = Py(accept H)y=1—a*

where a* denotes the type I error probability for the apxiliary problem.
However, solving the approximate equations

B =p*/(1—-a*), A"=(1—p*/a*

we find that o* i(f— B")/(A"— B*), and hence
OC (0) = (4"— 1)/ A" — BY) (15.2)

Since h is a function of 8, OC(6) is an implicit function of 6. Each value of h
determines a § and a value of Py(accept H,), a point on the OC curve. (For
exponential models, one obtains an explicit expression for 6 in terms of h)
Eq. (1.5.2) does not provide a well-defined value of 6 when h = 0 since the
relation is satisfied by all 6. However, using I'Hospital’s rule,

lim OC(8) = In A/(In A —In B).
h—0

Since, OC(0y) =1—a, OC(0,)=f, limOC(H) =1 and lim OC(0) =0, five
h>o hs—
points on the OC curve are known. The corresponding f-values can be

determined from the specific problem.
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1.6. Average sample number (ASN). The sample size needed to reach
a decision in a sequential plan is a random variable which is denoted by N.
Typically, the distribution of N is too complicated to be determined.
However, we have the following result pertaining to the moment-generating
function of N.

THEOREM 1.6.1. Let Z =In{f,(X)/fo(X)}. If P(Z=0) <1 then
My (1) = E {exp(tN)} < o for all te[—6, o]
for some 6 = 0.

Even though all the moments of N are finite it is just not easy to evaluate
E(N%). However, since InAy is a sum of a random number of iid. random

variables one can show (for instance, see Wolfowitz (1947b) and Johnson
(1959)) that

E(lnAy) =E(N)E(Z), Z=In{f(X;0,)/f(X;0)} (1.6.1)

because the event (N = i) is independent of Z;, Z,,,, ... If a decision is
reached at the nth stage, A, is approximately distributed as a Bernoulli
variable with values B and 4 and

E(InAy) = (In B) P(accept Hy) +(In A) P{reject Hy). (1.6.2)
In particular, from (1.6.1) and (1.6.2) we have
Eg (N) = [(In B)(1 —a)+(In A)a]/Es,(Z) (1.6.3)
and
Eq, (N) = [(InB) B+(In A) (1 - B)J/E,, (Z). (1.64)
Furthermore, if EZ = 0, then one can show that
EN = E[(In Ay)*)/E(Z?). (1.6.5)

The identities in Equations (1.6.1) and (1.6.5} are usually referred to as Wald’s
first and second equations.

1.7. Wald’s fundamental identity. Wald’s (1947) identity plays a funda-

mental role in derving the moments of the sample size required to terminate
the SPRT.

THeorem 1.7.1 (Wald (1947)). Let Z =In{f(X;0,)/f(X; 00)}, Sy
N
=Y Z;, and C(1) = E(exptZ). Assume that P(Z =0) < 1. Then we have
1

E{exp(Syn[C(H]1 ™ =1 (1.7.1)

Jor every t in D where D denotes the set of points in the complex plane such
that C(t) is finite and |C(t)] > 1.
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Differentiating (1.7.1) wr.t. ¢t and setting t = 0, we obtain Wald’s first
equation (see (1.6.1)). If EZ = C'(0) = 0, then differentiating (1.7.1) twice and
setting t = 0 we obtain Wald’s second equation (1.6.5). Bahadur (1958) points
out that Wald’s identity can be regarded as a special case of a formula for
the probability that sampling terminates finitely. Blom (1949) has extended
Wald’s identity to the case of independent summands and remarks that in
the case of i.i.d. summands, the identity can be differentiated any number of
times for any real t provided P(Z =0) < 1.

1.8. Further results on OC and ASN functions. Wald (1947) considered
a Bernoull class of random variables for which one can obtain exact
expressions for the OC and ASN functions. Other families of distributions of
the Z; for which P(Ay 2 A) and EN are capable of being expressed by exact
formulas have been described by Kemperman (1961, pp. 70-71) and
Ferguson (1967, p. 378). Let

In{f(x; 6,)/f (x; 60)} = u(o, 8;)x+v(bo, 0)

for all 64, 6, and u/v be a rational number. Then Eger (1980) reduces the
exact computation of the OC function and the moments of ASN of the
SPRT for 6, versus 0, to that of solving a system of simultaneous linear
equations which differ only in their right hand side quantities.

M. N. Ghosh (1960) gave a bound on the error in the approximation to
E(N) given by (1.6.2) which is wider than the bound of Wald (1947, Egs.
(A.77) and (A.78)); especially, when the population i1s normal. He also
constructed an example showing that the error in Wald’s approximation to
E(N) ts not small even though the mean and vanance of Z are small, so that
no general statement about the vahdity of the approximation can be made.
Hoeffding (1953, 1960) derived lower bounds for the ASN required by an
arbitrary sequential test for which a+f < 1. Chanda (1971) has derived
results pertaining to the convergence in probability and asymptotic normality
of N when suitably standarized and when the underlying population of the
observations belong to the exponential family.

Page (1954) suggested an improvement to Wald’s approximations to the
OC and ASN functions and Kemp (1958) provided even better approxi-
mations. Tallis and Vagholkar (1965) also obtain improvements to the OC
and ASN approximations which are comparable to those of Page (1954) and
Kemp (1958). For further details see Govindarajulu (1981, Section 2.7).

1.9. Truncated SPRT. Although SPRT’s enjoy the property of eventu-
ally terminating with probability one, often due to limitations of cost or
available number of experimental units we need to set a definite upper limit
say n, on the number of observations. This may be achieved by truncating
the SPRT. Thus Wald’s (1947) truncated SPRT behaves like an ordinary
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SPRT for n < ny. If the SPRT does not lead to a terminal decision for
n < ng,
no
reject Ho if 0< ) Z; <InA4,
i=1
and
no
accept Hy if InB< ) Z; <0
i=1
where Z; = In {f, (X)/fo(X)}, i=1,2,...,H;: f=f, j=0,1

When the SPRT is truncated, the error probabilities are changed from
their nominal values. Govindarajulu (1981, Theorem 2.8.1.) provides sharper
bounds for the true error probabilities than Wald’s (1947).

Aroian (1968) proposes a direct method for evaluating the OC and ASN
functions of any truncated sequential test procedure, once the acceptance,
rejection and continuation regions are specified at each stage. His method
involves repeated convolutions and numerical integration.

1.10. Optimal properties of the SPRT. The Optimal Property (OP) of
the SPRT for testing a simple H, against a simple alternative H, was first
proved by Wald and Wolfowitz (1948) (see Wolfowitz (1966) for additional
details). Another proof which is due to LeCam appears in Lehmann (1959).
Matthes (1963) has given a proof which relies on a mapping theorem.

THEOREM 1.10.1. Among all tests (fixed-sample or sequential) for which
P(reject H,y|0,) <a, P(accept Hy|0,) < B and for which E(N|6,) <
(i =0, 1), the SPRT with error probabilities a and  minimizes both E(N|6y)
and E(N|9)).

It should be noted that the OP has been established under two
conditons: (1) B<1< A, and (i) E(N|H,) <o for i =0, 1. Burkholder
and Wijsman (1963) have shown that (1) 1s not necessary whereas (1) 1s
necessary. If (i) does not hold, then the SPRT is not admissible in some
sense. However, if only tests which take at least one observation are
considered, then there are no restrictions on A and B (other than B < A) for
an SPRT to have OP.

Wijsman (1960) introduced monotonicity property (Property M) of an
SPRT and showed that it implies uniqueness and the restricted optimum
property (ROP), (namely that every SPRT has the optimum property among
all SPRTs).

DEerFINITION 1.10.1. An SPRT is said to have the property M if at least
one of the error probabilities decreases, when the upper stopping bound of
the SPRT is increased and the lower stopping bound is decreased, unless the
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new test is equivalent to the old one, in which case the error probabilities
remain the same.

Taeorem 1.102 (Wijsman (1960)). The restricted optimum property
(ROP) implies and is implied by the monotonicity property.

Simons (1976) shows that Wald's SPRT is optimal in a larger class of
tests having error probabilities (a’, ) such that

a/(1-p)<af(l1—-p) and P/Nl-a)<p/(1—-2a), o >0 and g >=0.

Krylov and Miroshnichenko (1980) showed that Wald’s SPRT is optimal in
the class of tests having error probabilities («', f") for which o’ > 0, ' > 0,
W', )= W(a, f) and W(', &)= W(f, @) where W(x, y) =(1—x)In{(1
—x)/y} + xIn {x(1 —y)}.

The uniqueness of an SPRT has been considered by Weiss (1956),
Anderson and Friedman (1960) and Wijsman (1960). Wijsman (1963,
Theorem 2) has considered the existence of a SPRT which in general, need
not be unique. Regarding the monotonicity of its power function, we have

THeorEM 1.104. (Lehmann (1959)). Let X,, X,, ..., be i.id. random
variables having probability density f(x; 0) which has monotone likelihood ratio
in T(x). Then, any SPRT for testing Hy,: 6 =60, versus H,: 8 =6, (8, <8,)
has a nondecreasing power function.

1.11. The generalized SPRT (GSPRT). Weiss (1953) introduced the
generalized SPRTs which differ from Wald’s SPRT’s in the sense that at ith
stage, limits A;, B; are used where these numbers are predetermined con-
stants (i=1, 2,...).

Let f(x) denote the probability (density) function of X under H,(i
=0, 1). Assume that f,(x) and f;(x) are bounded everywhere and have at
most a finite number of discontinuities. Let X, X,, ... denote an i.i.d.
sequence. Assume that for every n and any finite nonzero ¢, P;(c < A1,
<c+4¢)—-0 as Ac >0 for i =0, 1.

Let (A;, A,,..) and (B,, B,,...) be two sequences of predetermined
constants such that 4; > B, for all i. The value oo is not excluded. Sampling
is continued as long as

B, < [ LAY (X)) < Ay (1.11.1)

The first time this is violated, we accept H, if the upper bound is violated and
accept H, if the lower bound is violated. If 4, = B,, while for all i <m we
have A4; > B,, the test is truncated at the mth step.

Weiss (1953) shows the existence of a GSPRT or a sequence of GSPRT’s
which is better than a given test procedure for a specified hypothesis-testing
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problem. Kiefer and Weiss (1957) have studied certain properties of
GSPRT’s. They show that under certain regularity assumptions, the distri-
bution of the sample size under the hypotheses uniquely determine a GSPRT.
Many GSPRT’s are shown to be inadmissible (admissibility being defined in
terms of the error probabilities and the distribution of the sample size
required to come to a decision). They also provide some fine characteriz-
ations of the GSPRT’s.

Aivazian (1965) obtained some generalized sequential tests (GST’s) which
fall into the category of GSPRT's based on independent sequences of
observations for distinguishing between densities that are indexed by a
vector-valued parameter. For a special case of ii.d. sequence with a one-
dimensional parameter see Govindarajulu (1981, pp. 103-109).

Even though the SPRT enjoys the optimum property, in general, its
expected sample size is large for values of the parameter lying between the
values specified by the null and alternative hypotheses (that is, in indifference
zones, a large number of observations is expected). Armitage (1957) proposed
certain restricted SPRT’s, leading to closed boundaries in testing hypotheses
about the mean of a normal population. Donnelly (1957) proposed straight
line boundaries that meet, converted to Wiener process, and obtained certain
results. Anderson (1960) considered a modified SPRT in testing the mean of
a normal population with known variance and derived approximation to the
OC and ASN functions. Anderson’s procedure is similar to Armitage’s (1957)
and Donnelly’s (1957) procedures and we shall describe it for the special case
of equal error probabilities.

Let X be distributed normally having unknown mean 8 and known
variance o2, We wish to test H,: 0 = 0, versus H,: 6 = 8, (0, > 0,) with a
sequential procedure which minimizes E,(N) at 0 =(8,+6,)/2 or (alter-
natively) minimizes the maximum of E4,(N). Replacing the observation X by
the transformed observation [X —(0y+0,)/2}/c and calling 0* = (0, —0,)/2,
the hypotheses become H,: 8§ = —0* and H,: 0 = 0*(6* > 0) when sam-
pling from the normal population having mean ¢ and variance 1. Then the
procedure is: Let ¢, d be positive constants. Take (transformed) observations
X, X,, ... sequentially. At nth stage

reject Ho if ) X; > c—dn,
1

accept Ho il ) X; < c+dn,
1

and take one more observation if neither of the above occurs. If ng
no
observations are drawn, stop sampling and reject H, (accept H,) if ) X;

1
=20 (<0.
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Anderson (1960) using Wiener's process approximation, derived ex-
pressions for the probability of rejecting H, as a function of 8, and the
expected length of time as infinite series of terms involving Mill’s ratio.
Lawing and David (1966) and Fabian (1974) derived a simple and explcit
expression for the probability of accepting H, using Wiener process as an
approximation.

Savage and Savage (1965) consider finite sure termination of GSPRT’s
based on dependent and non-identically distributed random variables.
Eisenberg, Ghosh and Simons (1976) consider GSPRT’s based on non-
necessarily 1.i.d. sequence of observations and study their properties.

1.12. Asymptotic properties of SPRT’s. In this section we briefly men-
tion the asymptotic behavior of the error rates and ASN function of Wald’s
SPRT. Let X, X, ... be ii.d. with common density f;(x) under H;, i =0, 1.
Wald’s SPRT of H, versus H; has stopping time

N =inf{n: S,¢(b, a)} (1.12.1)

where S,,=ZZJ, Z;=In[f,(X;}/fo(X;}] and b, a are two specified con-
1
stants. We also assume that Z is finite with probability one (wpl). Let
a = Py(Sy = a) and B=P,(Sy<bh). (1.12.2)

We, throughout this section, assume that P(Z =0) < 1. Let ¢ = min (—b, a)
and write lim for lim. Then we have the following theorem.

[y c*w

THeorem 1.12.1 (Berk (1973) and Govindarajulu (1968)). Let X,
X,,... be iid and pu = EZ exists. Then if >0 wpl
(i) limlgy>, =limP(Sy>a)=1 and

(i1) lun Nja = 11m EN/a = 1/n

Ifu<0 wpl
(111) llm Iisy<h llmP(SN b) =1, and

(iv) llm IN/b) = hm {EN/b} = 1/pu.
If follows from Theorem 1.12.1 that Wald’s approximation to the ASN,
namely
EN = [bP(Sy < b)+aP(Sy = a))/u (1.12.3)
is asymptotically exact. If the X’s are i.i.d. and E;|Z| < oo for i =0, 1, then
Berk (1973) obtains
lima !'lna~!=1=1lm(=b) 'In(1/B). (1.12.4)

c
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On the other hand if X’s are 1.i.d, EZ = 0 and ¢ = EZ?, then under certain
regularity conditions on the variable Z, Berk (1973) shows that

limo? EN/(—ab) = 1. (1.12.5)

For futher details see Govindarajulu (1981, Section 2.13).

2. Sequential tests for composite hypotheses

In this section we have considered SPRT’s for testing a simple hypothesis
versus a simple alternative. However, in practical situations the simple null
or alternative hypothesis is only a representative of a set ol simple hy-
potheses. The compositeness of a hypothesis can arise from two situations: (1)
the composite hypotheses are concerned about the parameters of interest,
and (i1) the hypothesis may be simple or composite; however, there are
nuisance parameters.

Wald (1974) proposed the method of weight functions to test sequen-
tially composite hypotheses. Let f(x; ) denote the probability (or density)
function of X, indexed by the same unknown parameter 6 (which may be
vector-valued). We wish to test Hy: Ocwy versus H,: 8 ew, where the w,
and w, have at least one element in them.

Wald’s method of weight functions. Assume that there exist two func-
tions go(0) and g,(0) such that

[go®dd =1, [g,(6)dS =1 2.1.1)
S

@g

where S denotes the boundary of w,. Then the SPRT is based on the ratio

Sinlfon =910} [] f(x:;0)dS/ [ go(0) [ f(x:; 6)d6 (21.2)
s i=1 wg i=1

satisfying the conditions:
(i) the type I error probability, a(f) is constant on wg;

(i1) the type Il error probability §(60) is constant over S;

(imi) for any point 0 in the interior of w, the value of f(f)) does not
exceed its constant value on S.

Wald (1947, Section A.9) claims that the weight functions g;(@) (i =0, 1)
are optimal in certain sense. However, Brown and Cohen (1981) show that
tests based on weight functions g; such that 8, (the boundary point between
the two hypotheses) belongs to the support of g;(i = 0, 1) are inadmissible
because any test whose continuation region has unbounded width is inadmis-
sible (see Brown and Cohen (1981, Theorem 3.1, p. 1246). See also Berk,
Brown and Cohen (1981). Using the method of weight functions, sequential
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binomial, chi-square, ¢, t* and F tests have been derived and their properties
investigated. Let us illustrate the method for the sequential ¢ and 2 case.

Let X be normally distributed having mean 6 and unknown variance ¢2.
We wish to test Hy: 0 = 0, versus H,: |8 —0,| = 60 where 6 > 0. The above
hypothesis-testing can arise from several practical situations.

Define the weight functions go(@, 0) =1/c f 0 < g < ¢, 0 = 6, (and zero
elsewhere) and ¢,(0,0)=¢/2 il 0<o<c and 8 =0,+dc0 (and zero else-
where), one can easily obtain

exp (—nd?/2
Y(T; 8, n) = ,h;nl il fon = —I:l;((—n_—l)//T}) p™ W27V cosh {(n6 T(2v)'/%} dv

0

where

T—(Ra—00/S'2, S =Y(X,—00)?.
1

Since y is a function of | T}, one can easily establish that (i) « (8, ¢) is constant
on w, and (ii) B(0, o) is a function of [@—0p)/c. Analogously for the
sequential ¢-test by taking g,(0, ) = 1/c for 0 <o < ¢ and 0 = 04+ b0 (and
zero elsewhere) we obtain the limit of the modified likelihood ratio to be

a0

J‘ " M2exp[—v+ndT(2v)"/*] dv.

0

_exp(—nd?/2)

V8 = Ty

Thus, the sequential procedures can be based on ¢, where ¢, = ﬂ()?
—0,)/s,, X denoting the sample mean and s? the sample variance that are
based on n obsevations. Thus the sequential ¢(or t?) test can be described as
follows: If the experiment has proceeded until nth stage, the sampling
continuation region is given by

B,<t, <A, (B,<l|t]<A), n=23,...

where the bounds B, and A, (B, and A) are obtained by inverting the
inequality: B <y, (T;0,n) < AB <y(T;d,n) <A) in terms of ¢,(t,)).
Rushton (1950) obtained an asymptotic expansion for i, (T). One can also
obtain an asymptotic expression for (7). One can easily establish that ¢ and
t? tests terminate finitely with probability one. Also one can show the power
function of the sequential ¢ test is a nondecreasing function of (6 —8,)/a. This
monotonicity property may not be enjoyed by the t2-test. J. K. Ghosh (1960)
has investigated the double minimax property of t and t?. For further details
see Govindarajulu (1981, Sections 3.1, 3.2).

In the context of sequential r, it is worthwhile to mention that Hall
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(1962) proposed two sequential analogues of Stein’s two-stage test procedure
for testing hypotheses about the mean of a normal population with specified
bounds on error probabilitics when the variance is unknown. These constitute
alternatives to the sequential t-test. Moreover, unlike the t-test, these pro-

cedures do not require that the alternative hypothesis be in standard
deviation units.

2.2. Invariant sequential procedures. Where there are nuisance par-
ameters, it is not always possible to construct weight functions so as to
satisfy the specified conditions. One way to eliminate the nuisance parameter
is to consider invariant procedures. First we need the following definitions.

DerFiniTioN 2.2.1. A function T(x) on % is said to be a maximal
invariant (MI) with respect to (w.r.t.) G if it is invariant w.r.t. G and if it takes
on distinct values on distinct orbits. In other words, if T[g(x)] = T(x) for all
xeZ and geG and T(x,) = T(x,) imples that x, = gx, for some geG.

Let G denote the one-to-one group of transformations induced by G on
the parameter space @. Further, G induces a partition of @ into equivalent
classes or orbits. Let A(#) denote the maximal invariant on @ wirt. G.

The principle of invariance gives a reduction of the data and one can
test a hypothesis about A(f), the maximal invariant on €, via the maximal
invariant U(x) on #%. One can further reduce the data by use of an
invariantly sufficient statistic. Assume that the sufficient statistic S induces
a group Gg of transformations on the sample space & of S.

DEerFINiTION 2.2.2. A function V on & is invariantly sufficient for the
probabilities model Y = (%, o/, Pg) under G if

() V 1is invariant under G,

(1) the conditional probability of any invariant set E given V =v is
free of 0, for all 6e@.

Notice that (i) implies that V is a [unction of the maximal invariant U
on 4 under G and (ii) implies (provided the densities exist) that

Julu; ) = fy(v; ) h{w) (2.2.1)

where fi, (u; A)(fy (v; ) denotes the probability density or function of U (V).
Loosely speaking (2.2.1) means that V' contains all the information about 4
that is available in any invariant function.

Now, we are ready to state Stein’s theorem.

THEOREM 2.2.1 (Stein’s Theorem). Under certain assumptions, if S is
sufficient for the probability model (', </, Pg) and Ug is a maximal invariant
on ¥ under Gs, then V(x) = U (S(x)) is invariantly sufficient for the class of
probability models Yg = Y,, 6 @).

Next let us define transitivity.

10 — Banach Center t. 16
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DeFiNnimion 223, For each n, let T, be a function of X,
=(X,, ..., X,). If, for each n and all 8, the conditional distribution of T, ,
for given X, is equal to the conditional distribution of 7,,, for given T,,
then T =(T,, T;, ...) is said to be a transitive sequence for Y. (That is, all the
information about T,,, contained in X, is carried by T,(X,).

Invariant SPRT’s. Cox (1952a) proposed that sequential tests of
simple hypotheses about A(f)), constituting composite hypotheses about 6,
may be obtained by applying a SPRT or a GSPRT based on a sequence of
statistics the distribution of which depends only on A. An invariantly
sufficient and transitive sequence is a natural candidate for such a sequence.
Since V, is sufficient for the distribution of any invariant function of which V,
is a function. ¥, is sufficient for the distribution of ¥, =(V,...., V).
Consequently, the ratio of densities of V,, at fixed values of A, namely 4,
and A,, (on which any GSPRT s based) becomes the ratio of densities of ¥,
at 4, and A,. Hence at any stage n, the GSPRT based on V depends only on
V, and not on ¥, and is thus a V-rule. This factorization is the essence of
Cox’s theorem.

Properties of V-rules. Wald’s bounds provide approximate upper
bounds on the error probabilities. If V, has a monotone likelihood ratio
(MLR), the SPRT has been shown to terminately surely. (See Wirjosudirdjo
(1961) and Ifram (1965).) Il ¥V, has MLR in /, its OC function is monotone in
A (which occurs in exponential families of densities). However, approxi-
mations to OC functions are not available in general. Very little is known
about the ASN functions except those based on empirical studies.

Berk (1970) considers the sure termmnation of SPRT’s based on ex-
changeable likelihood ratio and gives unified results for many of the SPRT’s.
Wijsman (1971) considers the exponential boundedness of the stopping time
of an SPRT (that is, for some O <c <o, 0<pg <1, we have P(N > n)
<c¢e", n=1,2,... where N denotes the stopping time). A distribution
function is said to be obstructive if the stopping time of the SPRT based on
the 1.i.d. sequence is not exponentially bounded. Berk (1973) provides asymp-
totic results for invariant SPRT’s that are analogous to those for SPRTs.
Further, he shows that Bhate’s (1955) approximation is asymptotically valid.

Pollak and Siegmund (1975) obtain approximations to the expected
sample size of some sequential tests. Let X, X,, ... be an ii.d. sequence of
random variables having the exponential density function

f(x; 6) =exp(6x—y (6)), 0e®

with respect to some o-finite measure v. Let S, =) X;(n=0,1,..) let G be
1
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a probability distribution on @. Then for some 0, @

hix, 1) = [exp[(y —0o) x —t (¥ ()~ ¥ (00))] dG (y)

e
and

T =inf (n: h(S,, n) = a}, (a>1).

Statistical applications of the stopping rule T have been given by Robbins
(1970} where using simple arguments it was shown that

Py (T<oo)<l/a  (a>1).
Letting
1(0) = (6— 00y (6)— (Y (0)— s (1))

and assuming that for 8 # 0,, G’ exists in a neighborhood of 8§ and is
positive and continuous at 8, Pollak and Siegmund (1975) obtain (as a — o)

Eo(T) ~ [2Ina+In((Ina)/I1(0))—In (27(G O/ (0)) —1]/21 (D) + o (1).

They also obtain some variations of the above result. Lai and Siegmund
(1977, 1979) derive some further refinements to the expected sample size,
analysing the excess over the boundary and apply their results to the
sequential , y* and F test procedures. They develop renewal theory for
nonlinear functions of a random walk §, by expanding the function and
applving classical renewal theory to the dominant linear term. On the
other hand, Woodroofe (1976a, 1977) considers the first passage of a random
walk S, to a nonlinear boundary which he expands around an appropriate
point and analyses it. Woodroofe’s method seems to involve heavy
computations.

2.3. Likelihood ratio test procedures. If it is not feasible to apply the
method of weight functions, and if invariant considerations do not apply,
then one should look for a procedure in which sample estimates replace the
true values of the nuisance parameters. Estimates like BAN (best asymptotic-
ally normal) estimates will suffice. In particular we confine ourselves to
maximum likelihood estimates, which have some well-known desirable proper-
ties. Maximum likelihood SPRT’s have been proposed by Bartlett (1946)
and D. R. Cox (1963). First we shall give Cox’s procedure which is a slight
modificaition of that of Bartlett. Let X have density or probability function
S (x:0,n) where  is considered to be the nuisance parameter and we are
interested in testing H,: 8 =0, versus H,: 6 =0,. Then consider the
sequential procedure based on the likelihood ratio

Zrl = 1(615 ﬁ")—l((jo, f’n) (2.31)
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where
6, my= )Y Inf(X;;6,n)
i=1

and #, denotes the maximum likelihood estimate (mle) of . Then if |0, —0) is

sufficiently small (i =0, 1) Cox (1963) has shown that for large n, one can
carry out Wald’s SPRT with bounds

InB = C,In{f/(1—a)] and InA = C,In |(1-B)/z} (23.2)
where

4
/T5.615.4}
0 =40, is the mle of 8, # =,

I = var {dln f(X; 6, n)/d8)} etc.
There might be some situations where it is casier to calculate the mle’s
of n when 6 =60, and 0 = 0, than to compute the joint mle’s #, and 7,.

Bartlett (1946) proposed that the sequential likelihood ratio procedure be
based on

Z, =10, 7,)— (b, 10) (2.3.3)

where #,(f,) denotes the mle of # when 0 =8,(0,). For large n, Bartlett
(1946) represents Z, as a sum of iid. random variables and hence Wald’s
approximations to the boundary values, OC function and ASN are applic-
able. It should be noted that asymptotically, Cox’s and Bartlett’s procedures
are equivalent.

Let the X’s belong to a one parameter exponential family having the
density

f(x; 0) = exp {6x—b(0)} for some 0¢(0, 0) (2.3.4)

with respect to some nondegenerate sigma finite measure. Robbins and his
associates have proposed “open ended tests” which like the one-sided SPRT,
continue sampling indefinitely (with prescribed probability) when the null
hypothesis is true and stop only if the alternative is to be accepted. Lorden
(1973) has investigated the generalized likelihood ratio approach to the
problem of open ended tests of Hy: 8 = 0, versus H,: 8 > 8, for the family
of densities given by (2.3.4).

24. Tests for three hypotheses about the normal mean. There are some
practical situations which require a choice among three or more courses of
action for example, the tolerance limits set to a machine may be too high,
too low or acceptable. One can formulate this problem in terms of sequential
testing among three hypotheses. If the three hypotheses can be ordered in
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terms of an unknown parameter, a sequential test may be devised by
performing two SPRT’s simultaneously, one between each pair of neighbor-
ing hypotheses (which are ordered). Armitage (1947, 1950) and Sobel and
Wald (1949) obtained sequential tests satisfying certain conditions on the
error probabilities.

Armitage-Sobel-Wald Test. Let X be normally distributed having mean
0 and known variance which without loss of generality, can be set to be
unity. We are interested in accepting one of

HO: 9=00, Hl: 6=01, Hz: 9=62 (80 <61 <62) (2.41)

on the basis of an i.i.d. sequence, {X,} (n =1, 2, ...). The above formulation
was considered by Armitage (1947) whereas Sobel and Wald (1949) con-
sidered Hy: 8 =0,, Hy: 0, <0 <80,, H,: 8 =0,. Thus, we are considering
the special case of 8, =0,. Since 7, = X, + ... + X, 1s sufficient for 8, the
fixed sample size procedure would be:

accept Ho il T, < ¢, accept H, if t, < T, < ¢, accept H f T, > t,,
(24.2)

where ty and t, are chosen subject to

P(reject Hy| Hy) < yo, P(reject H,| H,) < vy, P(reject H,| H,) < y,.
(24.3)
The sequential procedure is given by:

Let R, denote the SPRT for H, versus H, and R, be the SPRT [or H,
versus H,. Then both R, and R, are carried out at each stage until either:
one of the procedures leads to a decision to stop before the other. Then the
former is stopped and the latter is continued until it leads to a decision to stop
or: both R; and R, lead to a decision to stop at the same stage in which
case no further experimentation is carried out. The final decison rule is:

accept H, if R, accepts Hy and R, accepts H 1
accept H, if R, accepts H, and R, accepts H,,
accept H, if Ry accepts H, and R, accepts H,.

Sobel and Wald (1949) provide a sufficient condition for the impossiblity
of accepting both H, and H,. The above rule terminates finitely with
probability one. The bounds for the two SPRT’s can be determined by
specifying another constant » besides y,, 7, and 7, and one can obtain lower

and upper bounds for 5. One can derive the OC function and bounds for the
ASN.

Remark 2.4.1. Although the Sobel-Wald procedure is not an optimum
procedure in the sense that the terminal decision is not in every case, a
function of only the sufficient statistic, Sobel and Wald (1949) claim that
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their procedure is not far from being optimum. All the above considerations
can be extended to k-decision problems. Armitage (1950) independently of
Sobel and Wald (1949), has proposed a sequential procedure for k-
hypotheses testing problem,

Paulson (1963) provided a sequential solution to the following problem:

Let @ denote the unknown mean of a normal population. Let {I;} (j =
1, ..., k) denote k nonoverlapping intervals whose union is the real line.
Based on a sample |X;] it is of much practical interest to decide to which of
the k intervals € belongs. Solution is available both when ¢ is known and
unknown.

Armitage (1947), Rushton (1952) and Billard and Vagholkar (1969)
propose sequential procedures for testing a two-sided hypothesis about the
normal mean. Also, Armitage’s procedure is applicable to testing two-sided
alternatives about parameters indexing arbitrary distributions. These pro-
cedures are adaptations of carrying out two SPRT’s simultaneously. For
further details see Govindarajulu (1981, Section 3.10).

25. Efficiency of the SPRT. Let {X;} be an iid. sequence having
density function f (x; §) where 0 is real and the parameters space @ is a part
of the real line. Suppose we are testing Hy: 0 = 6, versus H,: 6 = 0, where
0, # 0,, subject to the prescribed error probabilities « and . If the optimum
fixed-sample size is n(a, B) the relative efficiency of the SPRT at 8@ is
defined by

R.(6) = n(a, B)/Ey(N) (25.1)

where N is the stopping time of the SPRT. In particular, if X is normal with
mean 0 and known variance ¢ and if f =a then

l—a

R,(0,) = R,(0g) = 222 _, [(1 ~20)In (T)] (2.5.2)

where z,_, denotes the 100(1-—-a)th percentile of the standard normal
distribution. One can easily verify (at least numerically) that the right-side
expression is increasing in a and the percentage saving by the SPRT is 46.4
when a = .10. Paulson (1947) has shown that when 8, is close to 6, the
efficiency of the SPRT relative to the optimum fixed-sample size procedure is
free of the form of f(x; 6) and the particular values of 6, and 6,. If X is
normal with mean @ and known variance o2, then one can obtain

. n(a, o) 2z, P
0 —_— —_— a —_— l_
u;fRe() supE(N) [ln{(l—a)/a}J W (o), for O0<a<sy
0
(2.5.3)
One can also show that limy(x) =0, lim ¢ (a)=n/2 and that y(a) is

a—0 a—>1/2
monotonically increasing in .
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Bechhofer (1960) has studied the limiting relative efficiency of the SPRT
for the normal case when the error probabilities are related to each other
and they tend to zero. He brings out some of the surprises that are never
anticipated. Sakaguchi (1967) has extended Bechhofer’s (1960) results to the
exponential family using Chernoff’s (1952) information number discriminating
between the two densities. Berk (1973) obtained elegant results for the
asymptotic efficiency of Wald’s SPRT relative to the best nonsequential test
having the same error probabilities (a, ff).

2.6. Bayes sequential procedures. For the binomial problem, Vagholkar
and Wetherill (1960) gave a most economical sequential sampling method
which is based on the basic theory developed by Barnard (1954). Lindley and
Bartlett (1965) gave an optimal Bayes squential procedure that can be solved
numerically by the backward induction techniques of dynamic programming.
Chernoff (1968) summarizes the results pertaining to the Bayes sequential
testing procedure for the mean of a normal population. Schwarz (1962)
provided an elegant characterization of the asymptotic (as ¢ the cost per
observation tends to zero) shape of the Bayes continuation region, when the
density function f(x;0), 6@, belongs to the one parameter exponential
family and the hypothesized parameter sets are separated by an indifference
zone. Assuming no indifference zone, Kiefer and Sacks (1963) have gen-
eralized and extended the results of Schwarz (1962), for testing two composite
hypotheses. Woodroofe (1976) studied in detail Schwarz’s (1962) approxi-
mation to the Bayesian test when the underlying population is normal. Using
the method of truncation and backward induction, Arrow, Blackwell and
Girshick (1949) obtain the best (Bayes) sequential procedures; in particular,
they characterize the best acceptance regions in the space of prior probability
distributions for the k-decision problems.

2.7. Tests of power one. Let X,, X,, ... be 1.1.d. normal (0, 1) and we
wish to test Hy: 0 <0 versus H;: 8 > 0. For the stopping time, Robbins
(1970) proposes

N = first n > 1 such that §,>c,, = oo if no such n occurs, (2.7.1)
and when N < <0, continue sampling indefinitely and do not reject H,, where
S, =X, +...+X, and c, = (nlnn)'/2, (2.7.2)

Note that Pg(not reject Hy) = P(S, <c, for all n>1)=0 for all 6 >0,
because c,/n —0 and S,/n—> 06 >0 as n— 0. Thus the test has power one

against H,. Clearly, the proposed test will rarely terminate when 6 < 0. One
can also obtain

Eo(N) = =2In Po(N < w)/0?, for every 6 >0. (2.7.3)
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Darling and Robbins (1968a) have shown that

Eo(N) < %‘Jr%nt 1 (2.7.4)
where K = E4(N). Thus the proposed test has type 1 error probability < «
(uniformly) and type II error probability = 0. By the same token while the
sample size N is finite with probability one when H, is true, N is equal to ao
with probability > 1—a when H, is true. Darling and Robbins (1968a)
provide a practical situation where the preceding procedure is meaningful.
Barnard (1969) quite independently of Darling and Robbins (1968a) has
proposed tests of power one for a Bernoulli problem. For details the reader
is referred to Govindarajulu (1981, Section 3.13).

28. Locally most powerful (LMP) tests. Let f(x:6) denote a family
of probability densities. Let @, the parameter space be a subinterval of the real
line. Let X, X,, X,, ... be an i.i.d. sequence of random variables having the
above density. We wish to test Hy: 6 = 0* versus H,: 6 > 0*. Berk (1975a) has
shown that one can obtain sequential tests that are LMP for testing H,
versus H,. Let a denote the level of significance and v the expected time
under H,y. Then among all level a sequential tests whose expected stopping
times under H, do not exceed v, the given test is LMP. These LMP tests
have for their stopping times:

N =inl[n: S,¢(b, a)] (2.8.1)

where S, = r(X;), r(x) = {0In f (x; 0)/00} 5. Typically —b and a are both
1
positive and they are determined (in principle) by « and v where
a=P(S,=a and v=EN

and unless otherwise specified all probabilities and expectations are com-
puted under H,. Further, Berk (1975a) has shown that an LMP test is a
Wald's SPRT of Hy: 0 =60, versus H|: 6 =0, where 0, < 0* <0, when
f(x; 0) =exp |Ox—b(0)}.

2.9. Nonparametric tests. Let X(Y) have the df. F(x)(G(y)} and let
D* (F, G) =sup[F(x)—G(x)]. Assume that X and Y are independent. We

wish to test H,: F(x) < G(x) for all x. Darling and Robbins (1968b) propose
a power one sequential test for the above hypothesis and obtain a lower
‘bound for type I error probability and upper bound for EN. They also
propose power one tests for three other hypotheses.

Sequential sign test. Let X and Y be independent and let p = P(X < Y).
Suppose we wish to test Hy: F(x) = G(x), all x versus H,: F(x) < G(x)
for all x. This is equivalent to testing Hy: p =1 versus Hy: p>1. If we
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observe pairs (X, Y;), (X,, Y,), ... reducing the data to signs of (X;—Y)),
i=1,2,... Hall, Wijsman and Ghosh (1965, Section 1.8) propose an SPRT
based on the reduced data constituting a Bernoulli sequence with P (positive
sign) = p.

Rank order SPRT’s based on Lehmann alternatives. two sample case. Let
X have df. F(x) and Y have d.[. G(y). Suppose we wish to test H,: F(x)
= G(x) for all x. If H,: G(x) = F(x) with strict inequality for some x, then
Lehmann’s (1953) alternative which is contained in H, is H,,: G = F".
Similarly if H;: F(x) > G(x), then an associated Lehmann alternative is
H,,;: G=1—(1-F)?for 4 > 0. The general Lehmann alternative is given by
G = h(F) such that h(0) =0, h(1) =1 and h(") is nondecreasing in (-). Let
X,, ..., X,, denote a random sample from F and Y,, ..., Y, denote a random
sample from G where X’s and Y's are mutually independent and F and G are
assumed to be continuous. Let 5, < s, < ... < s, denote the ranks of Y’s in
the combined sample of size¢ N =m+n. Then S =(s,, ..., s,) 1s called the
rank order. One can derive an explicit expression for the probability of a
rank order under Lehmann alternatives. Using this result Wilcoxon, Rhodes
and Bradley (1963) developed configural rank sum test (SCR-test) and the
rank sum test. For both of these tests, observations are taken in groups of
k X’s and k Y’s with observations ranked within the groups. Bradley,
Merchant and Wilcoxon (1966) provide a modified version of the configural
group rank test proposed earlier, whose superiority is established via Monte
Carlo studies. Based on Monte Carlo studies Bradley, Martin and Wilcoxon
(1965) infer that the rank sum test derived on the basis of Lehmann
alternatives is reasonable for data from normal populations differing only in
locations. Savage and Sethuraman (1966) consider the case k = 1, (that is,
only a single pair is observable at each stage) and derive the SPRT based on
the ratio of P(s,,...,s,|H)/P(sy, ..., s,/ Hy) computed under Lehmann
alternatives. Savage and Sethuraman (1966) and Sethuraman (1970) consider
the exponented boundedness of the stopping time. Their combined effort
yields that under the assumption that a certain random variable is zero with
probability less than 1, the stopping time is exponentially bounded. From
this it follows that the SPRT terminates fimtely with probability one and the
moment-generating function of the stopping time is finite.

The asymptotic normality of the log of the test criterion is established
by Govindarajulu (1968) and Sethuraman (1970) from which the finite sure
termination of the SPRT follows. Berk and Savage (1968) consider sequent-
ially testing H,: G = F versus the alternative H; =y: F =,(K), and G
=, (K) where , and , are given dfs on [0, 1] that specify , and K
ranges through all dfs.

One-sample rank order SPRT’s for symmetry. Let V|, V;, ... be iid.
random variables observed sequentially and having a continuous d.f. F. We
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wish to test the hypothesis

Hy: Fo)+ F(—p =1 for all v (that is, F is symmetric about zero).
Let
H(y)=P(V<v|V=0 = F()-F(0)/1-F(0)]
and
G(v) = P(V| <v|V<0)= F(O)-F(-v)}/F(0)

for >0 and H and G are zero for v < 0. Thus

F(O){1-G(—-v)], for v<0,

- %H(v)+F(0) 1-H(@)j. for v>0.

Then we can rewrite H, as

Hy: H(v) =G(v) for all v and F(0)=1/2,
and take
H,: H(v) # G(v) for some v.

Assuming that H,;: H(v) = 1-[1-G©)]4, v = 0 with F(0) = 4/(1+ 4), Weed
and Bradley (1971) proposed two sequential procedures. One based on
within-group configuration of signed ranks and the other based on within-
group sums of positive signed ranks.

Parent (1968) defined sequential rank and signed sequential rank which
makes it unnecessary to re-rank all the observations at each stage. Weed,
Bradley and Govindarajulu (1974) have considered SPRT’s based on ratios
of probabilities of rank orders computed under Lehmann alternatives and
established sure termination of the procedure under certain assumptions on
the underlying d.f. F. Miller (1970) proposed a sequential procedure based on
the sequential rank for testing symmetry and shows that asymptotically the
test criterion behaves like a Brownian motion process. Lombard (1976)
generalizes the results of Miller (1970). Groeneveld (1971) proposed a differ-
ent sequential test for symmetry.

c-sample rank order SPRT’s. Govindarajulu (1977) considered c-sample
rank order SPRT’s based on Lehmann alternatives and studied the exponential
boundedness of the corresponding stopping times. The sufficient condition is
again that a random variable takes the value zero with probability strictly
less than one. The rank order SPRT’s for randomness against trend are given
in Govindarajulu (1981).

Asymptotic efficiency. Lai (1978) has extended the concept of Pitman
efficiency to the sequential case. For details see Govindarajulu (1981, pp.
316-318).
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3. Sequential estimation

In some applications, formulating a problem in terms of hypothesis-testing
would be somewhat artificial, however, formulating it as an estimation
problem would be more realistic. In the fixed-sample size situation there is a
close connection between acceptance regions and confidence regions, whereas
that analogy does not hold in the sequential case. Hence there is a need for a
theory of sequential estimation. The stopping rules in sequential testing may
not be meaningful in sequential estimation. However, Wijsman (1981, 1982)
brings out the close analogy between a sequential (1 —a)-confidence set for an
unknown parameter and the associated family of level « SPRT’s or the
GSPRT’s. Siegmund (1981) also brought out similar analogy when the
unknown parameter is the normal mean. See also Siegmund (1978).

3.1. Stein’s two-stage procedure. There does not exist a fixed-sample
size procedure for estimating the mean of a normal population (when the
variance is unknown) with a confidence interval of fixed width and specified
confidence coefficient. Stein (1945) presented a two-stage procedure, in which
the size of the second sample depends upon the observations in the first
sample. _

Ghurye and Robbins (1954) gave a two-stage procedure for estimating
the difference of two means when the variances are unknown with extension
to the nonnormal populations. Richter (1960} gave a two-stage procedure for
estimating the common mean of two normal populations.

3.2. Sufficiency and completeness. Let X,, X,, ... be a sequence of
11.d. random variables having common p.df. f(x; 8). We wish to estimate 0

by some function d(X,, ..., X,) while using a stopping rule which is closed
(that is, for every 6, Po(N <n—1 as n— oo, although not necessarily
umformly in 8). The sample space is E, +E,+ ..., where E; is contained In
R' and consists of those points (X,, ..., X;) which serve as stopping points.
Let N denote the stopping variable. Let T, = T(X,, ..., X,) be a sufficient
statistic for the joint demsity of X, ..., X,.

DeriNiTiIoN  3.2.1. With the preceding notation, the sequence
(Ti, T5, ...) 1s called a sufficient sequence for the sequential model. Then one

can easily show that (Ty, N) is a sufficient statistic for 8 in the sequential
case.

In Section 2.2 we have defined transitivity of a sequence of statistics.
Transitivity of [T,} implies that all the information concerning T,,, con-
tained in X, = (X,, ..., X,) is also contained in the function T,(X,). Bahadur
(1954) showed that if [T,} is sufficient and transitive, then any closed
sequential procedure based on |X,! is equivalent to a procedure which at
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stage n is based only on T,. In the case of i.i.d. variables, !T.! is transitive if
Ty (Xns1) = ValT(X,), Xo4y) for every n > 1. The exponential family en-
joys this property.

Next, we consider the completeness of (7y, N). Assume that T, is
complete for every fixed n.

DeriniTioN 3.2.2. The family of distributions of (7y, N) is said to be
complete (boundedly complete) if for every (bounded) g(n, t,), Eq{g(N, T))}
=0 for all # implies that g(n, t,) = 0 almost everywhere for all n > 1.

Lehmann and Stein (1950) found a general necessary condition for
completeness of the statistic (N, 7) and examined the stopping rules for
which (N, T,) is complete. In the case of normal (8, 1), (N, T) is complete if

N =m (here T,, =) X)). Let S, be the set of values of T,, for which we stop
1

at the mth observation. A necessary and sufficient condition for (N, T) to be
complete is that the S;’s are disjoint intervals, each lying immediately above
the preceding one. Zaidman, Linnik and Romanovski (1969) consider sequen-
tial estimation of the natural parameter in (i) binomial, (i) multinomial, (iii)
Poisson and (iv) Wiener processes.

33. Cramér-Rao lower bound. Suppose that we are interested in
estimating 0 with loss function given by r(8(x); 8) = [4(x)—6]>. Assume that
we have limited resources (forcing a bound on the total cost of experimen-
tation C(N)). Then we seek to minimize the risk function (expectation of loss
function) subject to an upperbound n, on the expectation of C(N). If we
restrict ourselves to unbiased estimates of 6, we would be interested in lower.
bounds for the variance of such estimates. The Cramér—Rao inequality was
extended to the sequential case by Wolfowitz (1947b) which will be given
below.

THEOREM 3.3.1. Let Ty =46(X,, ..., X)) be an estimate of 0, such that
Eq(Ty) = 0+ b(0). Suppose that differentiation underneath the summation and
integral signs is permissible in Ey (1) =1 and E4(Ty) = 0+b(0) where b'(0)
exists. Then

0

Var(TN|B)>{EO(N)Eo[a—Blnf(X;B)JH}- [1+b(0)]2.  (33.)

CoroLLaRYy 3.3.1.1. If we restrict ourselves to sequential unbiased esti-
mation procedures for which E4(N) < ngy, then

Ry -1
Var(Ty|0) = {no E, [6_601“ (X G)J } (332
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If Ty is an unbiased estimator for h(6), then one can analogously obtain

o 2
Var(Ty|6) = [h'(g)]z/{Ee(N) E, [_6(7) Inf(X; H)J } (3.3.3)
Seth (1949) extended Bhattacharyya’s (1946) bounds to the sequential
case, which in some respect are more general than those of Wolfowitz
(1947b).

34. Consistency of estimators. Given an unbiased estimator and a
sufficient statistic for a certain parameter of interest, using Rao—Blackwell
procedure, we can obtain another (perhaps) better estimator by taking the
expectation of the given estimator conditional on the sufficient statistic.
Wolfowitz (1947a) considered the consistency of such estimators for the
binomial parameter in the sequential case. Loynes (1969) studied the consist-
ency of the Rao-Blackwell type of sequential estimators for the general case
under certain regularity conditions. He also provides some examples. Berk
(1969) considered the strong consistency of Rao-Blackwell type of
estimators.

3.5. Certain double sampling procedures. Suppose that we are interes-
ted in estimating an unknown parameter ¢ having specified accuracy, using
as small a sample size as possible. The precision could be in terms of
variance a()), some given function of 0. Another problem of interest is to
estimate ¢ by a confidence interval having a specified width and a specified
confidence coefficient y. In general it is not possible to obtain a fixed-sample
size procedure meeting the specifications. Thus, one has to resort to some
kind of sequential sampling. Although a general large sample theory is
provided by Anscombe (1949, 1952), it 1s somewhat difficult to construct a
sequential sampling procedure leading to an estimate having the required
properties. Also, the ordinary sequential procedure has the additional draw-
back of requiring calculations at each stage. Cox (1952b) proposed a
double sampling procedure in which one draws a preliminary sample of
observations which determines how large the total sample size should be.
Stein’s procedure is a special case of Cox’s procedure because the underlying
distribution is known. The double sampling procedures are different from
those used in industrial inspection, because in the latter case, the second
sample is of fixed size. Although the double sampling. procedures have
optimum large sample properties, they are likely to be reasonable when
based on small samples. Moreover, Cox’s procedure is applicable even if
there are nuisance parameters.

Suppose we wish to estimate a single unknown parameter 6 with
specified variance a(0)/4 where A is tending to infinity. Then Cox provides an
estimator having bias O (4™ ') and variance a(@) A~ ! [1+O0(A™ ")]. For further
details see Govindarajulu (1981, pp. 381-383).
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3.6. Minimax estimation. Let the random variable X have the density
function f(x; 6). Suppose we desire to estimate h(0) by (X). Let r(5(X); 6)
and R(J; 0) respectively denote the loss incurred and risk associated with the
estimator 6 (X).

DErFINITION 3.6.1. An estimator 6* is said to be minimax if for any other
estimator 6 (X)

sup R(0*; 8) < supR(4; 0). (3.6.1)
0 9

For minimizing sup R(d; 0) subject to Eo(M) < m, Hodges and Lehmann
0

(1951) obtain minimax estimates for normal mean using Cramér—Rao in-
equality and show that they are sample means based on a fixed-sample size.
If 0 is bounded, then X, is neither admissible nor minimax for all monotone
loss functions. Another way of computing minimax estimates is via Bayes
estimation with respect to least favorable prior distributions. Several specific
examples have appeared in the literature in which the minimax estimator
turns out to be the one based on fixed sample size. Wald (1971) considered
the minimax estimation of the mean of a rectangular distribution and
succeeded in obtaining an honest sequential procedure.

Ibragimov and Has’minskii (1972) show that fixed-sample size pro-
cedures are asymptotically minimax in the class of sequential plans with
quadratic loss functions. Ibragimov and Has’minskii (1974a) also show that
in the minimax sense, sequential estimation procedures having a mean
number of observations not exceeding n, do not yield asymptotic advantage
for power loss functions. Imposing certain regularity conditions on the loss
function and assuming that the underlying probability measures are locally
asymptotically normal, Efroimovich (1980) shows that in the minimax sense,
sequential estimation schemes having a mean number of observations not
exceeding n, do not yield asymptotic advantage for a much broader class of
loss functions which includes the power functions as a special case.

3.7. Certain nonsequential Bayes sequential estimates. Here we con-
sider certain optimal Bayes estimation procedures that are nonsequential. Let
X,=(X,,..., X,) denote a vector of n observations and let T(X,) be
designed to estimate the parameter 6 that indexes the distribution of X;. Also
r(T, 6) denotes the loss incurred in using T for estimating (). In sequential
estimation, one chooses the estimation rule T(X,) and a stopping rule to
minimize E{CN+r(T; 0)} where C denotes the constant cost per obser-
vation. However, there are several situations where the optimal stopping rule
turns out to be simply N = n,, a constant. Blackwell and Girshick (1954)
gave a general result characterizing the situation under which the optimal
Bayes sequential procedure is nonsequential. In the following we give their
result.
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TueoreMm 3.7.1. Let X, X,, ... be an i.i.d. sequence of random variables.
If E[r(T(X,); 0)| X,] < K(n) for all X, and n where k(n)— 0 as n— oo, then
the optimal sequential procedure is truncated. If E[r(T(X,);0)|X,] =k(n)
(thar is, it is a function of n only), then the optimal sequential procedure is
a fixed-sample size procedure.

Using Theorem 3.7.1, Whittle and Lane (1967) obtained sufficient con-
ditions under which, the optimal sequential estimate of the parameter (scalar
or vector valued) of an exponential family of densities is based on a fixed-
sample size.

3.8. Large-sample theory for estimators. Anscombe (1949) provided a
large-sample theory for sequential estimators when there is only one un-
known parameter in the distribution of the observations. Using an heuristic
argument, he showed that an estimation formula valid for fixed sample size
remained valid when the sample size was determined by a sequential
stopping rule. Another proof was given by Cox (1952c) suggesting that fixed-
sample size formulas might be valid generally, for sequential sampling,
provided the sample size is large. Anscombe (1952) introducing the concept
of “uniform continuity in probability” (UCIP) simplified his previous work
and gave sufficient conditions for the asymptotic normality of a statistic
indexed by a positive integer valued random variable: one of the basic
conditions being UCIP. Let !Y,! be a sequence of statistics and W, be a
linear measure of dispersion of Y, like its standard deviation. Then {Y,} is said
to have UCIP if for given small ¢ and # there exists a large v and a small
positive ¢ such that for any n > v we have P[|Y, —Y,| < &W, simultaneously
for all integers n' such that |n'—n| <cn] > 1—n. It is of interest to know
under what conditions we will have UCIP. The following result is proved in
Govindarajulu (1981, p. 421).

THEOREM 3.8.1. Let Y, be an estimate of 0 calculated from the first n
observations. Let

Y,—0=n"'Y Z+R, (3.8.1)
i=1

where the Z; are independent with EZ; =0 and var Z, < b < oo and n'’R,
= o(1) almost surely. Then Y, is UCIP.

Remark 3.8.1.1. In many applications, like the sample quantile and the
maximum likelihood estimate, the representation in {3.8.1) is satisfied.

Since 1n most practical applications, we will be concerned with random
sums of iid. random variables, the following result would supplement the
main result of Anscombe (1952).

THeEOREM 3.8.2 (Renyi (1957) and Wittenberg (1964)). Let X,, X,, ... be
i.i.d. random variables having mean O and variance 1, and define S, = X, + ... +
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+X,. If N{, N,, ... is a sequence of positive integer-valued random variables
(defined on the same probability space) such that N, /n converges in probability
to a positive constanr &, then Sy /(nl)"'* converges in law ro a standard normal
variable as n — x .

Bhattacharyya and Mallik (1973) employ Theorem 3.8.2 in order to
establish the asymptotic normality of the stopping time of Robbins’ (1959)
procedure for estimating the normal mean g4 when the variance 1s uknown,
with (i—p)?+cn as the loss function where ¢ denotes the cost per obser-

vation and #=n""')Y X; and the X; are iid. normal (u, ). In particular
1
they show that

(N—c Y25)(kc 126)2 L pormal (0, 1) as 0. (3.8.2)

Siegmund (1968) proved the following result for the asymptotic nor-
mality of stopping times that commonly arise in sequential estimation.

THeorREM 3.83. Let X,, X,, ... be iid. random variables with EX,
=pu>0,var X, =c><owand let T,=X,+ ...+ X,. If N is the smallest n
for which T,>c 'n®, 0<é <, then as ¢ |0

fu(1=38)e~1 A7 Y2 (N = A) £ normal(0, 1) (3.8.3)

where 4, = (cu)*’? =9,

Woodroofe (1977) has studied the asymptotic normality of stopping

times for more general barriers, when the underlying random variables are
positive.

4. Specific problems in estimation

In the section we shall briefly deal with some specific problems that
have been considered in the literature.

4.1. Estimation of the normal mean. Anscombe (1953), Ray (1957) and
Starr (1966a) considered the estimation of the normal mean with specified
width and confidence coefficient.

Let X,;, X,, ... be iid. normal (u, 6. We wish to estimate u with an
interval having width 2d and confidence coefficient 1 —a{(0 <a < 1) when ¢
is unknown. For any positive integer n let

Y, = zl X,/n. (4.1.1)

Let u denote the (1 —a/2)th fractile of the standard normal distribution. If ¢
is known, the confidence interval (Cl) is (Y,—d, Y, +d) where n is determined
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from
nd? = o*u?, (4.1.2)

If ¢ is unknown the first order asymptotic procedure is to continue taking
observations and to stop as soon as

s? < d?nfu? (4.1.3)

where s> = Y (X;—Y,)?/(n—1). Let N denote the stopping variable. Letting
i=1

Ul=(le+l_ZXl)2/i(l+1)’ l=1,,n_1
i=1
and Y, =(X;+ ...+ X,)/n, one can rewrite the stopping rule as stop sam-
pling as soon as

n—1

Y U, <d*n(n—1)/u?. (4.1.4)
i=1
If further observations X,.;, X,+2, ... are taken, the sequence U; is in-
creased by adding U,, U,,,, ..., the earlier elements remaining unchanged.
Anscombe’s (1953) procedure, when d is small and n is large is given by: stop
sampling when

n—1

Y U;<d*n(n—2676—-3u?)/u> (n2z4). (4.1.5)

i=1
The constant 2,676 can be modified by addition of a constant or any
function of n of order O(n'/?) when n is large. The expected sample size
obtained by Anscombe (1953) for the rule (4.1.5) 1s

E(N) = ¢®u?/d*> +(1 +u?)/2, {4.1.6)

where the first term denotes the number of observations required if ¢ is
known.

If we wish to estimate p with specified standard error a, then the rule is
to stop sampling when

n—1

Y U;<a*(n—5)(n+0824)  (n>6) 4.1.7)

i=1

and the expected sample size is E(N) = (6%/a®)+ 2. An analogous procedure
holds for sequentially estimating the difference of two normal popuiations
having common unknown variance.

Ray’s (1957) modified procedure is to stop as soon as

sti_n<d? (4.1.8)

11 — Banach Center 1. 16
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where t,_, denotes (1 —z/2)th fractile of the r-distribution with n—1 degrees
of freedom. If the procedure is slightly modified to taking three observations
at the initial stage and observing pairs at each subsequent stage the rule
becomes: stop sampling when

2Zm

Y U, <d*(2m+1)2m/i3,,. (4.1.9)
i=1
Ray (1957) indicates that one can write down explicit expressions for P,,,, ,
which is the probability that we stop sampling at the (2m+ 1)st observation,
from which one can easily compute the coverage probability and the mean
and variance of N. Ray’s (1957) approach can be used for estimating the
mean with given standard error or estimating the difference of two means.
Starr (1966a) gave another modified procedure which is as follows:
observe the X's one at a time and stop at X, if N is the first integer n = n,
such that s? < nd*t2_,, where ny > 2 is a fixed integer:; then compute the
interval Iy =[Yy—d, Yy+d]. Let

A=o0fd. C(r)y= P(uely), D(’) = EN, (4.1.10)

1, = C(A)A1l—2) and n, = D(A)u?i?. (4.1.11)
Then Starr (1966a) shows that
P(N =ng) -1, CA)—1 D(4) — ng as +—0 (4.1.12)
and
7, — 1 n,— 1 as A—oc. (4.1.13)

Without alfecting the results in (4.1.12) and (4.1.13), one can modify Starr’s
(1966a) procedure to the following where computations are more tractable:

N* is the first odd integer n > n¥ such that s2 < nd?/t2_,, @.1.14)
ny is a fixed odd integer > 3. o

Starr (1966a) computes numerical values of y* = inf C*(4) for n§ =3 and

0<i<mx

5 and «=0.005 and 0.01 (where C*(A) i1s defined analogously for rule
(4.1.14)) which are close to the nominal values. Let us further modify rule
(4.1.14) so that the experimenter takes a fixed number of additional obser-
vations say j after having decided (nominally) to terminate sampling. If j = 2
or 4, then y* is very close to 1—a (numerical computations indicate this).

Starr (1966b) has also considered the general loss function in estimating

w by Y, =) X;/n given by
1

FYy, w)=A|Y,—y +n (4.1.15)
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and obtains analogous results. Starr and Woodroofe (1969) consider the
special case when ¢t = | and show that the regret, equal to the difference in
the expected loss with optional stopping and the expected loss which would
be incurred il ¢ were known, is a bounded function of o.

Simons (1968) has shown that one can obtain a fixed-width confidence
interval for the mean of a normal distribution with unknown variance o2
using a procedure which overcomes ignorance of ¢ with no more than a
finite number of observations. So far we have been able to show that the
difference between expected sample size and the optimal fixed sample size is
a bounded constant. Woodroofe (1977) has further analyzed this bounded
constant (for istance, see Govindarajulu (1981, Eq. (5.1.105)).

Paulson (1964, 1969) obtains confidence interval sequences for the
normal mean, normal variance and difference of two normal means. For
further details the reader is referred to Govindarajulu (1981, Section 5.2).

Multi-variate case. Khan (1968) considered point estimation of the
mean vector of a p-variate normal distribution when the dispersion matrix is
a diagonal matrix of unknown elements. Rohatgi and Rastogi (1973) have
considered point estimation of a linear combination of the mean vector when
the dispersion matrix is diagonal and unknown. Callahan (1966), Ghosh,
Sinha and Mukhopadhyay (1976) have considered point estimation of the
mean vector when the covariance is unknown (which need not be diagonal).
Mallik (1971) considered point estimation of the common mean of a bi-
variate normal distribution when the ratio of the variances is unknown and
the covariance is zero, using a quadratic loss function and linear cost
function. (He uses the results of the one-armed bandit problem.) Robbins,
Simons and Starr (1967) consider fixed-width confidence interval estimation
of the difference of two normal means when the variances are unknown and
the covariance its zero. Ghosh and Mukhopadhyay (1980) consider point
estimation of the difference between two normal means under quadratic loss
and linear cost.

4.2. Estimation of the mean. In this section we shall present the large-
sample point and interval estimates for the population mean. First we shall
present the results of Chow and Robbins (1965) which are fundamental to
this problem.

Lemma 4.2.1. Let |Y,} be a sequence of random variables such that
Y, >0 as. (almost surely) and lim Y, = 1. as. Let f(n) be any sequence of

n-x

constants such thar f(n) >0, lim f(n) = oc, lim | f(m/f(n—1), =1, and for

each t > 0 define

N = N(t) = smallest k > 1 such that Y, < f(k)/t. (4.2.1)
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Then, N is well-defined and nondecreasing as a function of t,
N- w, as, EN - oo, S(N)/t—>1 as. as t— 0. (4.22)

LEMMA 4.22. If the assumptions of Lemma 4.2.1 are satisfied and if
E(supY,) < oo, then Ef (N)/t > 1 as t > 0.

Let X,, X,, ... be an ii.d. sequence of observations from some popu-
lation. We wish to set up a confidence interval having specified width 24 and
coverage probability 1 —a for the population mean p. If the variance o* is
known and 4 is small compared with o, then for any n> 1 define

Xu=n_lzxi’ I,,=[X—"—d, X’n+d]
1

and let u denote the (1 —a/2)th fractile of the standard normal distribution.
Then for n determined by

n = smallest integer > (12 0%)/d?, (4.2.3)

lim P(uel,) = lim P(/n|X,— u/o < d/njo) = ®(u)—D(—u) = | —a.
d—0

d—0
However, in many practical situations, ¢ is unknown and hence no
fixed-sample size procedure is available. Let

Vf=n'1Z’I:()£',-—X',,)2+n_1 (n=1), (4.2.4)

and {u,) be a sequence of positive constants tending to u. Define
N =smallest k > 1 such that V.2 < (kd?)/ui. (4.2.5)

Then we have the following main theorem of Chow and Robbins (1965).

THEOREM 4.2.1. If 0 < ¢ < o0, then
(i) (d®*N)/u*a? > 1 a.s. (asymptotic optimality),
() P(uely) — 1—a (asymptotic consistency),
(i) (d? EN)/u’c? = 1 (asymptotic efficiency) as d — 0.

Extensive numerical computations carried out by Ray (1957) and Starr
(1966a) for the normal case indicate that when a = 0.05, the lower bound of
P(uely) for all d >0 where N is the smallest odd integer k > 3 such that

k

(k=171 Y (X;— X,)? <(d?k)/ui is about 0.929 if the values of u, are taken
1

from the r-distribution with k—1 degrees of freedom.
Nadas (1969) extended Theorem 4.2.1 so as to take care ol other
specified accuracies. We say that we are estimating with
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(1)
absolute accuracy if I,=(u: |X,—u<d) (d>0), (4.2.6)
(i)
proportional accuracy if I,=(uw|X,—ul <plul), p#0,0<p<1,
' 4.2.7

The stopping rule for the proportional accuracy is to stop at M where

M = min {n: (V,/X)? < n(p/u)?}. (4.2.8)

nz1

Nadas (1969) obtains Theorem 4.2.1 and improves it by obtaining a uniform
upper bound on EN —n(d). If the df. of X, is continuous having a finite
fourth moment then EM —m(d) is also bounded above where

n(d) = min{n: 6> <n(d/w)?}, m(d)=min{n: ¢ < n(p/u)?},

n=1 nz1
e=ofly. (429)

Point estimates for the mean. With the earlier notation, assuming that 0
<o < oo, set

ra=(X,—p)’+cn (4.2.10)

where ¢ is a constant which is proportional to the cost per observation. If ¢
is known, then the risk R,(c) = Er, 1s minimized by taking

n=n®=(1/c)'?, hence R o(c) = 2cn®. (4.2.11)
Il ¢ is unknown, use the stopping rule: stop sampling at N where
N = smallest integer n > nysuch thatn > (s,+n"?)(1/c)"/?

where no (> 2) is the initial sample size, y(> 0) is a specified constant and s?
denotes the sample variance (unbiased version). After we have stopped,

estimate u by X . Since s, converges to ¢ in probability, we have P(N < o)
= 1. Let

R(c)=E(Xy—uw*+cEN.

Then Ghosh and Mukhopadhyay (1979) obtained the following result.

THEOREM 4.2.2. (a) If E|X,|* < o for some v > 0 and a® > 0, then us
c—0
(1) N is decreasing in ¢; N> o© as.,
(i) (N/n% -1 as,
(i) for every positive m < v, E(N/n%™ = 1.
(b) IfE|X,|® < o and 6% > 0, then with 0 <y < 1/4, {R(c)/R 4(c)} — 1
as ¢ —0.
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4.3. Invariant estimation of the location parameter. Let X have p.df.

fix=M) and an estimate 0, of # based on iid. X,...., X, is said to be
translation invariant or simply regular if 6,(x,+c,..., x,+¢c)=c+
+6,(x,. ..., x,). For such regular estimates, E,(0,—#? obviously does not

depend on ¢/ and hence there always exists an optimal estimate 8, called the
Pirman e¢stimare such that
Eg(0,—0)* = min Eq(0,—0)*

Oc 4

where # denotes the class ol regular estimates. Salyt (1969) has shown that
for distributions concentrating their masses in bounded intervals, invariant
sequential estimates of a transiation parameter are better than (optimal)
Pitman estimates based on fixed-sample sizes when the loss function is
quadratic. For various special distributions, E,(0,—0)? turns out to be
considerably smaller than E,(,—)* where T denotes the stopping time of a
sequential procedure and 6, denotes the (optimal) Pitman estimate. In
particular, for the uniform density on (—a, «). Salyt (1969) shows that

Eg(0,—0)¥Ez(0,—0* -3 as n—ox.

Taking the loss function to be r(r.; 8) = (t,—0)*+c1. ¢ > 0, where t, denotes
the estimate ol 6 based on stopping time 1, Salyt (1970) obtains the optimal
sequential estimation procedure for the location parameter (. He also
establishes a certain integral relation between the risk and a function of the
expected sample size for the optimal estimate. He applies these results to the
uniform density on (—1/246, 1/2+60) and shows the optimality of the
sequential procedure.

Linnik and Romanovski (1970a) consider sequential unbiased estimation
of the location parameter 8, the sequential plan having expected stopping
time bounded by n. They show that if the Ibragimov-Has'minskii (1970)
conditions on the absence of discontinuities in the information function are
satisfied, sequential estimators can yield only an infinitesimal small relative
gain in the mean square deviation when compared with the fixed-sample size
procedure. However, the presence of discontinuities in the information can
drastically change the situation and sequential procedures may be beneficial.
Linnik and Romanovski (1970b) survey the results on sequential estimation
procedures that are published in Soviet journals.

Under certain regularity assumptions, Klimov (1972) has shown that the
optimal sequential invariant estimation procedure for 0 is based on a fixed
number of observations n where n can be determined by minimizing the risk
[unction which does not depend on the unknown parameter ().

The standard hypernormal density is defined by

J(x) = Cexp  Ae’™ + Bx), xeR!'
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where A, y are real, A, y # 0 and C is a normalizing constant. The normal
and the exponential (on (— oc, a) and on (a, x)) densities can be obtained as
limiting cases of the hypernormal density function. Kagan, Linnik,
Romanovski and Rukhin (1971) prove that an invariant sequential estimatioi
procedure for the location parameter of a hypernormal distribution, with
respect to a loss function, coincides with a fixed sample size procedure. If an
additional restriction such as Eyzg(t) < N is imposed on the sequcntial
procedure, then the optimal stopping is a randomized rule between (wo fixed
integers. In other words, from the sequential estimation point of view the
hypernormal d.f. 's are “self-controlled™ in the sense that preceding obser-
vations are not needed for the decision to stop at a given moment or to
continue sampling.

Ibragimov and Has'minskii (1972) propose two sequential stopping rules
for invariantly estimating the location parameter. Let the density f(x) have a
finite but positive number of discontinuities of the second kind (jumps)
located at x,,...,x,, r=1, and let p, = f(x;+0) and ¢, = f(x;—0). Il for
any y >0,

Eolf"(/f (x)' ™" <> and either 3 pg; #0
!

or not all the differences p,—¢g; are of the same sign, then lbragimov and
Has’'minskii (1972) show that the sequential procedure is more efficient than
the fixed sample Pitman estimate, with respect to the power loss functions.
By confining to power loss [unctions and assuming that there exists an ¢ > 0
such that E,|X} < x and that the density function f(x) has bounded
variation and a finite but positive number of jumps, Ibragimov and
Has’'minskii (1974b) show that the sequential procedure is more advan-
tageous than a fixed sample size procedure. On the other hand, if ) p;g; =0
and the differences p,—¢q; have the same sign, then asymptotically the
sequential procedure is equivalent to a fixed sample size procedure. It should
be noted that Ibragimov and Has'minskii (1972, 1974b) confine to sequential
rules having expected stopping time bounded by n. If the density is uniform
on (0—1/2, 6+ 1/2) then their stopping rule [ coincides with Wald's (1971)
sequential procedure (see Section 3.6) and Salyt’s (1969) procedure.

44. Fixed-width confidence intervals for an arbitrary parameter. In
this section, we shall be concerned with fixed-width confidence intervals for
an unknown parmeter in the presence of nuisance parameters which was
considered by Khan (1969). Let p(x: 8,. 0,) denote the density function of a
random variable X indexed by real valued parameters 8, and ¢),, where 0, is
considered to be the nuisance parameter. For €,, we wish to set up a
confidence interval of width 2d and coverage probability 1 —a. Let I(0)
=((I;j)), i,j=1,2 where 6 =(0,, 0,) and

I;=E [@lnp/c0;][é1n p/db;];], 1 <i,j<2. (4.4.1)
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Assume that I(0) is positive definite and let ((4;;)) = I~ *(6). Also let 8, (n) and
0,(n) denote the maximum likelihood estimates of 8, and 6, respectively. It
is well known that @, (n) is asymptotically normal with mean 6, and variance
Aii/n. Let {u,} be a sequence of positive constants converging to u, the (1
—a/2)th fractile of the standard normal d.f. If 8, and 8, are known the fixed-
width C.I. is

[0, (n)—d, 8, (n)+d] and the optimal sample size is

44.2
n, = smallest n > u? A,,/d* = n° (say). (442

Since typically A,; = 4,,(0,, 0,) and 8, and 6, are unknown, we use the
following stopping rule: starting with n > m, stop at N where

N=inllnzm: nzu2l;,(n/d*}, where  i,,(n) =2,,(0,(n), 0,(n).
(4.4.3)

Using the strong consistency properties of the maximum likelihood estimates,
one can show that P(N < o) = 1. Khan (1969) obtained the following result.

THEOREM 44.1. If the maximum likelihood estimates are strongly consis-
tent (see, for instance Wald (1949) for regularity assumptions, or
Govindarajulu (1981, Theorem 4.11.3)) and if

E(supi;, (m) < o (444

then
(i) N/n®->1 as,
() POecty) —1—x and
(iii) EN/n®—>1 as d —0.

For the normal case, in estimating the mean or the variance, Khan
(1969) shows that (4.4.4) is satisfied by using a result of Wiener (1939).

45. Fixed precision estimates. Recently Zielinski and his colleagues
have considered fixed precision sequential estimates for parameters. Let
1Q, 7, (ps: 0€@)} denote the statistical structure and g be a mapping from
@ into a metric space 2" with ||x— y|| denoting the distance between x and y
belonging to 2. Let {X,!, t=1,2,... be a sequence of 4 valued random
elements on (2, #) which is assumed to converge to g(f) whenever the
distribution of [X,} is generated by P,. Given ¢ >0 and y€(0, 1), the
problem of finding fixed precision estimate for g(f) is in finding a stopping
variable t: Q — |1, 2, ...} such that Py {||X,—g(0)]| <&} = 1—7 for all 0.
Assuming k independent copies { XV}, i =1, 2, ..., k of {X,} Zielifiski (1977,
1978a) proves the existence of fixed precision estimates, provides a method of
constructing such estimates and applies this method to some examples.

Let X,, X,, ... be a sequence of ii.d. random variables distributed in
the interval [0, 8] where 8 is unknown. Sierociniski (1980) considered fixed
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precision estimation of 0. As a particular case he solves the problem of
estimating 0, when the X, are uniform on (0, §).

Following Zielinski’s (1978b) approach and assuming that there exists
k (k > 4) independent copies of the sequence { X"}, j=1, 2, ..., k, (where for
each fixed j, the X9 may be dependent). Goldys (1981) obtains a fixed
precision sequential procedure for estimating a normal mean.

4.6. Estimation in linear regression

Fixed-width confidence bounds. Let y,, y,, ... be a sequence of indepen-
dent observations with

y; = B’ xP ¢ (4.6.1)

where B is an unknown 1 x p vector, x™ a known p x 1 column vector, and ¢;
a random variable having an unknown distribution ¥ with mean 0 and finite
but unknown variance ¢2. We wish to find a region W in p-dimensional
Euclidean space such that P(fe W)= 1—a and such that the length of the
interval cut-off on the f;-axis by W has width not exceeding 2d, i =1, ..., p.
If o is known the usual practice is to construct the confidence region

1B(n)—BY (X, X}) (B(m— B} < d® (4.6.2)

where
B =(X,X;)"'X,7Y, (4.6.3)
Vo= o Vb Xa=G, .., x™) a pxn (p<n) matrix and where X,

is assumed to be of full rank.
If o is unknown the least squares estimate of o2 is

¢2(n) =n"! V(- X, (X, X)) ' X,)Y, (4.64)

Gleser (1965) obtains the following results.
THEOREM 4.6.1. If
(i) X, /n''?* >0 as. (4.6.5)
and
(ii) n X, X)X (4.6.6)
where X is a p x p positive definite matrix, then
P{n(Bm—BY(B(m)—B) < d?} = P(T(Ay, ..., 1)) < d*/o?}  (4.6.7)

where Ay, ..., A, are the characteristic roots of Z~" and T(4,, ..., 4,) has the
distributions of a weighted sum of p independent chi-square variables having one
degree of freedom, the A;’s being the weights.
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Sequential procedure. Let |v,] be any sequence of constants converging
to the number v satisfying

P(T(Ay, ..., 3,)<v)=a. (4.6.8)

Initially observe y,, ..., yn, (no = p). Then sample term by term, stopping
according to the variable N defined by

N = smallest k > no such that k™' (¢2(k)+k~ 1) < d?/v,.  (4.6.9)
When sampling is stopped at N = n, construct the region W, given by
W,=IZ: (Z-Bm)(Z-B(n) < d*}. (4.6.10)

Gleser (1965) shows that the preceding procedure is asymptotically
consistent and efficient as d — 0.

Remark 4.6.1. The addition of n™! to a?(n) in (4.6.9) is unnecessary if F
is continuous. Gleser’s (1965) assumptions {4.6.5) and (4.6.6) are found to be
strong and they are weakened by Albert (1966) and Srivastava (1971). Also
the latter authors obtain spherical confidence regions for the regression
parameters. For further details see Govindarajulu (1981, pp. 500-502).

Point estimation. Mukhopadhyay (1947) considered point estimation of
regression parameters with quadratic loss and linear cost of sampling.

4.7. Fixed-width confidence intervals for the coefficient of variation. In
order to compare the variability 1n several distributions described in different
units, it is desirable to have a measure of relative variation. Thus the need
for the coefficient of variation (C.V) which expresses the standard deviation
as a percentage of the mean. Govindarajulu (1976) has given a fixed width
sequential procedure for the coefficient of variation.

Let X,, X,.... be an iid. sequence of normal variables having un-
known mean u and unknown variance ¢?. Suppose we wish to estimate
¢ = of|y| with a confidence interval having a specified length 24 and speci-
fied coefficient 1—x (asymptotically as 4 -0). Let X, =(X,+ ... +X,)/n,

n

st=mn—1)""'"Y (X;—X,)?* and ¢,=s,/X,|. Also let a=(1+p*2¢%"?

i=1
and a, = (1+ X3/2s})"/2.

Let |u,) be a sequence of positive constants tending to u as k — oo
where u denotes the (1—a/2)th fractile of the standard normal d.f. Then
define the stopping variable N as

N = smallest n > 2 for which n > u?é?a2/d> (4.7.1)

and give the confidence interval Iy = (éy—d, éy+d) with ¢y = sy/IXy]. Then
it is shown that the above procedure has asymptotic properties of optimality,
consistency and efficiency (see Govindarajulu 1981, Section 5.6).
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Govindarajulu (1981, Section 5.6) also considers sequential estimation
with proportional closeness criterion and sequential point estimation.

Remark 4.7.1. Assumption of normality is not necessary provided
fourth moments are finite. The machinery set up for the above problem can
easily be adapted in order to set up fixed-width confidence intervals for p
= P(X < Y) which plays an important role in reliability theory.

48. Asymptotically optimal Bayes estimation. In Section 3.7 we have
considered certain Bayes sequential procedures that are based on fixed
sample sizes. Here we shall consider Bayes estimates that are asymptotically
optimal (AQ). Every sequential procedure S prescribes a stopping rule N and
an estimator d. Also, the posterior distribution of the parameter 0, given | N
= n| is independent of the stopping rule; consequently, the estimator d is
independent of the stopping rule N for any specified prior distribution
G(0) and the loss [unction r(d; ). Let r,(S; 6) denote the loss due to
erroneous estimation and ¢N(S, G) denote the cost due to stopping
according to the rule N where ¢ denotes cost per observation. If
EN(S, G) < ¢, then the component of the risk due to cost will go to zero
as ¢— 0. Thus, the stopping rule will, in general, require a very large
sample as ¢ — 0. Kiefer and Sacks (1963) define the asymptotic optimality
(AO) of a stopping rule and Bickel and Yahav (1967) define the asymptotic
pointwise optimality (APO) of a stopping rule. Bickel and Yahav (1967,
Theorem 3.1) show that under a mild condition for constant cost of obser-
vation, APO implies AO. Yahav and Bickel (1968) give some APO rules and
study their properties. Bickel and Yahav (1969) show that when their result
1s specialized to the normal (u, 1) case where p has normal prior with mean
Lo and variance o2, the Bayes rule is to take a fixed-sample of size N (¢)
which is the positive integer closest to (¢!?¢~!' —o~?). Gleser and Kunte
(1976) develop asymptotically optimal sequential Bayes interval estimation
procedures when the loss is a linear combination of the length of the interval,
the indicator function for noncoverage, and the sample size.

Bayesian estimation of the binomial parameter. Cabilio (1977), motivated
by clinical trials in which p being close to zero or unity will lead to a
dramatic decision, considers the loss function given by

L(d,; n, p) = (3,—p)/pq}* +nc

where 8, denotes an estimate of p, ¢ = | —p and ¢ is the cost per observation.
Then the sequential rule is given by

N = first n > 1 such that n*(1-4,)8, > 1/c.

Cabilio (1977) obtains the asymptotic normality, asymptotic efficiency and
a.s. convergence properties of the sequential procedure. Since for fixed ¢ the
procedure performs badly when p is near O or 1, a uniform prior on p is
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assumed and the optimal Bayes procedure is shown to exist having a
bounded sample size.

Shapiro and Waldrop (1981) consider Bayes sequential estimation for
one parameter exponential family and natural conjugate prior using loss
related to the Fisher information and linear cost of sampling. Tractable
expressions for the Bayes estimator and the posterior expected loss are given.

49. Confidence sequences for certain parameters. Darling and Robbins
(1967b, 1967¢) give confidence sequences for the normal mean when variance
is known and for the population median. Robbins (1970) obtains the same
using elementary arguments. Darling and Robbins (1967a) obtain a confid-
ence sequence for the normal mean when the variance is unknown. (For
references on Darling and Robbins (1967a-1967¢c) see Robbins (1970)). The
advantage of the confidence sequence I, (having confidence coefficient 1 —a)
over a fixed-sample size confidence interval is that it enables us to pursue the
unknown parameter 6 throughout the entire sequence of observations X,,
X,, ... with an interval I, the width of which shrinks to zero as the sample
size n increases, in such a way that with probability > 1 —a the interval I,
includes the unknown parameter at every stage. Lombard (1977) derives a
confidence sequence for the regression coefficient in a linear regression
model. By making use of generalized likelihood ratio martingales, Lai (1976)
has constructed confidence sequences for the unknown parameters of bi-
nomial, Poisson, uniform, gamma and other distributions. The problem of
nuisance parameters is also considered.

4.10. Nonparametric confidence intervals. Farrel (1966) considers inter-
val estimation for a quantile of the population. Geertsema (1970), using the
methods of Section 4.3, constructs nonparametric fixed-width confidence
intervals for certain parameters, especially the location of symmetry. In
particular, he studies procedures based on the sign statistic and Wilcoxon
statistic. He shows that the asymptotic efficiencies of these sequential
procedures compared to the one based on the t-statistic coincide with the
well-known Pitman efficiencies. Sen and Ghosh (1971) consider fixed-width
confidence interval estimation of location parameter based on the one-sample
rank order statistic. Govindarajulu (1974) considered fixed width confidence
interval for P(X < Y). Weiss and Wolfowitz (1972) give an optimal fixed-
length confidence limit for the location parameter of an unknown distribu-
tion. For further details, see Govindarajulu (1981, Section 5.11).
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