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The concept of a mean on a topological space is a generalization of
the concept of the arithmetic mean for real numbers. Precisely, a mean
on a topological space X is a map m: X Xx X—X such that m(z, y) =
= m(y, x) and m(x, ) = « for all x,y in X. Means have been studied,
among others, by Eckmann, Bacon and Sigmon; see references.

In the following definition we localize this concept by requiring that
the map m be defined only on a symmetric neighbourhood of the diagonal
A4X in. XxX:

Definition. A local mean on a topological space X is a pair (U, m),
where U is a symmetric neighbourhood of the diagonal 4X in X x X
and m: U—X is a map satisfying m(x, y) = m(y, z) for all (z,y) in U
and m(x,z) = z for all z in X.

What we have called a local mean may more properly be called a local
2-mean. We can define the notion of a local n-mean for any integer n > 1
in a similar fashion by considering the n-fold product X" instead of X x X
and requiring that U and m be invariant under the action of S,, the
group of permutations of n symbols, on X". The results proved for local
means in this paper carry over for local n-means without difficulty.

A slightly different (but essentially identical) way of looking at local
means and means is as follows. Given a space X consider the quotient.
space Y obtained from X x X by identifying (x,y) with (y, 2) for all
x,yin X. Let p: X x X— Y be the identification map and let Z = p(4X).
Clearly, X and Z are homeomorphic, and a local mean on X corresponds
uniquely to a retraction of a neighbourhood of Z in Y onto Z, while a mean
on X corresponds to a retraction of Y onto Z. In particular, it follows
that every compact metric absolute neighbourhood retract admits & local
mean on itself while every compact metric absolute retract admits a mean.
There are, of course, other examples. For example, the solenoid admits
a mean and, more generally, the n-solenoid admits an n-mean for all
n > 1 (see [12]).
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Not all spaces admit a local mean. Topological consequences of the
existence of a mean on a space have been studied in [1], [3], [7], [11]
and [12]. Bacon [1] proved that a plane compactum having a mean on
it cannot disconnect the plane and an analogous result for higher dimen-
:sional Euclidean spaces was proved by Sigmon [12]. We shall show that
among plane Peano continua, absolute neighbourhood retracts are the
.only ones which admit a local mean. For this we shall use the result of
Bacon, just mentioned, as well as Borsuk’s characterizations of plane
absolute retracts and plane absolute neighbourhood retracts [4].

We begin with a few facts about locally connected continua. We
.consider only metric spaces. By a continuum we mean a compact, connected
metric space. It is well known that a continuum is locally connected if
and only if it is a Peano continuum, i.e. can be obtained as a continuous
image of the wunit interval.

LEMMA 1. Given a locally connected continuum X, a point x in X and
a neighbourhood V of x in X, there exists a neighbourhood N of x in X such
that N < V and N itself is a locally connected continuum.

For a proof of this lemma, see [8], p. 219. The next result is proved
in [10], p. 232. |

LEMMA 2. Suppose X is locally connected, and X = Cu D, where C, D
are closed subsets of X. If CND 48 locally connected, then both C and D are
locally conmnected.

We shall also need the following non-trivial fact about plane Peano
continua:

THEOREM 1. Let X be a compact, connected, locally connected subset
of the plane. Then given ahy ¢ > 0, there are only finitely many components
of the complement of X whose diameters exceed e.

A proof is given in [5], p. 232, or can also be constructed from a the-
orem of Schoenflies (see [10], p. 515).

Borsuk’s characterization of plane absolute retracts (see [4], p. 137)
states that if X is a non-empty Peano continuum in the plane E?, which
does not disconnect E?, then there exists a retraction r, of E* onto X such
that ro(E*— X) < 0X, where X denotes the boundary of X in E?

We use this along with Lemmas 1 and 2 to prove

THEOREM 2. Let X be a plane Peano continuum, re X, and V a neigh-
bourhood of x in X. Then there exists a neighbourhood N of x, contained in V,
and a retraction r: X—N.

Proof. Let € > 0 be such that if ¢ is the closed disk of a radius &
and center z, then CNX < V. CnN X is also a neighbourhood of x in X and
80, by Lemma 1, there is a neighbourhood N’ of x in X such that N’ <
c CNnX and N’ is a Peano continuum. Let M be the union of N’ and all
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bounded components of E*— N’ and M’ be the union of N’ and of the
unbounded component of E*— N'. Let N = MnX. Then, N' ¢ N and
N < 0N X because the unbounded component of E*— N’ contains E*—(
and, consequently, M < C. Moreover, the boundary of M in E* is con-
tained in N'.

Now, M and M’ are closed subsets of E? such that MuUM’' = E®
and MNM’' = N'. Since E* and N’ are locally connected, it follows from
Lemma 2 that M (and also M’) is locally connected. Obviously, M is also
compact, connected and does not disconnect the plane. Hence, by Borsuk’s
theorem, there is a retraction r, of E* onto M such that r,(E*— M) < 0 M,
where dM is the boundary of M in E?’. We claim that 7, maps X onto
N = MnX. Clearly, ry(MNX) = MNnX.If ye X but y¢M, then ry(y)ed M.
But M = N' = N. Thus r, defines a retraction »: X—N. Since N’ < N,
N is a neighbourhood of z in X. Finally, N < V, and so the proof is
complete.

We are now ready for the main result of this paper.

Theorem 3. A plane Peano continuum X admits a local mean on itself
if and only if it is an absolute meighbourhood retract.

Proof. Clearly, only necessity of the condition needs to be proved.
For this, in view of Borsuk’s characterization of plane ANR’s (see
[4], p. 138), it suffices to show that E*— X has only finitely many compo-
nents. Suppose this is not the case. Then, we can write the components
of E* — X in an infinite sequence U,, U,, U,, ..., where U, is the unbound-
ed component. Pick any points x; in U, for all 4 > 1. The sequence {x;}
is clearly bounded and, hence, has a convergent subsequence. We denote
this subsequence by {y,}, and the corresponding U’s by V’s. Thus y,eV,
for each n > 1, and {y,} converges to a point, say, y*. Clearly, y* is in X.
We claim that there is a compact neighbourhood N of y* in X which admits
a mean.

We are given a symmetric neighbourhood U of 4X in X x X and
a map m: U—~X satisfying m(z, ¥y) = m(y, z) for all (z, y)e U and m(zx, x)
— x for all zeX. Since (y*, y*)e 4X, there is a neighbourhood V of y*
in X such that V x V < U. By Theorem 2, there is a neighbourhood N
of y* in X such that N < V and a retraction r: X—N. Define f: N x N—>N
by f(x,y) = r(m(x, y)) for 2,y in N. Then f is a mean on N. Hence, by
Bacon’s result [1], N cannot disconnect E°. But, in view of Theorem 1,
we can see that this is not the case. Indeed, let ¢ > 0 be such that if C is
the closed disk of radius ¢ and center y*, then CNX <= N. Choose k, such
that, for n > k,, d(¥,, y*) < t/4 (by d we mean the usual metric on EY).
By Theorem 1, there also exists k, such that, for n > k,, the diameter of V,,
is less than t/4. Let k = max{k,, k,}. Since y,eV, for all n, it follows
that, for n > k, V, = C. But the boundary of each V, is contained in X.
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Hence, for all n > k, the boundary of V, is contained in C " X and, there-
fore, in N. Thus, for n,n' >k, n = »', y, and ¥, are in distinet compo-
nents of E*— N. In particular, N disconnects E*. This contradiction
completes the proof of the theorem. A

It should be noted that the hypothesis that X is locally connected
cannot be dropped from the statement of the preceding theorem so as to
contend that existence of a local mean on a plane continuum X implies
that E*— X has only finitely many components. The problem of deciding
exactly which plane continua admit a local mean remains unsolved
(P 851).

We give here an example of a plane continuum X with a local mean
on it such that E?* — X has infinitely many components. Let Z be the sub-
space of the real line consisting of the point 0 and the points 1/n for each
positive integer n. Let X be the non-reduced suspension on Z. A local mean
on X can be constructed as follows:

Let Y = Z x I, where I is the unit interval and let p: Y —X be the
identification map which identifies Z x {0} to a single point of X and Z x {1}
to another point of X. Define closed subsets 4, B and C of Y as follows:

A={zt)eY|0<t<1/2},
B={&t)eY|1/2<t<1},
C = {(2,8)e Y |1/4 <1< 3/4).

Let V =(4XxA)U(BxB)U(CxC). Then V is a symmetric neigh-
bourhood of the diagonal AY in ¥ X Y. Let ¢ be the map

q=pXp: ¥YXY>XxX
and let
U =q(7).

Then U is a symmetric neighbourhood of the diagonal 4X in X x X.
By ¢': V- U we denote the map defined by ¢. Since V is compact, ¢’
is an identification map.

To define a local mean m: U—X we first define a local meanu:V—Y
as follows:

.“((zly t1)) (22 tz)) = (min {2y, #,}, min {t;, t5}) if (2;, #;)ed for i =1, 2.

#((215 1)y (22 t2)) = (min {2y, 2.}, max {t;, t}) if (2, t;)eB for ¢ =1, 2.

It remains to define yx for points of C x C in such a way that the defi-
nition will agree with the previous definitions of x for poins of (ANC) X
X (ANC) and of (BNC) x (BNC). To do this, let W be the square J X J,
where J is the interval [1/4, 3/4]. Using the fact that J is an absolute
extensor, we can easily get a map r: W—J which is symmetric (i.e.,
r(t,, t,) = r(t,, t,) for ¢,,%, in J) and such that
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min{t,, t,} if 1/4 <,
max{t;, &} if 1/2<4,,
Now, if (2;,t;)eC for ¢ =1, 2, write

r(tly tz) =

.“((zu ), (25, 8, ) = (mln{zl, 2o}y 7 (b1 tz))

Putting these definitions of u together, we get a well-defined map
pu: V—Y which is symmetric and such that u(y,y) =y for all y in Y.
The composition pou: V—-X induces a unique function m: U—X such
that moq’ = pou. Continuity of m follows from the fact that ¢’ is an iden-
tification map. Moreover, m is symmetric and m(z, ) = « for all z in X
because u enjoyes the corresponding properties. Thus the space X has
a local mean. Clearly, X can also be thought of as a plane continuum for
which E?>— X has infinitely many components.

Combining Theorem 3 with the following propositions, it is possible
to answer a question raised by Bacon [2] about the existence of an acyclic
Peano continuum which admits no mean:

ProPOSITION 1. Suppose that X, Y are metric spaces, X <« Y and

that X 18 a retract of some neighbourhood V in Y. Then if Y has a local mean,
S0 does X.

Proof. Let (U, m) be a local mean on Y. Write
U =Unm Y(V)n(X x X).

Clearly, U’ is a neighbourhood of the diagonal AX in X x X. Also U’
is symmetric since U and m are symmetric. Define m': U'— X by m'(z, ¥)
= r{m(z, y)) for (z,y)e U’, where r: V—X is a retraction. Then (U’, m')
i3 a local mean on X.

PROPOSITION 2. Let X be a compact metric space and let CX be the
cone over X. Then if CX has a mean, X has a local mean.

Proof. This follows from Proposition 1 because X is, clearly, a neigh-
bourhood retract of CX.

Now, let X be a plane Peano continuum which is not an ANR. Then
Theorem 3 and Proposition 2 imply that CX admits no mean although CX
18 a eontractible (and, hence, acyclic) Peano continuum. After these results
‘were obtained another paper by Bacon [3] appeared, in which he gives
an example where

X=L_JIX,,,

each X, being the circle of radius 1/n with center at (1/n, 0) in the plane.
In this particular example, the non-existence of a local mean on X can
be proved by a very easy and direct argument, without invoking Theorem 3.
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This proof of the fact that (X cannot have a mean seems simpler than
that given in [3].

We conclude with a few remarks.

Remark 1. Using the well-known Dowker’s lemma (see [9], p. 116),
it is not hard to show that a contractible space has a local mean if and
only if it has a mean. In view of this, we have actually given examples of
acyclic Peano continua which do not even admit local means. The latter
is also obvious from Proporition 1.

Remark 2. The proof of Theorem 3 relies heavily on Borsuk’s charac-
terizations of plane absolute retracts and plane absolute neighbourhood
retracts, as well as Theorem 1, none of which holds in higher dimensional
Euclidean spaces. The question whether Theorem 3 itself holds in higher
dimensional Euclidean spaces remains open (P 852).

The author is indebted to Prof. J. W. Jaworowski who suggested
the problem and to the referee who made helpful suggestions.
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