EN
CONTENTS
Introduction............................................................................................................................................5
0. Preliminaries.......................................................................................................................................6
1. Basic equation. Logarithms and antilogarithms..................................................................................8
2. Logarithms and antilogarithms of higher order.................................................................................19
3. Reduction theorems..........................................................................................................................24
4. Multiplicative case.............................................................................................................................36
5. Leibniz case.......................................................................................................................................41
6. Exponential, power and polylogarithmic functions.............................................................................51
7. Complex case....................................................................................................................................57
8. Smooth logarithms and antilogarithms..............................................................................................64
9. Logarithmic and antilogarithmic mappings induced by left invertible and invertible operators...........70
10. Other generalizations.......................................................................................................................82
References...........................................................................................................86