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INTRODUCTION

Let A and B be semigroups. When we say that 4 can be embedded
in B, we mean it strictly in an algebraic sense. That is, there exists an
isomorphism from A into B. If A and B happen to be provided with
topologies and there exists an isomorphism from 4 into B which is a homeo-
morphism as well, then we will say that A can be T-embedded in B. We
do not always require in these instances that the topologies will result in
topological semigroups. The semigroups we are primarily interested in
here are semigroups of continuous funetions on topological spaces and
it will be assumed, unless something specifically to the contrary is men-
tioned, that the spaces under oonsideration are all Hausdortf.

The semigroup, under composition, of all continuous selfmaps of
the topological space X will be denoted by S(X). We treat here two prob-
lems: that of determining precisely when S(X) can be embedded in
S(Y) and, in the event they both have topologies, precisely when S(X)
can be T-embedded in S(¥). A large part of Chapter 1 is devoted to get-
ting the machinery we need to approach these fwo problems. However,
we do treat in the first chapter the case where Y is discrete and hence
S(Y) is just the full transformation semigroup on Y. We prove, for
example, that if §(X) is doubly transitive on X, then §(X) can be
embedded in J y (the full transformation semigroup on Y) if and only
if card X < card Y and, when both §(X) and 7y have the compact-open
topologies S(X) can be T-embedded in 95 if and only if X is discrete
and card X < card Y.

It seems appropriate to remark at this point that if we assume the
continnum hypothesis, then every semigroup .of order less than ¢ (the
cardinality of the continuum) can be embedded in the full transformation
semigroup 7 , on the natural numbers. In spite of this and the fact that
the order of 7y is ¢, one would still expect that-there are many semigroups
of order ¢ which cannot be embedded in 5. Indeed, J. S. V. Symons
has observed [20] that the semigroup of real numbers under the supremum
operation cannot he embedded in 7 ;. One of the results mentioned above
supplies us with many additional semigroups of order ¢ which cannot be
embedded in J . Simply take X to be any separable, completely regular,
Hausdorff, arcwise connected space with more than one point (which, of
course, will force it to have ¢ points) or any separable 0-dimensional
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gpace with ¢ points. Then S(X) will have order ¢ but according to the
first result mentioned above, it cannot possibly be embedded in F.

In Chapter 2, we treat the problems of embedding and T-embedding
§(X) into 8(Y) when Y is not necessarily discrete. Indeed, the conditions
we place on. Y are ofen of such a nature that they will prevent ¥ from
being discrete. We show first in Chapter 2 that if X is a compact absolute
rotract and Y is normal and both S8(X) and S(Y) are equipped with
the compact-open topologies, then S(X) can be T-embedded in S(Y)
if and only if X can be topologically embedded in Y. We then turn to
the problem of embedding S(X) algebraically into S(X). Here also we
find necessary and sufficient conditions, for certain X and ¥, for
S(X) to be embedded in §(¥). Finally, by restricting both X and Y
still further, we are able to give the form that these isomorphismsg
must take.

SOME RELEVANT HISTORY

First of all, what is known to date seems o accentuate the extremes
more than anything else. That is, it is known that there are nontrivial
spaces Y such that very few S(X) can be embedded in S(Y) and there
are also spaces Y such that S(Y) contains copies of many different S(X).
Examples of the former include the closed unit interval I and the space
R of real numbers. A fairly extensive class of spaces was given in [15]
such that from thig entire class, there are precisely three whose semigroups
can be embedded in §(I) and precisely five whose semigroups can be
embedded in §S(R). As for exaa.gxples of the latter, it is well known that
given any collection of semigroups, one can embed each of the semigroups
in the full transformation semigroup on a sufficiently large set and of
course for discrete Y, §(Y) is just the full transformation semigroup on Y.
With a bit more effort, one can produce a compact space whose semigroup
contains copies of each semigroup in the collection. Simply take the
Stone-Cech compactification BY of the discrete space Y. The mapping which
takes a function in S(¥) into its natural extension over fY is an iso-
morphism from 8(Y) into 8(BY). Of course, the space Y is badly discon-
nected but there are even compact connected spaces whose semigroups
will contain copies of all the semigroups in the collection. A result in
[16] assures us that there is an arcwise connected metric space with the
desired property and one simply takes the Stone-(ech compactification
of this space.

There is, however, a much nicer result in this direction. It is a theorem
of Paalman-de Miranda [18] but before we state it, we should place it
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in the proper setting by first discussing & rather remarkable result due
to J. de Groot. He proved in 1959 [6] that for any group @, there exists
a connected metric space Y such that @ is isomorphic to H (YY), the group
of all homeomorphisms on ¥ and since H(Y) is isomorphic to H(BYX),
he also gets the fact that any group can be regarded as the group of all
homeomorphisms on a compact connected space. In 1963, a contribution
was made to an analogous problem for semigroups when Z. Hedrlin and
A. Pultr [7] showed that for each semigroup T with identity, there exists
a T, space Y such that T is isomorphic to the semigroup of all local homeo-
morphisms on Y. A local homeomorphism is a selfmap % of X with the
property that éach point belongs to a neighborhood such that the restriction
of h to this neighborhood is a homeomorphism. Hedrlin and Pultr had
asked if one could always take the space Y to be Hausdorff and this was
answered. negatively in the 1966 paper [18] of Paalman-de Miranda.
Moreover, in that paper she obtained the interesting result of which we
spoke earlier that given any semigroup 7' with identity, there exists
a connected metric space Y such that 7 is isomorphic to the semigroup
of all quasi-local homeomorphisms on ¥. A quasi-local homeomorphism
on Y is a continuous selfmap % such that for each nonempty open subset
@ of ¥, there exists a nonempty open subset H of G such that the restriction
of h to H is a homeomorphism. Furthermore, the mapping which takes
a quasi-local homeomorphism on Y into its extension over §Y is an isomor-
phism from the semigroup of all quasi-local homeomorphisms on Y into the
semigroup of all quasi-local homeomorphisms on Y. So, not only can
any semigroup T with identity be regarded as the semigroup of all quasi-
local homeomorphisms on a connected metric space but the space can
also be chogen to be compact and connected. Since one can take T to be
a full transformation semigroup, it is immediate that the semigroups
of these spaces of Paalman-de Miranda can be chosen to contain copies
of many different S(X).

The general theory we develop here seems to indicate that the cases
we have just discussed are somewhat extreme.



Chapter 1

1. LEFT ZERO SUBSEMIGROUPS OF TOPOLOGICAL SEMIGROUPS

Information concerning the left zero subsemigroups of S(X) is very
helpful in determining if and how §(X) can be embedded in §(Y). We
recall that a left zero semigroup is one in which the product of any two
elements is the element on the left. In this section, 7' is any topological
semigroup whose subset E of idempotents is nonempty. We define a relation
4 on E by

4 ={v,w)e ExXE: vw = v and wv = w}.

The proof of the following result is straightforward and is omitted.
LeMma 1.1. 4 is an equivalence relation on H.
LeMmA 1.2. E is closed in T.

Proof. Let acT—FE. Then a® % o and there exist disjoint open
sets G and H such that ae @ and a%¢ H. There is also an open subset V
of T such that a¢ ¥V and V? = H. Now take any be @NV. Then b2¢ H,
which implies that b%¢ G. Thus b* # b and we see that @GNV is a neigh-
borhood of & which does not intersect E.

ProrosITION 1.3. The A-classes are the maximal left zero subsemigroups
of T and each of these is closed in T.

Proof. The first assertion follows in a straightforward manner.
In order to verify the second, we let L be any one of the A-classes of E.
In view of the previous lemma, it is sufficient to show that I i3 closed
in H. Take any ae F— L. There are two possibilities. Bither (1) va # v
for some ve L or (2) av # a for some ve L. Suppose (1) holds. Then there
exist disjoint open subsets G and H of T containing ve and v, respectively,
and there also exist open subsets V and W containing v and a, respectively,
such that VW < @. Choose any be W. Then vbe VW < G. Thus vb # v,
which implies that b¢ L. Hence WNE is a neighborhood of a in E which
does not intersect L.

Now suppose that (2) holds. Then there are disjoint open subsets
G and H of T containing av and a, respectively. There also exist neighbor-
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hoods W and V of a and w», respectively, such that WV < @. Now take
any point be HNW. Then dve WV < @, which implies that bv +# b, since
be H. Thus HNWN FE is a neighborhood of ¢ in % and we conclude that
L is closed in ¥, and hence in T.

Remark. The case for the maximal left zero subsemigroups of .7
is just the same as for the maximal subgroups with respect to the fact
that any two either coincide or are disjoint.

Suppose that T contains left zeros and denote the set of all left zeros
of T by K. Then K < E and we have

LeMyMA 1.4, K is the kernel of T.

Proof. It is immediate that K is a right ideal. Moreover, if ve K
and a, be T, then (av)d = a(vd) = av. Thus ave K for any a¢ T and K
is a two-sided ideal. Since KA = K for any nonempty subset 4 of T,
it follows that K is contained in every two-sided ideal of T. Thus, K is
the kernel of T.

LEMMA 1.5. Let L be any left zero subsemigroup of T. Then either
LNnK =@ or L c K.

Proof. Suppose ae LNK; choose any be L. Then b = ba, and for
any ceT we have bo = (ba)c = b(ac) = ba = b. Thus b is a left zero
of T and we hagve L < K.

Next we associate a semigroup to each left zero subsemigroup L
of T.

DeFINITION 1.6. Let L be any left zero subsemigroup of T. We
denote the shell of L by Sh(L) and define it by

Sh(L) = {ae T: va = v for each ve L}.

It is immediate that if J <= L, then Sh(L) < Sh(J). In fact, we shall
see that in this case, the two are identical. Furthermore, the two shells
may be identical even if L and J do not intersect. The next result gives
necessary and sufficient conditions for one shell to be contained in another.

ProPOSITION 1.7. The following statements are equivalent.

(1) Sh(L) < Sh{J).

(2) wo = w, for all ve L and wed.

(3) There exists ve L such that wv = w for all weJ.

Proof. It is immediate that (1) implies (2) and (2) implies (3). We
show that (3) implies (1). Choose ve L which satisfies (3) and let any
aeSh(L) be given. Then '

wa = (wv)a = w(ve) = wy = w.

- )
Thus ae Sh(L) and the verification is complete.
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The next three corollaries follow easily from the previous proposition.

COROLLARY 1.8. Sh(L) = Sh(J) if and only if L and J are contained
in the same A-class.

_ CoRrOLLARY 1.9. Let D be the unique A-class which contains L. Then
Sh(L) = Sh(D).

COROLLARY 1.10. Sh(L) is a proper subsemigroup of Sh(J) if and
only if there exists a ve L such that wv = w for all we J, but vu # v for some
ued.

Remark. We see that Sh(L) is the maximal subsemigroup of T
for which the A-class containing I is the kernel.

We mentioned previously that Sh(L) and Sh(J) may coincide even
if LNnJ = @. This is immediate from Corollary 1.8, for we need only
choose two distinet idempotents in the same A-class and note that the
shells they generate are identical. In order to obtain a case where one
shell is a proper subsemigroup of another, we choose two idempotents w
and » such that wv = w but vw 7 ». Then Corollary 1.10 tells us that
Sh({v}) is a proper subsemigroup of Sh({w}). To be a bit more specific,
let T be any semigroup with left identity ¢ and left zero z. Then Sh({e})
is a proper subsemigroup of Sh({z}). The former, of course, consists only
of the element ¢, while the latter is all of T.

ProrosiTioN 1.11. In any topological semigroup T, each shell in T
i8 a closed subsemigroup of T.

Proof. Suppose aeT —Sh(L). Then va #* v for some ve.L, so there
exist open subsets V and W such that ve V, ae W, and VW < T'— {v}.
Suppose there is a point be WNSh(L). Then vbe VW < T —{v} which
is a contradiction since be Sh (L) implies vb = ». Thus, W is a neighborhood
of a which does not intersect Sh(L).

ProrosITION 1.12. Suppose that D is a A-class or equivalently, & max-
imal left wero subsemigroup of T. Then aD < D for each ae Sh(D).

Proof. Let ve D. Then for any we D, we have (av)w = a(vw) = av,
and w(aw) = (wa)v = wv = w. Thus av must belong to D since D is
maximal.

We close this section with a few remarks. It is immediate from our
previous results that each left zero subsemigroup of a semigroup T is
contained in a unique shell Sh(D) and that we can take D to be maximal
among the left zero subsemigroups. Thus it follows that if § is any semi-
group which contains left zeros, then any embedding of S into T must
actually send § into one of these shells. Since S(X) does have left zeros,
this is the motivation for considering shells.

Our next step is to obtain interpretations in the context of semigroups
of continuous functions.
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2. LEFT ZERO SUBSEMIGROUPS OF §(T)

We first need some convenient notation. Now each funotion f in
8(Y) induces a natural decomposition of X. The sets in the decomposition
are the pre-images of the points in the range of f. We denote this family
of sets by 2(f). Thus 2(f) = {f'(¥): ye (X))

PROPOSITION 2.1. Let L be any subset of S(X). Then L is a left zero
subsemigroup of 8(X) if and only if the following two conditions are satisfied.

(1) For each f in L and Ae 9(f), there is an ae A such that f(z) = a
for each me A,

(2) 2(f) = 2(g) for all f,geL.

Proof. We suppose that L is a left zero subsemigroup of S(¥) and
we show first that (1) holds. Now there is an ae X such that 4 = f~!(a),
which implies that f(z) = a for all e 4. Moreover; f is idempotent and
for any such @, we have f(a) =f(f(#)) = f(x) = a. This places a in A.

Now we show that (2) holds. Let f and ¢ be any two elements of
L and suppose that Be 2(g). Then since (1) holds, there is a be B such
that g(#) = b for all # in B. Since L is a left zero semigroup, we have
fog =f, so that for any zeB, we obtain f(x) = f(g(#)) = f(b). Thus
B < f7!(f(b)). This shows that 2(g) is a refinement of 2(f). In a similar
manner, 2(f) is also a refinement of Z(g) and it then follows that 2(f)
= 2(g)-

Now suppose that both (1) and (2) hold and let ¢ ¥ be given. Then
ze A for some Ae 2(f) = 2(g9). By (1), there exist a, be A such that
fly) =a and g(y) =b for all yeA. Then f(g(»)) = f(b) = a = f(a).
Thus fog = f; that i, L is a left zero subsemigroup of S(Y).

Since a function f is constant on X if and only if 2(f) = {X}, we
immediately obtain the following

COROLLARY 2.2. Let L be any left zero subsemigroup of 8(X). Then
either all functions in L are constant or no functions in L are constant.

We remark that the latter corollary is also an immediate consequence
of Lemma 1.5 and the fact that a function in S(X) is a left zero of §(X)
if and only if it is a constant function.

Now denote the set of idempotents of S(¥) by E(YX) and, as before,
let K(Y) denote the kernel of S(¥), which is just the collestion of all
constant functions. From Proposition 2.1, we can determine the 4-classes
of E(Y), but first we introduce some definitions and some notation.

DEFINITION 2.3. Any decomposition 2 of Y is an eligible decomposi-
tion if 2 = 2(v) for some idempotent v in §(¥).

It is immediate that every decomposition of ¥ is eligible if and only
if ¥ is disorete. So, in particular, there are many decompositions of I
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which are not eligible. In fact, there are many functions fe 8§(I) such that
even 2(f) is not eligible. The following result shows how to obtain
some of these.

PrOPOSITION 2.4. Let f be a function in S(I) such that f(x)=f(0)
for & # 0, and f(z) + f(1) for & # 1. Suppose further that f is not injective.
Then 2 (f) is not an eligible decomposition.

Proof. Suppose, to the contrary, that 2(f) = 2(v) for some idem-
potent v. Then {0} and {1} are in 2(v). Since v is an idempotent, v(v(0))
= »(0). Thus »(0) and 0 belong to the same set in the decomposition,
which means that »(0) = 0. Similarly, v(1) = 1. Thus all of I belongs
to the range of v, and since » is idempotent, it must be the identity on I.
Thus 2(v) consists of singletons, which is a contradiction since f is not
injective.

The non-constant everywhere locally recurrent functions in S(I)
[4), [17] also provide such examples. An everywhere locally recurrent
function is one with the property that for any point peJ and any neigh-
borhood & of p, there exists an ze¢@ such that # # p and f(2) = f(p).
The first example of such a function that we know of was given by J. Gillis
in [4]. It follows ([17], p. 283) that for any such function f, each set in
2(f) is & perfect set. One easily verifies that for any nonconstant idem-
potent, any point in the interior of its range is an isolated point with
respect to the set in the decomposition to which it belongs. Thus 2(f)
is not eligible if f is any one of these nonconstant everywhere locally
recurrent functions.

It is immediate from Proposition 2.1 that every left zero subsemigroup
L of 8(¥) induces, in a natural way, an eligible decomposition on Y.
This decomposition is 2(v), where » is any function chosen from L.

DEFINITION 2.5. For any left zero subsemigroup L of S(Y), we
define 2(L) = 2(v), where v is any element in L, and we refer to 2 (L)
as the decomposition induced by L.

The following result is a straightforward oonsequence of Proposition
2.1 so we omit its proof.

COROLLARY 2.6. Let L and J be left zero subsemigroups of S(Y).

Then 2 (L) = 2(J) if and only if L and J are both contained in the same
A-class. '

DEFINITION 2.7. Let 2 be any eligible decomposition of Y. We
define:

D(Y, D) = {fe 8(Y): for each A< 9, there exists ae A such that
f(z) = a for all ze A},

8(Y,2) = {fe8(X): f(4) = A for each A2}



1.2. Left zero subsemigroups of §(X) 13

PROPOSITION 2.8. Let L be any left zero subsemigroup of S(X). Then
D(Y, 9(L)) is the unique A-class containing L and 8(X, (L)) is the shell
of L and, of course, of D (¥, (L)) as well.

Proof. The first assertion follows from Proposition 2.1. We verify
that Sh(L) = §(Y¥, 2(L)). Take any feSh(L). Then wof = for all
ve L. Then, for any 4« 9(L) = 2(v) and any z¢ 4, we have v(f(2)) = v(z),
which implies that f(2)e v (v(2)) = A. Thus, f is in 8(¥Y, 2(L)).

On the other hand, suppose fe 8(¥, 2 (L)) and ve L. Then f(4) < 4
for each A e 2(L) = 2(v). By Definition 2.7 there exists for each 4 ¢ 2(v),
a point ae A such that »(x) = a for each ze 4. Then v(f(2)) = a = v(w)
for each we A. It follows that vof = v, and hence that fe Sh(L).

Exampre 2.9. Let ¥ be any discrete space and let a be any cardinal
number which does not exceed card ¥. Then there exists a maximal left
zero subsemigroup of 8(Y) with precisely a elements. For, we can choose
any subset 4 of ¥ such that card A = ¢ and let 2 consist of 4 and all
singletons composed of elements not in A. Then D(Y, 2) is a maximal
left zero subsemigroup of S(Y) which contains a elements. Furthermore,
any shell of §(Y) is the direct produet of full transformation semigroups.
This fact follows directly from the previous theorem.

ExsmpLE 2.10. Let v be the function from I into I which is defined
by o(#) =2 for 0<%, and v(z) =% for }<o<1. Then Z(v)
= {{e}: 0 < @< }}u{(4,1]}. Suppose we D(I, D(v)). Then w is idem-
potent and for any o such that 0 << 4, we have w(w(m)} = w(z).
Thus 2 and w(x) belong to the same set in 2 (v) which implies that w(v) = @
for any « in [0, }]. Furthermore, w must map all of [4,1] onto a single
point in that interval. This forces w(z) = 4 for # < # < 1. In other words,
w = v and {v} is a maximal left zero subsemigroup of 8(I). Moreover, it
is straightforward to check that the shell of {v} consists of all functions
fe 8(I) such that f(#) =2 for 0<< 2<%, and f(e)=>4% for $<a< 1.

It was shown in [15] that if L is any uncountable left zero subsemi-
group of S(I), then it must consist of constant functions. Thus, the A4-class
which contains it is the kernel of the semigroup.

ExampLE 2.11. We consider S(I) again. Define v by v(z) = 2 for
0<w< 4 and v(w) =1—2o for $<x<1, and define w by w(@) =1—w
for 0<2<$, and w(w) =z for } <2< 1. Let L = {v, w}. Then

2() = 2(w) = (L) = {{z,1—z}: 0K v< 3},

and by Proposition 2.1, L is a left zero subsemigroup of §(¥). Now suppose
D is the A-class containing L and let ue D. It follows that »(4) = 4 and
that either (1) «#(0) = 0 and w(l) =0 or (2) 4(0) =1 and =(1) = 1.
This, in turn, implies that ¥ must be either v or w. Thus L is a maximal
left zero subsemigroup of S(I). With some calculation, one can also verify
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that the shell of L consists precisely of v, w, 7, and j, where ¢ is the identity
and j is defined by j(z) = 1—2 for 0 < #<1. Thus, in this case, both
the A-class and its shell are finite in contrast with Example 2.10, where
the A-clags was finite but its shell was not.

ExavpLE 2.12. Let E? denote the Euclidean plane. For each real
number 7, define a continuous selfmap v, of E? by v,(z, y) = (r, ). Then
{v,: re R} is a maximal left zero subsemigroup of S(Z?), none of whose
elements are constant functions. Moreover, there are ¢ ,of them and, as
we noted in Example 2.10, there is no possibility for this to oceur in S(I).

3. SOME NATURAL HOMOMORPHISMS

Let 2 be any eligible decomposition of ¥. Then for each 4 in 2,
there is a natural homomorphism %, from S(Y, 2) into §(4). For any
fe8(Y, 2), we just define n,(f) to be the restriction of f to A.

DEFINITION 3.1. The homomorphism described above will be referred
to as the A-sectional homomorphism from S8(Y, 2) into S(4).

One can use the A-sectional homomorphisms to define a natural
isomorphism uz from S8(Y, 2) into the direct product of the semigroups
8(4), where A e 9. For each fin §(Y, P) and A< 2, we define

(H(f))A = n4(f)-

It follows that x is an isomorphism from S(¥, 2) into II{8(4): 4 2}.
The next result will give a rather intuitive necessiry and sufficient con-
dition that z be an isomorphism from S(¥, 2) onto II{S(4): A< 2}.
The proof is straightforward and is omitted.

LevmmA 3.2. Let D be any eligible decomposition of X. Then the mapping
@ 18 am isomorphism from S(Y, D) onto II{S(A): A< D} if and only if
for every selfmap f of ¥, flu is a continuous selfmap of A for each A< D
implies f is continuous on Y.

CoROLLARY 3.3. Let @ be any decomposition of Y into clopen subsets.
Then the mapping u is an isomorphism from S (Y, @) onto II{8(A): A D}.

The condition of Lemma 3.2 can be translated into conditions on
the decomposition which are fairly easy to state. We shall do this after
the following convenient definition.

DEFINITION 3.4. Let 2 be any decomposition of ¥ and let {#,: ne W}
be any net in ¥. Then a companion net of {z,: ne W} is any net {y,: ne W}
with the same directed set W, such that, for each ne W, both , and ¥,
belong to the same set in the decomposition.
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ProrosITION 3.6. Let ¥ bo amy topological space and let 2 be any
eligible decomposition of Y. Then u is an isomorphism from S(¥Y, 2) onio
ITI{8(A): A< 2} if and only if the following two conditions are satisfied:

(1) every set in D is either clopen or a singleton;

(2) if {p}e 2 and some net {x,: ne W} converges to p, then every com-
panion net of {zx,: ne W} also comverges to p.

Proof. First suppose that conditions (1) and (2) hold and let f be
any selfmap of Y with the property that the restriction of f to each A< 2
15 & continuous selfmap of A. We show that f is continuous on Y. Let V
denote the union of all clopen subsets in 2. Then ¥ — V is closed and the
restriction of f to ¥ — V is continuous since by (1), f is just the identity
map there. Now we show that f is continuous on CI(V). Since V is the
union of clopen sets, it is immediate that f is continuous at any point
in V. Let pe C}(V)— V. By (1), {p} is one of the sets in 2. Thus f(p) = ».
If {z,: ne W}is any net converging to p, then {f(z,): ne W} is a companion
net and hence also converges to p. This proves that f is continuous at p.
Thus, f is continuous on Ol(V). We have shown that the restriction of f
to each of two closed subsets, whose union is all of ¥, is continuous. Hence
S 18 continuous on Y and it follows from Lemma 3.2 that x is an isomorphism
onto IT{S(4): Ae 9}.

Now we prove the converse, and here also we rely on Lemma 3.2.
We first show by contradiction that (1) holds. If there is a set 4 in 2
which is neither clopen (and hence not open) nor a singleton, we choose
any ae A —IntA and be A — {a} and we define a selfmap f of ¥ as follows:

b for xzed,

) =
f(@) » for weY—-A.

Then f|g is continuous for each Be 2. We show, however, that f is not
continuous on Y, and this will contradict Lemma 3.2. Choose two disjoint
open subsets @ and H containing a and b, respectively. Then f(a) = be H,
but for any neighborhood V of &, there is a point pe(VNG)— A, since a
is not an interior point. Then f(p) = p¢ H. Thus, f i3 not continuous
at a and we have our contradiction.

Now we show, by contradiction, that (2) holds. Suppose that a net
{p,: me W} converges to p but some companion net {y,: ne W} does
not converge to p. Then there exists an open neighborhood @ of p such
that {y,: ne W} is not eventually in @G. That is, {y,: ne W*} lies outside
@ for some cofinal subset W* of W. Define &,, @, (n, me¢ W*) to be equiv-
alent if they both belong to the same set in the decomposition. Then for
each equivalence clags B of {z;: ne W*}, we have F c Ay for some
Ay in 9. Choose any @, in F and define f(z) = vy, for all # in Ag. For
any Ae 2 whioh does not correspond to one of these equivalence classes
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define f(z) = « for all # in A. Then f|p is a continuous selimap of B for
each B in 2. However, Lemma 3.2 is again contradicted since {z,: ne W"}
converges to p while {f(z,): ne W*} does not converge to p = f(»).

We give two examples of eligible decompositions where, in the first.
example, (2) of Proposition 3.5 is satisfied and, in the second example,
it is not.

ExavpLr 3.6. Let A, denote the closed interval [1/2n, 1/(2n—1)]
and let X = (U 4,]u{0}. Let 2 consist of all the A, together with {0}.

n

It is not difficult to show that 9 is an eligible decomposition of X and that
both (1) and (2) of Proposition 3.5 are satisfied.

If the decomposition consists of singletons, it is immediate that (2)
of Proposition 3.5 is satisfied. There are also nontrivial examples and the
following is ome.

ExAMPLE 3.7. This example is a subspace of the plane. Let

&z 1
A,,={(a;,y): y=—q; and ;gmgl}

and let X = [ 4,]u{(0,0)}. Then let 2 consist of the A, together
n
with {(0, 0)}. Here, too, 2 is an eligible decomposition and (1) of Prop-

1 1
osition 3.5 is satisfied but (2) is not. In particular, let =, = (Z’F) and

1
Yp = (1, ;). Then {z,}n-;, and {y,}n.. are companion sequences but

the first converges to (0, 0) and the second does not even converge.

We prove one more result about the mapping x but first we need to
recall the definition of the compact-open topology. For any topological
space X choose a compact subset K and an open subset G and define

(K, @) = {fe8(X): f(K) < G}.

The compact-open topology on S(X) has for a subbasis of closed sets
all sets of the form (XK, @) and it is well known that if X is locally compact,
S(X) with this topology is a topological semigroup. The converse is not
true in general but is true for a very large class of spaces [19]. We will
not ask that our spaces be locally compact.

ProrosiTION (3.8) Let 9 be any decomposition of Y into clopen subsets.
Let S(X) and each S(4), Ae 2, have the compact-open topologies. Then
p maps S(Y, D) isomorphically and homeomorphically onto I1{8(4): A e 2},
where the latter has the product topology.

Proof. First of all, it is immediate from Corollary 3.3 that u maps
‘8(X, 2) isomorphically onto I7{S(4): Ae 2}. We show that u is a homeo-
morphism as well. Let (K, &) be any subbasic open subset of S(¥).
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Then, since the sets in the decomposition are open, K is contained in
the union of a finite number of them, say {4,}},. Then for any f in
S(Y, 2)n{K, &), we have f(KnA4;) c GnA; for each 4. This implies
that

([l(f))AiG (.KO.A." G(‘\A‘), for each 1.
Thus,

u(f)e Q P3} (KN4, GO c u[S(T, 2)n(E, 65,

where P, is a projection map. This proves that x is an open map.

To show that x is continuous, we observe that P, ou = 74, the
A-sectional homomorphism for each 4 2, and we show that 5, is con-
tinuous. Let (K, @) be a subbasic open set of §(4). Then, since A is
open, @ is also an open. subset of ¥ and, of course, K is compact in Y. Let
(K, @)y denote the family of all functions of S(¥) which carry K into
G. It is straightforward to verify that

17 (K, & =8(X, 2)n(K, Gy,

and this completes the proof.

Remarks. First of all in this last result, we did not require ¥ to
be locally compact so it is possible that none of the semigroups involved
i8 a topological semigroup. Of course, if Y is locally compact, then each
Ae 2 is also locally compact and in this case all of the semigroups are
topological semigroups, including the product semigroup.

Furthermore, we remark that the same techniques will result in the
same conclusion as in Proposition 3.8 if, instead of the compact-open
topologies, one uses various smaller topologies, including the point-open
topology in particular. With such topologies, however, the semigroups
involved will seldom be topological semigroups.

We conclude this section with some remarks about isomorphisms
from a fairly arbitrary semigroup 7T into S(X).

Let T be any semigroup which contains left zeros and let ¢ be any
isomorphism from 7' into S(Y). We can associate with ¢, in a natural
way, a unique eligible decomposition of ¥ which we shall denote by 2 (¢).
We do this in the following way: we first note that ¢ must take the kernel
(that is, the subsemigroup of left zeros of.T) into some unique A-class,
D(Y, 2), where 2 is the decomposition of ¥ which is induced by any
one of the functions in .D(Y, 2). We define 2 (¢) = 2. It follows that ¢
maps T into the shell of D(¥Y, 2) which is the subsemigroup S(Y, 2)
of 8(Y). In order for ¢ to be an isomorphism from 7 into §(YX), it is suf-
ficient that n, o be injective for some A ¢ 9, where 74 is the A-sectional
homomorphism from $(¥, 2(p)) into §(4) (we remark that n,0p may
well be injective even though 7, is not).

2 — Dissertationes Mathematicae C BU
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4. EMBEDDING S(X) INTO A FULL TRANSFORMATION SEMIGROUP

‘When the space Y is discrete S(¥Y) is, as we have observed before,
simply the full transformation semigroup  y on Y. When we topologize
J 7, it will be with the compast-open topology which, in this case, coincides
with the point-open topology. Now J y is a topological semigroup when
topologized this way and topological properties of shells and maximal
left zero subsemigroups of Jp can be completely described by rather
simple conditions on the sets of the corresponding decomposition. We shall
list 2 number of such results. After that, we shall look at the problem of
embedding S§(X) into Jr where X is an arbitrary topological space.
It is not difficult to see that

(4.1) if X is any topological space and card X < card¥Y, then §(X)

can be embedded in T y.
Indeed, let % be any injection of X into ¥ and let » be any mapping of ¥
into the range H of k such that v restricted to H is the identity. Then the
mapping ¢ from S(X) into I ¢ given by ¢(f) = hofohi ' o2 is an embedding.
Moreover, when Y is infinite, there are many such injections and many
idempotents v and each pair gives rise to a different embedding. There
are also many embeddings which are not of this form.

Now the converse of (4.1) does not hold. J. de Groot introduced
some spaces in [6] all of which have ¢ points and we will eventually see
that if X is any one of these spaces, then S(X) can be embedded in 9
where N is the set of natural numbers. But there are few continuous
selfmaps on these spaces and because of this they are traditional counter-
examples in the theory of semigroups of continuous functions. So one
should really ask if the converse to (4.1) is true when S8(X) has a rich
supply of continuous functions and the answer here is yes.

We will prove that if S(X) is doubly transitive on X and if S(X)
can be embedded in J 5, then card X < card Y. We also solve the related
problem where the semigroups are given topologies and the embedding
is topological as well as algebraiec.

We return to our discussion of shells and maximal left zero subsemi-
groups of 7 . We first prove a lemma which is essentially a translation
of a previous result.

LevmA 4.2. Let 2 be any decomposition of Y into mutually disjoint
nonempty subsets. Then 8(X¥, 2) is isomorphicto II{T ,: Ae 9} and D(Y, 9)
18 18omorphic to II{K 4: Ae 9}, where K, is the set of constant fumctions
on A; that is, K 4 48 the kernel of 7 ,. Furthermore, if all of the full trans-
Sformation semigroups are given compaot-open topologies, then the isomor-
phisms can be taken to be homeomorphism as well.

Proof. The result follows from Propositions 2.8 and 3.8 and the obser-



1.4. Embedding §(X) into a full transformation semigroup 19

vation that the mapping x of Proposition 3.8 takes D(Y, 9) onto the
gemigroup II{K,: A 9}.

It is convenient to have still another lemma before we prove the
first proposition of this section.

LevMA 4.3. Let 7 3 have the compadi-open topology. Then the following
statements are equivalont:

(1) T is compact;
(2) T ¥ is locally compact,;
(3) Y is findte.

Proof. The only implication that is not immediately evident is
that (2) implies (3). So suppose (3) is false. Then, topologically, y is the
product of eard Y copies of Y since the compact-open topology is just
the point-open topology in this case. Thus J 5 is an infinite product
of noncompact spaces. But it is well known that a product is locally
compact if and only if all of the factor spaces are locally compact and all
but a finite number are actually compaet. Thus, when (3) fails to hold,
so does (2). This completes the proof.

ProPOSITION 4.4. Let I have the compact-open fopology and let 2
bo amy decomposition of Y. Then the following statements are equivalent.

(1) 8(Y, 2) 18 compact.

(2) 8(Y, 2) is locally compact.
(3) D(Y, 9) ts compact.

(4) Bach set in 2 is finite.

Proof. It is immediate from Lemmas 4.2 and 4.3 that each of (1)
and (2) is equivalent to (4). Furthermore, since each K, inherits the
disorete topology, it follows from Lemma 4.2 that (3) and (4) are equivalent.

ProrosiTION 4.6. Let Iy have the compact-open topology and let 2
be any decomposition of Y. Then D(Y, 2) is locally compaot if and only
if all but a finite number of sets in D are finite.

Proof. The proof is deduced from the following: Lemma 4.2; the
fact that a product is locally compact if and only if each factor is loeally
compact and all but a finite number are compact; and the fact that each
K , is discrete and has as many points as A.

Remark. It follows from the previous two results that there are
shells §(Y, 2) which are not locally compact but whose kernels, D(Y, 2),
are.

ProrosiTiON 4.6. Let Iy have the compact-open topology and let 2
be any decomposition of Y. Then S(XY, D) is metrizable if and only if every
Ae D is countable and at most countably mamy sets in 9 have more than
one point,



20 Embedding §(X) into S(X)

Proof. It is well known that a product is metrizable if and only if
each factor is metrizable and at most a countable number of factors
have more than one point. So J 4 is metrizable if and only if 4'is countable.
The proof now follows from Lemma 4.2.

ProposITION 4.7. Let T 5 have the compaci-open topology and let 2
be any decomposition of ¥. Then D(X, D) is metrizable if and only if at
most countably many of the sets in @ have more than one point.

Proof. Bach K is metrizable since it is discrete, so that the proposi-
tion on the metrizability of products mentioned in the previous proof and
Lemma 4.2 combine to prove this proposition also.

PROPOSITION 4.8. Let Iy have the compact-open topology and let 9
be any decomposition of ¥. Then D(X , D) has no isolated points if and only
if an infinite number of sets in D has more than one point,

Proof. Again we use the fact that D(Y, 2) is homeomorphic to
II{K,: Ae 2} where each K, j8 discrete and card K, = card4. One
can straightforwardly verify that the product of any collection of discrete
spaces has no isolated points if and only if infinitely many of the factor
spaces have more than one point, and the proposition follows.

CoRroLLARY 4.9. Let 7y have the compact-open topology and let D be
any decomposition of A. If D(Y, D) has an isolated point, then it is discrete.

ProPOSITION 4.10. Let T have the compact-open topology and let P
be any decomposition of Y. Then S(Y, P) has no isolated points if and
only if at least one of the following two conditions holds.

(1) An infinite number of sets in P have more than one point.
(2) At least one set in D is imfinite.

Proof. Suppose (1) holds. Then infinitely many of the J, have
more than one point 50 I7{7 4: A 2)} has no isolated points. Now suppose
that (2) holds. Then some 4 ¢ 2 is infinite, 8o S, has no isolated points.
Hence, in this case also I7{7 ,: A¢ 2) has no isolated points.

Now suppose both (1) and (2) are false. Then there are only finitely
many sets in 2 with more than one point and none of these is infinite.
Thus II{7 4: Ae 2} is finite and hence all of its points are isolated.

CoROLLARY 4.11. Let I have the compaci-open topology and let 2
be any decomposition of Y. If S(X, 2) has an isolated point, then it is finite.

The next two results are concerned with the cardinalities of D(X, 2)
and 8(Y, 2). The proofs are standard applications of set-theoretic argu-
ments to the semigroups JI{K  : A¢ P} and II{7 4: A< 2} and will be
omitted. We mention, however, that we do need 2° > ¢ if a is uncountable
80 we assume the continuum hypothesis.

PropoSITION 4.12. Assume the continuum hypothesis and let D be any
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decomposition of Y. Then cardD(Y, 2) = ¢ if and only if at least one of
the following conditions holds.

(1) The ocollection of the sets of the decomposition having more than
one potnt is at most countadble, and at least one set of the decomposilion has
¢ poinis.

(2) The colledtion of sets of the decomposition having more than one
point 18 countably infinite, and none of them has more than o points.

PROPOSITION 4.13. Assume the continuum hypothesis and let 2 be any
decomposition of Y. Then cardS(Y, @) = ¢ if and only if at least one of
the following conditions is sabisfied.

(1) The collection of sets of the decomposition having more than one
poimt 8 at most countable, and at least one of the sets has a countable number
of points.

(2) The ocolleclion of sets of the decomposition having more than one
point is countably infinite and none of them has more tham a couniable number
of points.

We are now in a position to verifys result we mentioned previously.
J. de Groot proved [6] the existence of 2° one-dimensional connected
subspaces of the plane with the property that only constant funetions
map any one of these spaces into another and the only continuous selimaps
of any one of these spaces are the constant maps together with the identity
map. Of course, all these spaces have ¢ points.

PrOPOSITION 4.14. Let X be any one of de Groot’s spaces amd let N
denote the set of natural numbers. Then S(X) can be embedded in T y.

Proof. Decompose N into a countable collection 2 of mutually
disjoint subsets, each having more than one point. Then D(N, 2) is a left
zero subsemigroup of 5 with ¢ elements. Now S(X) consists only of
the constant functions (and there are ¢ of these) and the identity function.
Map the constant functions of 8(X) injectively into D(N, 2) in any man-
ner whatsoever and send the identity of S(X) into the identity of J .
The result is an embedding of §(X) into J 4.

It is well known that 7, with the compact-open topology is, topo-
logically, nothing more than the space of irrational numbers ([9], p. 14).
For & discrete Y in general, 7y is compact if and only if Y is finite, so
that one can never hope to get the Cantor discontinuum in this manner.
However, as the next result shows, many of the semigroups D(Y, 2)
and 8(Y, 2) are homeomorphic to the Cantor discontinuum.

THEOREM 4.15. Let I ¢ have the compact-open topology and let 2 be
any decomposition of Y. Then the following statements are equivalent.

(1) D(Y, 2) is homeomorphic to the Cantor discontinuum.



22 Embedding 8§ (X) into S(¥)

(2) 8(X, 9) is homeomorphic to the Canior discontinuum.

(3) AU sets in D are finite and the number of sets with more than one
element 18 counlably infinite,

Proof. It is known that 2 space X is homeomorphic to the Oantor
discontinuum if and only if it is compact, metrizable, totally disconnected,
and has no isolated points. Now, any subsemigroup of 7 7 is totally discon-
nected, and the result follows from Propositions 4.4, 4.6-4.8 and 4.10.

Now we consider the general problem of embedding S(X) into a full
transformation semigroup, and the theorem we prove is concerned with
spaces X upon which 8(X) is doubly transitive. This means that, given
a, b, », y in X with a # b, there is an fe §(X) such that f(a) = @ and
f(b) = y. These spaces include all 0-dimensional spaces and all completely
regular arcwise connecfed spaces.

THEOREM 4.16. Let X be a topological space suoh that S(X) is doubly
transitive on X. Then S(X) can be embedded in T v if amd only if card X
< card Y.

Proof. We have already observed that the condition is sufficient.
Now suppose the condition is fhlse; that is, assume card X > card Y.
Let ¢ be an isomorphism from S§(X) into 4 ». Then by previous consid-
erations,  maps S(X) into §(¥, 2(p)) and the kernel K(X) of S(X)
into D (Y, 2(p)). Forany s< X we denote ¢({z)) by v, where {(w) denotes
the constant function which sends everything into the point #. Then
v, D(Y, D(p)) for each 2¢ X and v, # v, when z # y. We choose any two
such points @ and’y, and it follows, for some 4 2(p), that v (a) # v,(a)
for each age A.

Now cardX > card Y implies card X > cardA, so there are two
distinct points w and 2z of X such that v,, and v, agree on A (we recall that
Vg, Vyy Uy and v, are all constant on 4). Since §(X) is doubly transitive,
there exists an fe §(X) such that f(w) = @ and f(2) = y. Thus fo (W) = (&)
and fo{2) = (y). This implies that

Uy = 9({8)) = @(flop({w)) = ¢(f)ov,
vy =o(K¥) = o(f)op((2)) = p(f)ow,.
Now for any ae 4, v,(a) = v,(a). It follows from this that
v5(8) = (f) (vu(a)) = o(f) (vs(a)) = v,(a)
which, of course, is a contradiction.

It is known that a metric space is homeomorphic to a subspace of
the rationals if and only if it is countable ([9], p. 287). This, together
with the previous theorem, results in

OOROLLARY 4.17. Let X be a metrio space such that S(X) is doubly
tramsitive on X, and let N denote the countably infinite discrete space. Then

and
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S(X) can be embedded in T 5 if and only if X is homeomorphic to a subspace
of the rational nwmbers.

Now, suppose we endow both §(X) and 7y with the compact-open
topologies (we simply regard Y as a discrete space) and suppose we con-
sider embedding §(X) into J» with a map that is fopological as well
as algebraic. We will call such a map a T-embedding map. One might
expect that the condition of Theorem 4.16, that card X < card ¥, i3 not
sufficient for this. Indeed, one can show that if S(X) can be T-embedded
in 7y, then X must be 0-dimensional. For, 7 » with the compact-open
topology is 0-dimensional and, of course, X is homeomorphic to a subspace
of 8(X). Thus, if we are looking for those spaces X for which S(X) can
be T-embedded in Jy, we may restrict out attention to 0-dimensional
gpaces. But even this approximation is not a good one. This will be evident
from the next theorem.

TEEOREM 4.18. Let both S(X) and 7y have the compact-open topologies.
Then the following statements are equivalent.

(1) 8(X) can be T-embedded as a closed subsemigroup of T p.
(2) 8(X) can be T-embedded in I g.
(3) X s disorete and card X < card Y.

Proof. It is clear that (1) implies (2). We now verify that (2) implies
(3). We first show, by contradiotion, that X is discrete. Assume X has
a limit point p and let ¢ be a T-embedding from S(X) into 7 z. Then ¢
maps §(X) into the shell of §(¥, 2(¢)) and it sends K(X), the family
of all constant functions, into D (Y, 2(¢)). Now let @, and =, be distinct
from each other and from p. Denote ¢({p)) by v, and ¢ ({z;)) by v, 1 =1, 2.
Let U be any neighborhood of v, which does not contain either v, or v,.
Sinee v, # v,, there exists an 4 ¢ 2 such that v,(a) # v,(a) for each ac A.
Let @ = Un<a, vy(a)) for some ae A. This is a neighborhood of v, which
contains meither », nor v,. Moreover, for any ¢ in S(¥Y, 2)N@&, we have
g(y) = v,(a) for each ye A. Since X and K(X) are homeomorphic, {p)
is a limit point of K (X), and since {(p)e¢p~'(G), we can choose (@) in
¢~ (@) distinet from (p)>. Now since ¢ is a topological embedding and 7 5
is 0-dimensional, S(X) must be also and we choose a clopen set H of §(X)
containing (p> and not eontaining {z,>. Next we choose (z,)e¢ H — {{p)D}
and define a selfmap of X by

2, for (w)eH,
w, for d(HeK(X)—H:

Then f is continuous since X and K (X) are homeomorphic, and we have

folwg) = <@y and folwe) = <wy).



24 Embedding §(X) into S(T)

Now denote ¢(f) by ¢ and ¢({(®,)) and ¢({z,)) by v; and v,, respectively,
and we have gowv, = v, and gov; = v,. But vy, v, are in G- since (w,),
(z,) are in ¢~'(G), and this implies that vs(a) = v4(a) = v,(a).
Hence
v,(8) = 9(’”4(“)) = 9('”3(“)) = Uy(a).

This is the contradiction we seek. Thus, X is discrete and card X < card ¥
by Theorem 4.16.

To complete the proof, we need only show that (3) implies (1). So let
h be any injection of X into ¥. Denote h(X) by A and Y —2(X) by B
and let 9 = {4, B}. By Proposition 1.11, §(Y, 2) is a closed subsemigroup
of ¢, and by Lemma 4.2, 8(Y, 2)is topologically isomorphic to 7 4, X 7 g,
where both 7, and 95 have the compact-open topologies. Since X is
discrete, S(X) is just 7y and it is sufficient to exhibit a topological iso-
morphism from 7 y onto a closed subsemigroup of 7, x 7 5. Let j denote
the identity mapping on B, and for each f in Iy define

9(f) = (hofoh™, j).

It is straightforward to show that @ is an isomorphism from J y onto
T 4 X {j}- Moreover, if (K,, &) and (K,,@,) are any two subbasic open
sets in J 4 and 7 g5, respectively, we have

@~ ((Kyy @) XKy, Gp)) = (W (EY), hH(G4))

if K, < @,; otherwise, it is empty. Hence ¢ is continuous. Finally, for
any subbasic open subset (K, @> of 7 ¢, we have

KK, B) = (Ch(E), M(@) xT 5)nT 4 x {j}).

Thus @ is an open map onto its range and the proof is complete.



Chapter 2

We closed the previous chapter with results on embedding and
T-embedding S(X) into S(Y) whenever Y is discrete and hence S(X)
is just the full transformation semigroup on Y. In this chapter, we
consider the case where Y is not necessarily discrete and, in fact, will often
be prevented from being discrete by the conditions placed upon it.

1. A THEOREM ON T-EMBEDDINGS

Before proving our theorem on 7-embeddings, we prove & lemma.
The result is known. in. the case of the full transformation semigroup and
the proof is essenfially the same. We recall that S(X) is said to be doubly
transitive on X if for each quadruple of points a, b, p, ¢ with & 7 b, there
exists an f in §(X) such that f(a) = » and f(b) = ¢.

LevMA 1.1. Let X be any topological space upon which 8 is doubly
transitive and let ¢ be any homomorphism from S(X) into a semigroup T.
Then if @ is not injective, it takes all the constant fumctions into one single
element of T.

Proof. Suppose f # g but ¢(f) = ¢(g). Let {a) and {(b> be any two
constant functions in S(X). Since f # ¢, there exists a point # in X such
that f(z) # g(x) and since S§(X) is doubly transitive on X, there exists
an h in 8(X) such that % (f(z)) = a and h(g(z)) = b. Then hofo(w) = {a)
and hogo<{z) = {b) and we have

¢ o)) = ph)og(flop(Km)) = p(h)op(g)op({n)) = @(<B)).

It is appropriate at this point to recall some remarks from a diseussion
following Proposition 3.8 of Chapter 1. Suppose T is any semigroup which
contains left zeros and ¢ is an isomorphism from 7 into S(XY) where ¥
is any topological. The isomorphism ¢ carries the subsemigroup of left
zeros of T into some unique 4-class D(Y, 2 (p)) where 2(g) is the decom-
position of ¥ which is induced by any one of the functions in D(Y, 2(p)).
Furthermore, ¢ carries T into the shell S(¥, 2(p)) of D(Y, 2(p)). In
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order for ¢ to be injective, it is sufficient that there exist at least one
set A in 2(p) with the property that n,o0¢ is injective where 7, is the
A-sectional homomorphism (Chapter 1, Definition 3.1) from 8(¥, 2(p))
into S(4). In fact, if T is taken to be some §(X) which is doubly transitive
on X, then it turns out that the condition is necessary as well as sufficient.
This fact is crucial in & number of proofs which are to follow, including
the next one.

THEOREM 1.2. Let X be a compact absolute retract, let ¥ be normal,
and et both S(X) and S(XY) have the compact-open topologies. Then S8(X)
can be T-embedded in S8(XY) if and only if X can be topologically embedded
m Y.

Proof. First suppose that there exists a homeomorphism % from
X into Y. Since h(X) is a compact absolute retract and ¥ is normal,
there exists a continuous map » in §(X) whose range is 2(X) and v is such
that »(y) = y for all y in A (X). Define a mapping ¢ from 8(X) into §(XY) by

o(f) = hofoh™tow, for all feS(X).

Then ¢ is an algebraic embedding of §(X) into S(Y). Moreover, for any
subbasic open set (K, &) of 8(X), if H is any open subset of ¥ such that
h(@) = HNnh(X), it can be verified that

(KK, &) = (W(K), Hynp(S(X)).

In a similar manner, if (X, @) is any subbasic open set of S(Y), then
we obtain

P~ (K, @) = (™ v(K)), h7HE)).

Thus ¢ is topological as well as algebraie.

Now suppose that ¢ is any T-embedding from §(X) into S(¥). Then ¢
actually maps S(X) into §(¥, 2(¢)] and it takes K(X), the family of
all constant functions on X into D(Y, 2 (¢)), where 2 (¢) is the decompo-
sition induced by ¢. We claim that there is at least one 4 in 2(p) with
the property that n,0¢ is an isomorphism from §(X) into §(A4), where
"4 18 the A-sectional homomorphism from S(Y, 9(p)) into 8(4). If the
claim is false, then by Lemma 1.1, each 7, 0@ maps all the constant func-
tions of §(X) into one single constant funotion in §(4) (8(X) is doubly
transitive since X is an absolute retract). It follows directly from this that
@ sends all constant functions of 8(X) into one single idempotent of 5(¥),
which is, of course, not true. So we take any A such that 7 4 0@ i injective
and we define a maping h from X into Y as follows: choose any ae A
and define

h(@) = @(<@))(a).
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Also define maps ¢,: 8(¥)—-Y and ¢: X->8(X) by

¢(f) =f(a), and o(z) = (2.
The map ¢, is continuous in any topology for §(X) which contains the
point-open topology, and of course, ¢ i3 continuous if §(X) has any set-open

topology. Thus A is continuous since % = e;opoe. Now let  be any
point in X. We obtain

h(@) = p({2>)(a) = @({2))|4(a) = (n400)((2D)(a).

But n4 0@ maps constant functions of S(X) into constant functions of
S(A), and since it is injective, we must have

(n40@)({B)) #* (ng0p)({y>) when z #y.

(na0@)(@))(a) # (ni09)(<{y))(a),

which implies that h(s) # A(y). Thus % is injective and continuous, and
since X is compact, it is a homeomorphism.

Thus

2. SOME RESULTS ON ALGEBRAIC EMBEDDINGS

The results in this section are concerned primarily with algebraic
embeddings. As we noted in the last section, each isomorphism ¢ from
S(X) into S(Y) induces a decomposition 2(¢) on Y and if S(X) is doubly
transitive on X, then there is at least one 4 in 2(p) suoch that %, o0 is
injective where 7, is the A-sectional homomorphism. We will denote
740 @ more simply by @, . The first result of this section is a fundamental
lemma which gives us some information about ¢,.

LevmA 2.1. Let X and Y be any two topological spaces and suppose
that 8(X) is doubly tramsitive on X. Let @ be any isomorphism from S(X)
into S(X). Then there exists a set A in D(p) and an injection h of X into A
such that the following conditions are satisfied:

(1) (p4(f))oh = hof  for all f in 8(X); and

2) 2(f (@) = (pa () (B(2) OR(X)  for all fe 8(X), me X.

Proof. Just as in the proof of the previous theorem, at least one of
the homomorphisms ¢, = 74,0 must be injective. We choose any such
A and we show that there exists an injection % from X into A satisfying
(1) and (2). Let any x¢ X be given. Then ¢4 = 7, 0@ sends {(z) into some
{y> in §(A). We define h(x) = y. The function » must be injective because
@4 18 injective. Moreover, we note that ¢,({z)) = (h(x)). We use this
several times in the next string of equalities:

C(f(@)) = ou((f(2))) = pu(fola))
= 04 (f)opa((®)) = ga(f)o<h(@) = [plf)){h(=))>.
It follows from this that (1) is valid.
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Now let ¥ be any point in k(f~*(2)). Then y="h(a) for some ac f~(w).
Thus f(a) = 2 or, equivalently, fo{a) = {(z). Then we obtain

@)y = pa((ad) = pa(folad) = pa(f)opa({a))
= p.4(f)oCh(a)> = [pa(f))(R(a))).
Thus (p,(f))(k(a)) = k() and it follows that

y = h(a)e (p ()7 (h(@) NA(X).

Now suppose that ye(p,(f)) ' (h(#))Nh(X). Then y = h(b) for some
be X and (p4(f))(y) = h(). But since (1) holds, this implies that

(@) = (pa () (%) = (palf)oh)(d) = R(f()),

and since  is injective, it follows that f(b) = «. Hence y = h(b)e h(f~*()).
So (2) is valid.
We recall the definition of an §*-space ([11], p. 295).

DEFINITION 2.2. A space X is an S*-space if for each closed subset H
of X and each point pe X —H, there exists a continuous selfmap f of X
and a point ¢ in X such that f(z) = ¢ for all ¢ H and f(p) # q.

The above definition differs slightly from the one given in [11],
p. 295. There, the spaces were required to be only 7; while here
everything is Hausdorff.

We remark that S§*-spaces include all completely regular spaces
containing an arc as well as all 0-dimensional spaces. We also remark
that one easily verifies that a space is an S*-space if and only if the pre-
images of points under continuous !se]ima,ps form a bhasis for the closed
subsets.

Lemma 2.3. Let X be any S*-space upon which 8(X) is doubly transi-
tive. Then the function h=* of Lemma 2.1 which maps h(X) onto X is con-
tinuous.

Proof. The proof follows immediately from (2) of Lemma 2.1 and
the fact that pre-images of points under continuous selfmaps form a basis
for the closed subsets of an S*-space.

We recall two more definitions from [15]. See also [12], p. 327.

DEFINITION 2.4. A topological space is a strong S*-space if for each
pair of nonempty mutually disjoint closed subsets 4 and B of X, there
exists a continuous selfmap f of X and distinet points ¢ and b in X such
that f(z) = a for we 4 and f(z) = b for ze B.

DerFINITION 2.5. A topological space X is said to be strongly conform-
able if it i8 a first countable strong §*-space and for each pair of compact
countable subspaces 4 and B, each having exactly one limit point, there
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exists a continuous selfmap f of X mapping A into B such that B —f(4)
is finite.

By a Lebesgue 0-dimensional space we mean any space in which any
finite open cover has a refinement by a partition of that space. This agrees
with the definition given in [5], p. 246, when the space is normal. Every
Lebesgue 0-dimensional space is 0-dimensional as we have previously
defined it here, but 0-dimensional spaces need not be Lebesgue 0-dimen-
sional. However, the two concepts do coincide if the spaces involved
are Lindeldf.

We now state, without proof, a result which was first stated in [15].

TEEOREM 2.6. All locally Euclidean normal spaces and all Lebesgue
0-dimensional meiric spaces are strongly conformable.

TEEOREM 2.7. Let X be sirongly conformable and suppose S(X) is
doubly tramsitive on X. Let Y be a first countable space with the property
that every subspace whose cardinality ts equal to that of X has a limit point.
Then the function h in Lemma 2.1 is a homeomorphism from X into ¥ and
h(X) 48 a closed subsel of Y.

Proof. We know from Lemma 2.3 that A~' is continuous. Since X
is first countable, we can use sequences to show that % is continuous.
Suppose {a,}n,—; 18 a sequence in X which converges to a point p. We
must show that limh(a,) = h(p). Bince &k is an injection, % (X) has a limit
point ¢ and since it is first countable, there is a sequence of distinct points
h(X) converging to ¢. Denote the points of the sequence, together with
the limit point ¢, by B. Then B is a compact countable subset of k(X) with
precisely one limit point, and since 2! restricted to B is a homeomorphism,
h~1(B) is also a compact countable subset of X with exactly one limit point.

Now denote the points of {a,}q., together with the limit point » by D.
Since X is strongly conformable, there exists a continuous selfmap f
of X mapping A~!(B) into D such that D—jf(h~*(B)) is finite. Thus,
there is a positive integer N such that n > N implies that a,e f(A~*(B)).
For each such N, we choose b,e B such that

(1) f(B*(Bp)) = @n.
Since h~*(q) is the unique limit point of A~*(B), we have
(2) f(A~Y(g) = p-

Otherwise, f would map all but a finite number of points of h~*(B) into
one of the isolated points of D.
It follows from (1) and (2) above and from Lemma 2.1 that

h(a,) = (hof)(h™1(b,)) = (pu(F)oR}(H7 (b)) = @.4(f)(bs)
and

h(p) = (hof)(B7X(@) = (pa(£)oR)(A71(Q)) = 9u()(g)-
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Now since {b,}>_; is an infinite sequence of distinct points of B, it must
converge to the unique limit point g of B. Thus

lime, (f)(b,) = @4 (£)(9),
which implies that

lim#(a,) = h(p).

Thus % is continuous as well as A~%L

We have yet to show that h(X) is closed in Y. Suppose this is false.
Then there exists a sequence {¢,}s., of distinct points of 2(X) converging
to & point te ¥ — h(X). Then {o,}5-, is a discrete subset of 4 (X) and hence
()}, is a discrete subset of X. Let

V= {h—l(cﬂ*pz—l)}fo:-sl
and
W = {h_l(czn)};o—l'

The sets ¥ and W are disjoint closed subsets of X, and since X is a strong
S*-space, there exists a continfious selfmap f of X and two distinct points »
and w of X such that f(z) = v for we V and f(z) = w for e W. From
this we get

04 () = (@a(F)OR) (B (0e0-r)) = (ROf) (A7 (O2—1)) = D(0),
and similarly,
P4(f)(020) = h(w).
This, however, is a contradiction since

limg, (f)(cn) = @ (f)(2),

and the proof is complete.

CoroLLARY 2.8. Let X be a strongly conformable space with the property
that 8(X) is doubly transitive on X, and suppose that ¥ is a first countable
space with the property that every subspace whose cardinality is equal to
that of X has a limit point. If S(X) oan be embedded in S(Y), then X is
homeomorphic to a closed subspace of Y.

In general, the converse to the corollary need not hold. For example,
let K denote the Cantor discontinuum and let R denote the reals. These
spaces satisfy the conditions of the corollary and XK is certainly
homeomorphic to a closed subspace of R. Flowever, S(K) cannot be
embedded in §(R). The space K is strongly conformable and quasi-homo-
geneous [15], in fact, even homogeneous. But Theorem (5.5) of [15] tells
us that if X is a strongly conformable quasi-homogeneous completely
regular space, the S(X) can be embedded in S(R) if and only if X is homeo-
morphic to either R, a half-open interval, the two-point discrete space,
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the one-point space, or the closed unit interval. Thus, further conditions
are needed if we wish the converse also to be true.

THEOREM 2.9. Let X be an absolute retract and suppose that Y is
a first countable normal space with the property that each subspace of X iwhose
cardinality 18 equal to that of X has a limit point. Then S(X) can be emuvedded
into 8(Y) if and only if X is homeomorphic to a closed subspace of Y.

Proof. Since X is an absolute retract, it is normal and arcwise con-
nected. Thus it is a strong S*-space. It also follows from the fact that X
is an absolute retract that for any two compact countable subsets A
and B, each with exactly one limit point, there exists a continuous selfmap
f or X which maps A homeomorphically onto B. Thus, X is strongly
conformable and the necessity now follows from Theorem 2.7.

As for the sufficiency, let & be a homeomorphism from X onto a closed
subspace V of Y. Since V is an absolute retract and closed in Y, there is an
idempotent continuous selfmap v of ¥ such that the range of » is V. The
mapping ¢ which is defined by

@(f) = hofoh™ov  for each fe S(X),

is an embedding of S(X) into S(X).

THEOREM 2.10. Lét X be an absolute retract and let ¥ be a second
countable normal space. Then S(X) can be embedded in S(Y) if and only
if X i8 homeomorphic to a closed subspace of Y.

Proof. First of all, the conclusion is immediate if X consists of more
than one point. If X has more than one point, its cardinality must be at
least that of the continuum and the result now follows from Theorem
2.9 and since any uncountable subset of a second countable space has
a limit point.

The latter theorem no longer holds if the requirement that Y be
second countable is dropped. For, let X be an absolute retract and let ¥
be any set such that card X < card Y. Then Y with the discrete topology
is certainly normal and S(Y) is just the full transformation semigroup
on Y. The space X is not homeomorphic to any subspace of ¥, much
less a closed one, and yet S(X) can be embedded in S(X).

TEEOREM 2.11. Let X and Y be 0-dimensional separable meiric spaces
and suppose that X is uncouniable. Then S(X) can be embedded in S(Y)
if and only if X ts homeomorphic to a closed subspace of Y.

Proof. Let h be a homeomorphism from X onto a closed subspace
V of Y. Then by Corollary 2 of [9], p. 281, there is an idempotent continuous
selfmap v of ¥ whose range is ¥ and the map ¢ defined by ¢(f) = hofoh™*ov
is an embedding of S(X) into S(X).
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On the other hand, suppose S(X) can be embedded in 8 (¥). It follows
from Corollary 3 of [9], p. 281 that X is strongly conformable. Furthermors,
since Y is separable and metrizable, every uncountable subset has a limit
point. Thus, it now follows from Corollary 2.8 that X is homeomorphic
to a closed subspace of Y.

The uncountability of X was used only in the necessity portion of the
proof and one cannot prove the necessity without it. The identity map
from §(X) into S(¥) where X is any countable nondiscrete space and N
is the same set with the discrete topology, will serve as a counter-example.

TEEOREM 2.12. Let BV denote the Huclidean N-space. Then any
isomorphism from 8(EY) into S(BY) is actually on automorphism of S(EBY).

Proof. Since BV is an absolute retract, it is strongly conformable
and 8(FV) is doubly transitive on E¥. It follows from Theorem 2.7 that
the function » whose existence is guaranteed by Lemma 2.1 is a homeo-
morphism and % (E") is closed in BY. It follows from & well-known theorem
of Brouwer ([8], p. 95) that k(&) is also open. Thus, & is  homeomorphism
from EV onto EV. All this implies that the subspace A in Lemma 2.1 is
all of ¥ and p, = @. Thus, by (1) of Lemma 2.1, we have ¢(f) = hofoh™?
for all f in S(X) and this implies that ¢ is an automorphism of §(EY).

This latter result was first established for #' in [15]. It follows from
Corollary 4.2 of [9] that any epimorphism of S(EY) is actually an auto-
morphism. This, together with the previous result, implies that if an
endomorphism of S(EF¥) is not an automorphism, then it is neither sur-
jective nor injective. Such endomorphisms do exist. One can, for example,
map everything into a single idempotent. To get a less trivial example,
choose any idempotent v in §(BY) which iy different from the identity
map ¢ and define ¢(f) = ¢ if f is a unit (that is, a homeomorphism from
E” onto EV) and let ¢(f) = v otherwise. Corollary 3.8 of [2] states that
S(E™) ia the union of its maximal proper ideal and its group of units
and this implies that the product of two elements of S(E¥) can be a unit
only if each of the elements is a unit. It follows from this fact that the
mapping ¢ defined previously is indeed an endomorphism which, of
course, i3 far from being an automorphism.

We close this section with two more theorems both of which involve
T-embeddings. First, we introduce some notation. Liet @ be any topological
property which is preserved under taking continuous images. For any
space X, 7o will denote the set-open topology on S(X) which is obtained
by taking all sets of the from

(K, @ = {fe8(X): f(K) = G}

a8 & subbasis for the closed sets of 7o where @ is an open subset of X and K
is a subspace of X with property Q.
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THEOREM 2.13. Let X be an absolute retract, let ¥ be a second countable
normal space and let both S(X) and S(XY) have the I g topologies. Then the
following staiements are equivalent.

(1) S(X) can be T-embedded in S(X).
(2) 8(X) can be embedded in S(XY).
(3) X 18 homeomorphio to a closed subspace of X.

Proof. Statements (2) and (3) are equivalent by Theorem 2.10 and
it is evident that (1) implies (2). We need only show that (3) implies
(1). As in the proof of Theorem 2.9, we define a mapping ¢ by

o(f) = hofoh™'ov for f in S(X).

Then ¢ is an algebraic embedding of §(X) into S(Y) and we need only
show that it is topological as well. Let K & X have property @ and let &
be an open subset of X, Choose any open subset H of ¥ such that h(G)
= Hnh(X). One can easily show that

(KK, ®) = p(8(X))nh(K), H).

On the other hand, if W < Y has property @, then v(W) does also
and for any open subset @ of ¥, one can show that

e (KW, @) = B o (W), B7HE).

Hence, » maps §(X) homeomorphically into S(Y).

The proof of the next result will be omitted. It is identical to the
proof of the previous theorem except for the fact that one appeals to
Theorem 2.11 in place of Theorem 2.10.

TEEOREM 2.14. Let X and Y be 0-dimensional separable metric spaces
and suppose that X is uncountable. Let both S(X) and S(XY) have 7 4 topol-
ogies. Then the following statements are equivalent.

(1) 8(X) can be T-embedded in S{X).
(2) 8(X) can be embedded in S(YX).
(8) X 48 homeomorphio to a closed subspace or Y.

3. EMBEDDINGS WHICH ARE INDUCED BY AN IDEMPOTENT
AND A HOMEOMORPHISM

In several of the proofs in the preceding section, we constructed
embeddings of §(X) into S(Y) by choosing an idempotent continuous
selfmap v of ¥ and a homeomorphism % from X onto the range of » and
then defining

(%) @(f) = hofoh~tow
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for each f in S(X). In general, however, not every embedding takes this
form. We consider two examples.

Exavpre 3.1. Let X be any space and let ¥ be any discrete space
with ¢ard ¥ > card X. Choose any injection A of X into Y and define

2 (f)( y) —-h(f ) y)) for yeh(X),
o(f)(y for ye ¥ —h(X).

The mapping ¢ embeds S(X) into §(¥) but it eannot possibly be of the
form (). Among other things, any embedding of the form (x) always takes
constant functions into constant functlons and, of course, the embedding
of this example does not.

ExXAMPLE 3.2. F is the space of real numbers and E* is the plane.
Define an embedding ¢ of S(E) into S(E?) by

(e (@,9) = (f(2), ).

One oeasily verifies that ¢ is, indeed, an embedding and since it does not
take constant functions into constant functions, it cannot be of the form ().

The main purpose of this section is to find conditions for the spaces X
and Y which will insure that every embedding of S(X) into S(Y) takes
the form (). It was shown in [14] that every a-monomorphism ([14],
Definition 4.3, p. 161) from 8 (X) into S(¥) has the form () if X and ¥
satisfy various conditions. For example, Theorem 5.6 of that paper states
that if X is any Hausdorff (it was not assumed that the spaces were neces-
sarily Hausdorff) S*-space and Y is any compact T, space, then each
a-monomorphism from S(X) into S(Y) has the form (»). Theorem 5.7 of
the same paper states that if X is conformable Y is any first countable T',
space which is not the union of an infinite number of mutually disjoint
nonempty open subsets, then every o-monomorphism from S(X) into
S(Y) has the form (x). All this indicates that in a great many instances,
a-monomorphisms are given by («). However, considerably more stringent
conditions must be placed on the spaces, particularly on the space Y if
one expect every monomorphism from §(X) into S(Y) to have the form ().
Now we need a definition.

DErFINITION 3.3. A topological space X is quasi-homogeneous if
for each nonempty open subset G of X and each point p in X, there exist

continuous selfmaps f and g of X such that g(p)e@ and fog is the identity
map on X.

Quagi-homogencous spaces were introduced in [14]. It was observed
that if X is any absolute retract with the property that each nonempty
open subset contains a closed copy of X, then X is quasi-homogeneous,
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go that, in particular, every closed cube I™ in B¥ is quasi-homogeneous.
Of course, every homogeneous space is quasi-homogeneous, so each E¥
is also quasi-homogeneous. It was also shown in [15] that products of
quasi-homogeneous spaces are quasi-homogeneous.

THEOREM 3.4, Let X be strongly conformable and quasi-homogeneous
and suppose S(X) is doubly transitive on X. Suppose also that Y s first count-
able and connected, that every subspace of ¥ which is homeomorphic to X
has nonempty interior, and the every subset of ¥ with cardinality equal to
card X has a limit point. Then, for each isomorphism @ from S(X) into S(X),
there exists an idempotent continuous selfmap v of X and a homeomorphism
k from X onto the range of such ¢ that @(f) = hofoh~tov for each f in 8(X).

Proof. Let 2(p) be the decomposition on ¥ which is induced by .
According to Lemma 2.1, there exists an Ae¢ Z(p) and an injection 4
of X into A which satisfies (1) and (2) of that lemma. It is immediate
from Theorem 2.7 that % is actually a homeomorphism from X onto
2 closed subset of Y. We first show that 4 is all of Y ; that is, the decompo-
sition 9 (p) is trivial. Since 2 (X) is homeomorphic¢ to X, it has nonempty
interior. Choose any point A(a) in the interior and let any point b in A
be given. We want to show that b is an interior point of 4. We recall
that for any xze X, the restriction of ¢({x)) to A is a constant selfmap
of A, so that, in particular ¢({z)) maps all of A into @ single point of A,
and it follows from (1) of Lemma 2.1 that this point must be %(a). Since
@{{a>)(b) = h(a) is in the interior of A, there exists an open subset G
of Y containing b such that p({a))(@) = A. This means that G = A since
¢({a)) maps point of other sets of the decomposition into the same sets.
Thus 4 is open. Since it is also closed and Y is connected, A = Y and
the decomposition 2 (@) consists of the single set Y.

Now denote ¢(i) by v, where i is the identity map on X. By Lemma

2.1, we obtain
voh =g(i)oh = hot =h.

Thus, (X) = V, where V is the range of ». The subspace V is connected
since it i8 a continnous image of Y, Assume % (X) 7 V. Then there exists
a point pe h(X)NCly(V —h(X)); otherwise ¥V would not be connected.
Let @ be any subset of 2(X) which is open in Y. Since X is fog = ¢ and
g(A~1(p)) e R~1(G). We use Lemma 2.1 again, to get

o(9)(p) = (p(g9)o k) (27 (p)) = (hog)(h™*(p))< &

Thus, there exists an open subset H of Y containing p such that @(g)(H)
c @

Next we wish to observe that ¢(f) maps @ into 2(X). Let y < @. Since
@ c h(X), we have

e(f)(®) = (p(Noh) (" (y)} = (hof) (A7 (3)) 1(X).
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Now, since peCly(V—h(X)), there exists a point ge Hn(V—h(X)).
But for this point ¢, we have

g =v(g) = (p(f)op@) D p(N(@) = h(X),

which is a contradiction. Thus, V = &(X) and it now readily follows
from (1) of Lemma 2.1 that

@(f) = hofoh™ o, for each fe 8(X).

COROLLARY 3.5. Let X be any M-dimensional strongly conformable,
quasi-homogeneous space such that S(X) is doubly tramsitive, and lei ¥ be
of any connected subspace of BV the Buclidean N-space, suppose that M > N.
Then for each isomorphism @ from S(X) into S(X), there exists an idempotent
v in S(Y) and a homeomorphism h from X onto the range of v such that
@(f) = hofoh™'ow for each f in S(X).

Proof. Let W be any subspace of ¥ which is homeomorphic to X.
Then dimW = N and it follows from Theorem IV-3 of [8], p. 44 that
W has nonempty interior. Moreover, any subset H of Y with cardH
= card X must have cardinality ¢, so it has a limit point. Hence, the hypo-
thesis of the previous theorem is satisfied and the conclusion follows.
Of course, this means that M and N coincide.

COROLLARY 3.6. For each isomorphism ¢ from S(IN) into S(IV)
there ewists an idempotent continuous selfmap v of IV and a homeomorphism
h from I¥ onto the range of v such that ¢(f) = hofoh~*owv for each fin S(IV).

Some remarks. First of all, the requirement in Theorem 3.5 that
M > N, is crucial. Example 3.2 is evidence of this. Secondly, we remark
that there are many isomorphisms of §(I”) into §(I¥) which are not
antomorphisms. This is in contrast to the case for S(EV), in view of
Theorem 2.12. Consequently, S(I”) has many proper subsemigroups
which are isomorphic to it while §(E¥) has none.

It follows from. several of the preceding results that there are a number
of situations where any embedding must necessarily be a T'-embedding.
The additional result we need fio verify this is the following whose proof
we omit since it was essentially verified in the proof of Theorem 2.13.

THEEOREM 3.7. Let Q be any topological property which is closed under
taking continuous images. Let X and Y be amy two spaces and let S(X)
and 8(X) have the Ty topologies. Let v be any idempotent in S(XY) and let b
bo amy homeomorphism from X onto the range of v. Then the map o defined
by o(f) = hofoh™low for each f in S(X), is a T-embedding of S(X)
o S(Y).

Now, the conclusion of several of the previous results were to the
effeot that each embedding ¢ is given by ¢(f) = hofoh o, 80 in view
of Theorem 3.7, each embedding is automatically a T-embedding when
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the semigroups have 5, topologies. We state a simple result whose proof
follows from the previous observations and Oorollary 3.6.

CorROLIARY 3.8. Lat @ be any topological property which s olosed
under laking continuous images and let S(IV) have the T topology. Then
every embedding of S(IN) imto iiself is automatically a T-embedding.

4. ENTIRE ISOMORPHISMS

In the discussion preceding Theorem 1.2 we noted that an isomorphism
@ from a semigroup T (which was assumed to have left zeros) into S(Y)
is injective if af least one % o¢ is injective, where 4 ¢ 2(p), the decom-
position on Y induced by ¢, and 7, is the A-sectional homomorphism.
In many cases, a particularly nice situation develops when 1, o ¢ is injective
for each A 2(p) s0 we give these isomorphisms a name.

DEFINITION 4.1. When 7% 0¢ is injective for each 4 in 2, we refer
to ¢ as an entire isomorphism.

The main result of this section is the next one and it is curiously
reminiscent of a result of Clifford and Miller on endomorphisms of semigroups
of binary relations ([3], p. 310). We shall discuss this in more detail later.
Before we state our next result, we need some notation. For any isomor-
‘phism ¢ from §(X) into S(Y), we denote by n(p) the equivalence relation
Uf{dx4: Ae D(p)).

THEOREM 4.2. Let X be an N-dimensional strongly conformable quasi-
homogeneous space and lei ¢ be any entire isomorphism from S(X) into
S(Y) such that each set in 2(p) is homeomorphic to a connected subspace
of EN. Then there exists an idempotent continuous selfmap v of Y and a con-
tinuous function k from the range of v onto X such that

(1) the restriction of k to each v(A), A € D(p), is a homeomorp hism onto X,
and

(2) ¢(f) = n(p)n(k~'ofokov) for each fe 8(X).
Proof. Let any Ae 2(¢) be given. Then n o is an isomorphism
from S(X) into S{4) and a repetition of the proof of Theorem 3.4 results

in the conclusion that there is an idempotent map v, of §(4) and a homeo-
morphism h, from X onto the range of v, such that

(ps09)(f) = hyofohzlov, for each f in §(X).

Now denote ¢(i) by v, where ¢ is the identity on X and let ye 4.
Then

v(y) = p(i)(y) = ((n409) (1)) (%) = v4(¥).
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Thus, v restricted to A is v4. Denote the range of v by V and define
a function % from ¥ onto X by

k(y) = hz'(y) for wyeVnA.

Now we show that % is continuous. Since X is an 9*-space,the preimages
of the points of X under continuous selfmaps is a basis for the closed
subsets of X, so it is sufficient to show that &~ ( f~1(@)) is closed for each
ze X and fe 8(X). With some calculation, one shows that

A Up) = () ET @)Y,

go in order to conclude that % is continuous, we need only show that
k~*(p) is closed for each p ¢ X. First of all, we note that for any De 2(¢p),
any fe 8(X), and any re DNV, we have

(3) 9() (") = ep()r) = kp(f(h5* (0(7)) = ho(f (A5 (r)))=ho(f(R(r))
Now suppose k~'(p) is not closed. Since V is closed, this implies that
there is a point

(4) ge [(Clx~ (p))— %~ (p)] 7.

Then ge 4 for some 4 ¢ Z(p); and for the identity map ¢ of S(X) and the
map (p) in §(X), we have from (3) then

(B) 9(8)(g) = h.(k(g),
and

(6) (<P2) (1) = ha(p).

Now k(g) # p, so h,(k(q)) # g4(p) and we can find disjoint open sets
@, and G, such that hy(k(q))e G, and h,(p)e @;. Then (5) and (8) imply
the existence of open subsets H, and H,, both containing ¢, such that

(7) 9(9)(Hy) = Gy
and

(8) p(<®>)(H,) = 6.
Then since ge Ol{Lk~!(p)), there exists a point te H,NH,nk~'(p)nB for
some Be 2(p). So by (3), we have

(9) ¢(5)(t) = hp(k(t) = hp(p)
and also

(10) p(<P>)(t) = hp(p).

But (7), (8), (9) and (10) result in a contradiction. Thus k¥~!(p) is closed,
and so % is continuous.

We have previously noted that v(4) = v,(4) and that b, is a homeo-
morphism from X onto v,(A). Since % restricted to v,(4) is just hZ?,
condition (1) follows.

Now we verify (2). Suppose (a, b) ¢ ¢(f). Then ae A for some 4 ¢ 2 (p),
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and since ¢(f) maps A into 4, we have be A. Thus (a, b)e #(p). Further-
more,

b = 9(£)(a) = pa(f)(a) = hy(f(hz*(vs(a))) = ha(F{E(v(a))))-
Thus, (¢, f(k(v(a)))) e fokov and (f(k(v(a))), b)e hy < k.. Thus
(ayb)e m(p)N(k*ofokov).

The inclusion in the other direction follows in & similar manner.
ExampLE. Define a mapping ¢ from S§(I) into S(E?) as follows:

(f(o)".'/) it w@<o,
e(f)(z, y) = (f(w)r?/) if 0<2<1,
(f(l),?/) if i<=

for each (z, y)e E*. Then one can show that ¢ is an embedding of S(I)
into §(Z?). In fact, ¢ is an entire isomorphism. Let A, = {(#, r): ve R}.
Then

2(p) = {4,: re R}.

Since each A, is homeomorphic to E, the hypothesis of Theorem 5.2 is
satisfied. Also,

#n(p) = U {4, x4,: re R}.
The funection v is given by

(0,9) if <0,
viw,y) ={(2,y) i 0<2<1,
1,y) i 1<uw,

and its range V is {(#,¥): 0 <2< 1}. The function % which maps V
onto I is simply the projection map. Finally, for any relI, v(4,)
= {(#,7): 0 <2< 1} and it is easy to see that % maps v(4,) homeo-
morphically onto I.

The latter theorem has quite a resemblance to a topologieal version
of a theorem of Clifford and Miller on endomorphisms of semigroups
of binary relations. Their original result appeared in [3], p. 310. The
topological version we state appeared in [16], p. 63 (see also [1] for some
related results). We first need to agree on some conventions and notation.
For any two binary relations ¢ and § on X, we define

aof = {(x,¥): (w,2)ep and (2, y)e a for some ze X}.

This i3 consistent with the manner in which we are composing func-
tions.
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DEFINITION 4.3. Lot &y and ¥y be any two semigroups of relations
on the sets X and Y, respectively. A homomorphism @ from ¥y into &
i8 union preserving if whenever ae x and a = | {f,: ac 4 and f,« 5},
then @(a) = {J {0(B,): a< A}. It is symmetry preserving if it takes symmetrio
relations into symmetric relations. A homomorphism which is both union
and symmetry preserving and is nonconstant is referred to as a OM-homo-
morphism. Every CM-homomorphism is, in fact, injective so we might
a8 well use the termn CM-isomorphism.

Olifford and Miller completely determined the OM-isomorphisms of
the full binary relation semigroup on a set ([3], p. 310). Before we state
a topologieal version, we need. another definition.

DEFINITION 4.4. A gpace X is o C-space if aof is a closed relation
on X (i.e. a closed subset of X x X) for any two closed relations a and g
on X.

Hence, the family C[X ] of all closed relations on a C-space X is a semi-
group under composition. It was shown in [13], p. 191 that a first countable
space is a C-space if and only if it is either sequentially compact or discrete.

THEOREM 4.5 (Magill and Yamamuro [16]). Let X and Y be C-spaces.
Let n and ¢ be any two partial equivalences on Y such that = + @ and both
L and nul are closed subsets of X x Y. The domain of = is a subspace of Y
which we denote by F and let u be any continuous function from E onto X
whioh satisfies

(1) pom = ExX.
Define a mapping @ by

(2) 0(a) = (mn(p"oaop)) VL.
Then @ is a CM-isomorphism from O[X] into C[ Y] and all such isomorphisms
are obtained in ewactly this manner.

A homomorphism ¢ from C[X] into C[Y]is 0-preserving if it sends
the zero of C[X] into the zero of J[X]. The following corollary is an
immediate consequence of the previous theorem and the fact that the
empty relation is the zero of both C[X] and O[Y].

COROLLARY 4.6. Let X nad Y be O-spaces. Let m be a closed partial

equivalence on Y and let u be a continuous map from the domain E of =
onto X such that

(1) pomw = Hx X,
Define a mapping O by

(2) 0(a) = an(utoaop).
Then 0 is a 0-preserving OM-igomorphism from O[X] into O[Y] and all
such isomorphisms are obtained in emactly this manner.

Now we state an immediate corollary of Theorem 4.2.
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CoRrOLLARY 4.7. Let X be an n-dimensional strongly conformable,
quasi-homogeneous space and let ¢ be any entire tsomorphism which takes
the identily of S(X) into the identity of S(Y) -and is such that each set in
D (@) is homeomorphic to a conmecied subspace of EN. Then ihere ewisls
a continuous map k from Y onto X such that

(1) % maps each A e D(p) homeomorphically onto X; and

(2) @(f) = =m(@)N(k ofok) for each fe S(X).

Now we compare tho last two results. We did not prove it, but in
Corollary 4.7, n(¢) is a closed equivalence relation on Y. Of course, = in
Corollary 4.6 is closed but it may only be a partial equivalence, that is,
symmetric and transitive. The function % maps all of ¥ continuously
onto X while £ maps only the domain of » onto X. Both = and =(¢) are the
disjoint union of rectangles. Condition (1) of Corollary 4.6 is equivalent
to the requ'u:emenﬁ that u maps each projection of each rectangle contin-
uously onto X. The function ¥ does more. It maps each projection of
each rectangle homeomorphically onto X.

We consider an example. Define an isomorphism ¢ from §(I) into
S(I? by

o(f)(@,9) = (f(a),9).

Now S(I) is a subsemigroup of C[I] and §(I*) is a subsemigroup of C[I2].
It follows from the previous two corollaries that ¢ can be extended to
a 0-preserving OM-isomorphism ¢ from C[I] into C[I*]. First, let

A, ={(z,7r): 0< 2z 1}.
Then,
D(p) = {4,: 0<r<1)
and
z(p) =U{4,x4,: 0<r<1}.

The mapping % whose existence is assured by Corollary 4.7 is just the
projection map k(z,y) = = for all (z, y)e I>. According to that corollary,

o(f) = n(p)n(k~'ofok), for all feS(I).
We define
¢(a) = n(p)N(k oaok)

for all ae C[I], and according to Corollary 4.6 ¢ is a 0-preserving CM-igo-
morphism from C[I] into C[I?].

This brings up another point. Among other things, we have shown
that there exist an isomorphism from C[I] into C[I*] which carries the
subsemigroup S(I) of C[I] into the subsemigroup S(I?) of C[I*]. Now,
it follows from Lemma 5.1 of [16], p. 71, that there exists an isomorphism,
in fact, a O-preserving CM-isomorphism, from C[I*] into C[I], but in
view of Theorem 2.10 it cannot possibly carry S(I?) into S(I).
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