CONTENTS 1. Introduction......................................................................5 2. Rim-type and decompositions..........................................8 3. Defining sequences and isomorphisms..........................18 4. Embedding theorem.......................................................26 5. Construction of universal and containing spaces...........32 6. References....................................................................39
University of Alabama at Birmingham, Birmingham, AL, 35294, USA
Bibliografia
[A-1] R. D. Anderson, A characterization of the Universal Curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 313-324.
[A-2] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16.
[B] R. H. Bing, Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), 536-556.
[I-1] S. D. Iliadis, On rim-type of spaces, in Topology: Proceedings of the International Topological Conference held in Leningrad, August, 1982, Lecture Notes in Math. 1060, Springer-Verlag, Berlin 1984, 45-64.
[I-2] S. D. Iliadis, Rim-finite spaces and the properly of universality, Houston J. Math. 12 (1986), 55-78.
[I-3] S. D. Iliadis, The rim-type of spaces and the property of universality, Houston J. Math. 13 (1987), 373-388.
[I-4] S. D. Iliadis, Rational spaces and the property of universality, preprint,
[I-T] S. D. Iliadis and E. D. Tymchatyn, Compactifications with minimum rim-type of rational spaces, Fund. Math, (to appear).
[K] K. Kuratowski, Topology, Vol. I and II, Academic Press, New York 1968.
[M-O-T] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve: Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Diss. Math. 252 (1986).
[M-S] S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
[N] G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1930), 81-91.
[T] E. D. Tymchatyn, Compactifications of rational spaces, Houston J. Math. 3 (1977), 131-139.