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This paper gives an introduction to J. Watanabe’s work on numbers of
generators of ideals in Artinian local rings based on his inequality
u(l) < l(A/xA), and an extension of the inequality to the one-dimensional case.

1

In 1983 Junzo Watanabe started to develop an interesting new theory
concerning local rings, especially Artinian local rings ([2], [3]). In particular,
he found a remarkable parallelism between the theory of Artinian local rings
and the theory of finite posets (poset = partially ordered set), and applied some
techniques and theorems of combinatorics to Artinian local rings.

Recently 1 found that one of his results can be generalized to the
one-dimensional case, but our knowledge in this case is still very limited.

A local ring will mean a Noetherian local ring. When (A4, m) is a local ring
and M 1s a finitely generated A-module, (M) and u(M) will denote,
respectively, the length and the minimum number of generators of M, so that
w(M) = 1(M/mM). If N is a submodule of M and x is an element of m, we will
write (N: x),, for the submodule {£eM|x{e N}.

2

Let (4, m) be an Artinian local ring (1.e. a zero-dimensional local ring).
Watanabe found the following interesting theorem: for any ideal I of A and for
any element x of m, we have

u(l) < L(A/xA).
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Consequently,
Max {u(I)|{ is an ideal of A} < Min {I(4/xA)|xem}.

He calls the Icft-hand side the Dilworth number of A4, and the right-hand side
the Rees number of A, and he denotes them by d(4) and r(A) respectively. He
has proved that these two invariants coincide In many cases.

First we give a very short proof of Watanabe's inequality in a slightly
sharper form.

THEOREM 1. Let (A, m) be an Artinian local ring, M a finitely generated
A-module and N a submodule. Let xem. Then u(NY<I{M/xM). and the
equality holds iff (0:x),, =« N and mN = xN.

Proof. Consider the exact sequences
0-0:x), > M>M—M/xM-0
and
0—-(0:x)y >N >N —=N/xN —0.
Since all the modules appearing here are of finite length, we get
HM/xM) = 1{(0:x),,) = [{(0:x)y) = [(N/xN) = [(N/mN) = u(N).
All the assertions of the theorem are contained in these relations.

Next we generalize the theorem to the one-dimensional case.

THEOREM 2. Let (A, m) be a local ring and M be a finitely generated
A-module with dim M < 1. Let N be a submodule of M and x be an element of m.
Then u(N) < [(M/xM), and the equality holds iff the following conditions are
satisfied:

IIM/xM) < o0, dimM/N=0, N>(0:x),,, mN=xN.
Proof. Consider the exact sequences

xMAN N M M
— - —— =

Y xN xM  xM+N

xMAaN xM M M
- - — > —
xN xN N xM+N

0

-0,

00— 0.

We may assume [(M/xM) < oo, since otherwise u(N) < [(M/xM) is trivial. We
have to distinguish two cases.

Case 1. [(M/N) < oo, or equivalently, dim M/N =0. Since xM/xN
~ M/(xN :x),, is 1isomorphic to a quotient of M/N, we have I(xM/xN) < oc,
hence also /((xM n N)/xN) < oo, and since {(M/xM) < co by assumption we
see that all the modules appearing in the exact sequences are of finite length.
Therefore
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L(M/xM)—I(N/xN) = [(M/(xM + N))—1((xM  N)/xN)
— I(M/N)—I(xM/xN)
— [(M/N)—{{M/(xN: x),,)
= H(xN :x),/N).
Hence
I(M/xM) = [(N/xN}+H{(xN :X),/N) = p(N)+1(mN/xN)+{((xN : x)p/N),

and it is easy to see that (xN:x),, = N if and only if N o (0:x),,. Thus our
assertions hold in this case.

Case 2. [(M/N) = co. We can reduce this case to Case 1 by the same
argument as in [ 1, p. 50]. Namely, by the Artin-Rees theorem there exists ¢ > 0
such that N nm*M < mN for v > c. Since [(M/(N +m* M)) < o, we have by
case 1

[(M/xM) = u(N +m* M) = (N +m® M)/m(N +m* M))
= [{(N +m’ M)/(N +m* " M))+1((N +m"* ' M)/(mN +m"** M)).

Here, the first term [((N+m'M)/(N+m""'M)) is equal to [(m"(M/N)/
m* "' (M/N)) and since dim(M/N) =1 in this case, this last is equal to the
multiplicity e(M/N) of M/N if v is sufficiently large, and hence it is strictly
positive. The second term [((N+m'*! M)/(mN+m'*'M)) is equal to
{(N/(mN+(Nm**! M))), which is [(N/mN) if v > ¢. Therefore

I(M/xM) = e(M/N)+1{(A/mN) = e(M/N)+ u(N) > u(N).
This completes the proof.

3

Let (A, m) be a local ring and M be a finitely generated A-module of dimension
< 1. We set

d(M):= Max {u(N)|N is a submodule of M},
r(M):= Min {{(M/xM)|xem;},

and call them the Dilworth number and the Rees number of M, respectively.
Thus d{M) < r(M) by the theorem, and if the equality holds we say that M is
exact. When M = A, an element x of m such that !(A4/xA) = r(A) is called
a general element, and an ideal J such that u(J) = d(A) is called a Dilworth
ideal.

Remark 1. When the residue field A/m is finite it is better to modify the
definition of r (M) as follows. Take a faithfully flat extension local ring B of
A with infinite residue field such that my =m, B, and define r(M) to be
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r(M ® B). When m is generated by a,, ..., a,, let t, ..., t, be indeterminates
and let B= A[t,,..., t,],,- Then one can show that x = Y't;a; is a general
element; the proof is not so easy, see [2]. If 4 contains an infinite field k then
there is a nonempty open set U of k" such that, if (¢,, ..., ¢,)e U, then ) ¢;q, is
a general element (loc. cit). In the following we shall assume that 4 has an
infinite residue field.

Remark 2. When dim M = 1 and M 1s Cohen-Macaulay, J. Sally proved
that d (M) = e(M). Indeed, if xem is M-regular, then xM/xN ~ M/N and our
proof in Case 1 shows [(M/xM) = [(N/xN). Taking N = m" M, and choosing
x such that xm*M = m** ' M for sufficiently large v (such an element x exists:
replacing 4 by A/ann(M) we way assume that dimA = |, and then any
minimal reduction of m is a principal ideal generated by such x), we see that
IM/xM) =1(m"M/m"* ' M) = u(m"M) = ¢(M). Therefore r(M)=d(M)=
e(M) and M is exact. If A is one-dimensional Cohen--Macaulay, then
sufficiently high powers of the maximal ideal are all Dilworth ideals, and xem
such that xm” = m""! for some v is a general element.

In particular, all one-dimensional local domains are exact since they are
Cohen—-Macaulay. It is not easy to find nonexact one-dimensional local rings.
In fact we do not know any examples yet.

In the zero-dimensional case, the simplest example of a nonexact local ring
is A=k[X,Y, Z])/1, where k is a field and I = (X3, Y3, Z3, XYZ)+ M*,
M=(X,Y, Z). In this case d(4)=6 and r(A)=7. Another example 1s
k[X,Y, Z, WI(X?3, Y2 XY, Z%, W2, ZW), which has d(4)=4 and r(A)
=35

4

When the local ring A is exact it is easy to determine d(A4) (= r(A)): we have
only to find an ideal I and an element xem such that u(I) = 1(4/xA), and
Theorems 1 and 2 give criteria for the equality. But when A is notexact we need
some other methods to find d(A4) and r(A4). When A is zero-dimensional ring of
monomial type, 1e. of the form A = k[X,,..., X,J/I where I is generated by
some monomials, Watanabe has given convenient criteria. In such a case
X,+...+X, is always a general elelemt (because one knows that > ¢, X, is
a general element for suitable 0 # c,ek, and ¢; X;— X, (1 <i < n) defines
an automorphism of the ring of monomial type A4), so that r(4) =
I(A/(X,+ ... +X,)). On the other hand, the monomials in X, ..., X, which
are not in the ideal I form a finite poset (ordered by divisibility), say P(A4), and
its Dilworth number in the sense of combinatorics is exactly equal to d(A4), see
[3]. A totally ordered subset of a poset is called a chain, and a subset of a poset
in which no two elements are comparable is called an antichain (or an
independent set); an important theorem in combinatorics, due to Dilworth,
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says that the minimal number of chains into which a poset P is decomposed is
equal to the maximal number of elements in an antichain in P, and this number
is called the Dilworth number of P.

5

Some other important results of Watanabe for Artinian local rings:

(1) if A is homogeneous (ie. graded in such a way that 4 =4,
+A;+...+A4, A, #0, A, = kand 4 = k[A4,]), and if there exists x € 4, such
that the multiplication by x*~2' defines an isomorphism of k-linear spaces
A; > A,_, for 0<i<[if2], then A is exact and d(A4)= Max {dim, 4,]
0 <i<s)=dimAg,;

(2) “most” of Gorenstein homogeneous rings satisfy the condition above,
and hence are exact.

6. Open questions

(A) Are the zero-dimensional complete intersection rings exact?

(B) Are there nonexact one-dimensional local rings?

(C) Is there any generalization to higher dimensional case? Is the minimum of
[(A/q) where g runs over the ideals generated by system of parameters an
interesting invariant?
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Using intrinsic geometrical properties of projective varieties we will improve
Harris’ bound for the geometric genus of varieties in P". Furthermore, we will
get new and sharp bounds for the genus of arithmetically Buchsbaum varieties
and of varieties of codimension 2. In case of Buchsbaum varieties we also prove
sharp bounds for Castelnuovo’s regularity. Our approach in proving such
bounds is to reduce the problem to the case of a collection of points in uniform
position. This means the key idea here is the uniform position principle
developed by J. Harris in case of space curves. Hence the present paper relies
upon an analysis of the Hilbert function of the section of a subvariety V with
a generic linear subspace of dimension = codim (V). Finally we improve some
bounds in case of space curves.

0. Introduction

The study of possible genera of irreducible space curves in P> has a fairly long
history (see, e.g. [14-21]). A main problem is the following:

Given integers d, k > 0, we wish to find the maximum genus g = G(d, k)
of an irreducible nonsingular curve in P? of degree 4 which is not contained in
any surface of degree < k. This problem is still open. Qur Theorem 5 of Section
5 yields contributions to solve this problem by applying new Castelnuovo
bounds. Moreover, in this paper, we will study the analogous question for
projective varieties of arbitrary dimension: what is the greatest possible
geometric genus of an irreducible, nondegenerate variety of degree d in P*? This
problem was solved in 1981 by J. Harris [16] (see our Corollary 6). Using
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