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Introduction

This paper is a brief survey of recent results about continuous dependence
problems in optimal control of (mainly linear) ordinary differential systems.
In particular, continuous dependence of the optimal controls and values
is characterized for some classes of convex cost problems, and copnections
with the convergence of most optimization methods (well-posedness in
the sense of Tihonov) is investigated. Problems of this kind are fundamental
in optimal control, both for theoretical and practical reasons. Changes
in the parameters and coefficients of an optimal control problem result
in predictable variations of the optimal objects. Recently developed
perturbational methods in optimization ean be successfully applied to this
class of problems. A condensed version of this paper was presented at
the Mathematical Theory of Optimal Control semester of the Stefan
Banach International Mathematical Center, Warsaw, December 1980.

I. LINEAR CONVEX PROBLEMS

We consider the following optimal control problem: Minimize the cost
functional

T
(1) [ 1, z,wa

subject to the state equations

& =A{t)z+Bt)u, 0<t<T.

@ z(0) =0.

[611)
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Here A4, B are matrices of suitable dimensions.
We denote by
— the adjoint variable;
— the (optimal) value;
— the optimal control;
— the optimal state.
The problem is to find convergences, denoted by —, of the coefficients
in the plant such that for every f in a given class,

& & @3

A"—)‘Ao, B"—)'Bo
if and only if at least one of the following holds:
V>0, Uy, ZT,—+ZTy, Pa—>Po

in a prescribed sense.
Among the motivations for the problems of such type we mentior
continuous dependence problems;
parametric optimization;
approximate knowledge of some coefficients;
possibility of model reduction.

An abstract functional setting

We consider:
U, X — real Hilbert spaces;
g>0;
L,: U»X — linear boundeds operators such that
ILall < ¢
Here n = 0 corresponds to the unperturbed problem.
Given ¢ € (0, 1] we consider the set 8 of all
F;: VX —>(—o00, + o)
such that

(3) F is convex, continuous and continuously Fréchet differentiable
with respect to z € X for every fixed ue U,

(4)
u+v T4+ 1 1 ¢
F( 5 2y)s;F(u.w)Jr-?TF(v,y)—zuu—vu’ for every u,9,9,y.
For any n =0,1, 2, ..., the primal problem (an abstract version of

the above optimal control problem (1), (2)) consists in minimizing on U
(5) I.(4) = F(u, Lu).
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The dual problem congists in maximizing on X

y—>F*(L,y, —v)

(F* = Fenchel’s conjugate of F). The solution of this dual problem is
the Lagrange multiplier

(6) —Yp = grasz('T‘m Lni’n)!
where
(7) %, is the solution of the primal problem.

Convergence in the sense of Mosco

Let H be a real Hilbert space and T, a sequence of (nonempty) closed
convex subsets of H.

DeFINITION. We write T,,ET, iff

(a) for every subsequence n,, o, €T, and z—z, imply z, e Ty;
(b) for every w, € T, there exist «, € T, such that z,—>x,.

Given u € H, let p,(u) be the point of T, nearest to «.

THEOREM 1. The following condilions are equivalent:

(a) T B 1,;

(b) pa(u)—>py(u) for every ueH;

(e) dist(u,T,)—>dist(u,T,) for every uc H.

Let f, be a sequence of extended real-valued proper convex lower
semicontinuous functions defined on H with epigraph denoted by epif,.

DEFINITION. We write f“;‘i Jo iff

e M.
epifa—>epif,.
THEOREM 2. The following conditions are equivalent:
M
() fa>to;
(b) ,—x, tmplies liminff,(z,) = f,(x,), and for every x e H there
exi8t x,—x such that f, (x,)—f,(x).

The convergence in the sense of Mosco is the main tool in the proof
of the next theorem. We come back to the abstract optimization problem
defined above (see (5), (6), (7)).

THEOREM 3. The following condilions are equivalent:

(a) u,—>%u, for every F € 8;

(b) I,;—ilfirlo for every F € 8;
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(e) v,—v, for every F e 8;

(d) gp—Y, for every F e 8;

(e) any of the above statements (a)~(d) for every quadratic functional
(4, @)l —u*|F + o —2*IF, u* e U, &* e X;

(f) L,x—~L,x and Loy—Lgy for every x and y.

The optimal control problem

Let us consider sequences of optimal control problems (1), (2) satisfying
the following assumptions:

f T
(a) for some ¢ >0, [ |B,[*dt < g;
0 :
(b) A, are ecquiintegrable (i.e., [ A,ds—>0 as meas E—0, uniformly
E

in m).
)Given ¢ €(0,1] we consider the Carathéodory integrands
[ =f(t, 2z, u): [0, T] XR? X R~ —00, + 00},
and we say that f e C iff
(a) f(¢,+, ) is convex with a continuous gradient f_(7,-, )3
(b) a(t) < f(t, », u) < blul*+p|z*+35(t),
|f2(8y @y )| < 7 il +w [u] +2(2)

for all ¢, #, w and some z, a € L}(0, T), s € L*(0, T);
. Tty wAd
(© f(t, LA

1 1 o
R )é;f(t,:v,u)+§'f(t,y,.v).—-zIu—vl’-.

Remark. Every quadratic-type integrand
fty @, w) = (u—u*"(O1QQ) [u— " W]+ [=—2" O P () [z—2"(2)]

belongs to C for any u*, #* € L? if the matrices @, P aré bounded, positive
semidefinite and ¢ is uniformly positive definite.
Given f e C, we denote by p, (for every n) the adjoint state given by

j’n +A;l(t)pn = f (t, T, W,), 2.(T) =0.
THEOREM 4. The following conditions are equivalent:
(a) @,~>u, in L*(0,T) for every feC;
(b) @,—%, in L*(0, T) for every quadratio-type f;
(e) p,—p, in AC(0,T) for every feC;
(d) A,—A, in L'(0,T), B,—B, in I*(0,T) and B,—~B, in every
L}0,T—¢),0<e< T.
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COUNTER-EXAMPLE. The convergence of optimal controls in .I* for
every quadratic-type cost does not imply in general the weak convergence
of A, to 4, in plant (2) if weak sequential compactness is not assumed.

Consider B, =0, 4, =0,P =@ =1, and forn =1,2,... let
2%sin (4" nt), 2" <<t 27N,

An(t) = l

0 otherwise.

Minimum effort control problems

Consider the characterization of continuous dependence of the optimal
controls upon the matrix B in the following optimal control problem:
e=A@)z+Bt)u, O0<ti<T,"

z(0) = 0;
constraint: w(.’l’) =¥

state equations:

cost functional: (f Zluj(t) u,t)["dt)up,'_ ?>1

0 jml

Let q be such that 1/p+1/q = 1.
THEOREM 5. Assume complete controua,bzmy of the pair (4, B“),

=0,1,2,..., and uniform boufndedmss of f |B,i® dt. Then the following

conditions are equivaleni:

(a) for the optimal controls Uy @ —>“o in IL? (0, T) for every y and
w* e LP(0, T);

(b) B,—B, in L0, T).
The characterization (a)<s(b) of Theorem 5 (with (a) holding for
every %°, %, y*) is true for linear plants and cost

T
f(|u—u'l’+iw—w'lf’)dt+lm(t)—y'l”-'
0

Remark. By Eomparing Theorems 4 and 5 we see that a final state
constraint (or a final state term in the cost) forces strong convergence
of the coefficients on the whole time interval [0, T'].

A DISCONTINUOUS DEPENDENCE EXAMPLE. We consider M > 0, a real
Hilbert space H, a point y* € H and a given bounded linear map L: H—H.

ProOBLEM. Among all 4 € H minimizing
ILuw —y*|| subject to |u| <

find the element % of minimum norm. This % may depend onLina dlscon-
tinuous way. Take H =R, y = (1,1), M =2, ‘

Ly(2y, #) = (2, 0), L, = (2, T3/n);
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then
WL, —Lyl-0 but &, +%,.

Dependence of the value on the weighting
.coefficients in the quadratic cost

We consider the following optimal control problem:
=AMz +B(tu, O0<t<T,
xz(0) = 0;
constraint: z(T) = y;

T

state equations: {

cost functional: f [w'Q(t)u+2'P(t)o]dt;
0

(optimal) value: v;
optimal control: %.

We wish to characterize the admissible tolerances on the coeffi-
cients in the matrices P, @ such that the corresponding values and optimal
controls differ in a prescribed way.

Abstract setiing. We are given:

X — a real Hilbert space;

Y — a real reflexive Banach space, ¥ +# {0};

L: XY — a linear bounded surjective operator;

a>0, o> 0;

A,: X+X — a sequence of linear bounded maps such that
(8) alul? < folu) = <44, u) < ol

for every » and wu.
Let %, be the minimum point of

Ja(u) — Bubject to Lu =y,y€e X,

9
@ v, — the value, z, — the Lagrange multiplier, given by L*z, = 4,%,.

We wish to characterize the weakest convergence (if any)

Tu—To

such that for every y we have

v, = minf, (L~ y)>minf(L7'y) = o,.

Weak gamma convergence

We consider a normed space U and sequences f,: U—[— o0, 4 o0].

DEPFINITION. We write f,‘—r-'r fo (more precisely f,—f, in the I'” (w)
sense) iff
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(a) -"’n"‘-'”o imp]-ies hmmffn(a"n) >fo("”o)i
(b) for every z there exist s,—2 such that
In(@,)—=Fo ().

THEOREM 6. Let f,(u) = 4{(4,u,u) under the same equiposilivily
assumplions (8) on A, as above. Then

Jarfo  Hff  A7'v—A7'e  for every v.

The I' convergence of the quadratic functionals f, has a relevant
variational interpretation in free minimization problems, but is no longer
equivalent to the convergence of the constrained values.

COUNTER-EXAMPLE. Assume
1
fu(w) = [ ap(a)is(a)do

to be minimized with the constraint

d!
20 =u+1l, «%(0) =0,
with
sinnz
=2
@ () + |sinnaz|

Then (working within X = {u € H**(0,1): u(0) = 0})

foSfer  folw) =372 [ i(2)'do
0

but for the constrained values 0,, ©,+,.
We eome back to the above abstract setting.

THEOREM 7. Assume L to be a ocompact map and let condition (8) be
satisfied. Then f,,—i fo tmplies (for every y):

(a) for the values v,, v,—1,;

(b) for the optimal solution %,, U,—%U,;

(c) for the Lagrange mullipliers z,, 2,—2,.

A partial converse is given by the following

THEOREM 8. Assume L, to be linear bounded maps for every j (in some
indexr set) such that

U Ly (Y*) s dense in X°.
j
Then etther
min {fy(%): Lyu = y}->min{fy(u); Lyu =y} for every y,j,
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or the convergence of the Lagrange mullipliers

) >z} for every y and j

z
tmplies f,,—r> fo-

COROLLARY 1. Assume L: X—R™to be a surjective linear operator,
Then the following are equivalent:

(8) fa=fo |
(b) for the values v, defined in (9), v,—>v, for every y.

We apply these results to the optimal control problem described at
the beginning of this section. Assume P,, @, € L*(0, T), P, are positive
semidefinite, @, are equiuniformly positive definite, A e L'(0, T) and
B e I*(0, T). For every =, the RBiccati matrix E, i8 given by

E,=P,~A'B,—E,A-E,BQ;'B'E,, E,T)=0
as in the corresponding free final time problem.
THEEOREM 9. The following conditions aré equivalent:
(a) for the values v,, v,—>v, for every y;

(b) Q;1—Q;* in L*(0,T) and for the feedback mairices Q7'B'E,,
Q.'B'E,—Q;'B'E, in L}(0,T),

II. SOME NONLINEAR RESULTS

We consider sequences of optimal control systems and. ask for conditions
on the convergences of the plants which are sufficient, or equivalent,
to convergence of the values, the optimal controls and states. Few results
seem to be known in this area as far as nonlinear systems are concerned.

A semilinear problem

The optimal control problems are as 'fpllows:
& = Au[t, 2(1) + B, (Du(t), 0<t<T;
2(0) = Yp;
. T
constraints: f uPdt< M, u(t)eC,;
0

state equations:

r
cost: [ falty 2a(t), u(t))dt = I, (u).

THEOREM 10. Assume the following:y,—y,; for the closed conver sets
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C,,C.50,; for every t, fu(t,+, ) >fot, -, ") for the convez functions f,;
A, (- 2(7) )—>Ao(-,w(-)) in L'(0, T) for every continuous o;

Aot 2)— Ay (8, 9) < Gu(D) o —y]  with [ @@t <0< +oo;

0< falt, @, W) < a(t)+blzl*+eluf, aeL'(0,T).

Then the following hold: I,,yrIo, the values v,—v,; if 4, are optimal
controls, u, —% in L* (0, T), then % i8 an optimal control for the unperturbed
problem.

k

A nonlinear characterization

We consider the optimal control problem P, defined as follows:
@(t) e Dy(t, x(t), 0<t<T,
z(0) given; ‘
cost functional: f(z),
where f is a continuous function from €°(0, T) to R. ‘
TEEOREM 11. Assume that D,: [0, T'] X R™— aubsets of -R™,:are compact

convex valued multifunctions, equibounded and ethpsahetzw'n with respeot
to the Hausdorff distance. Then the following are eqmvalem‘

(a) minP,—~>minP, for every continuous f;
(b) for every E,LJ' D, (t, y(v)) dt— _|' Dy(t, y(t))dt for every continuous y.

state equations:

frhes

‘Moreéver, each of {a) and (b) zmplws that
max {dlst(a; argmmP,,) x eargmmP,,,}—>0
where dist 18 computed in the uniform norm..

Remark. Nonlinear dependence of the cost orn the control is not allowed
in Theorem 11.

III. WELL-POSEDNESS IN THE SENSE OF TIHONOV AND HADAMARD

We consider:

X — a convergence space;

V =« X -- the constraint set; .

I8 X>(—o00, + 0]
and the problem of minimizing

I(z) subject to x e V.

DEFINITION. The above minimum problem is called Tihonov well-
posed iff

(a) there cxists a unique minimum point Z of I in V;
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(b) every minimizing sequence converges to Z, i.e., u, eV, I(u,)—
—I(Z) imply u,—7Z. '

Roughly speaking, the problem of minimizing I on given subsets V
of X is called Hadamard well-posed iff it has solutions continuously depen-
ding on the constraint set V.

The two notions of Tihonov and Hadamard well-posedness of a mi-
nimum problem seem at first glance to be largely independent. As a matter
of fact, the main results of this section will show that for convex problems
there is a deep equivalence between these two basic definitions, Moreover,
we shall see that well-posedness of quadratic optimal control problems
is quite stringent since it is equivalent to linearity of the system to be
controlled.

ExaAMPLE. A Tihonov well-posed optimal control problem with respect
to strong L* convergence: '
&= A(t)z+Bl)u+C(t), 0<t<T,
z(0) given;
constraints: (u,z)e K.
K a (nonempty) closed convex subset of L*(0, T)@L*(0, T);

state equations:

(10) cost functiopal: fT[(m—m)’P(t) (e—2)+ (v —u)'Q() (u—u)]dt 4+

+ (1) - y* T Fl2(T)-y"],

where C,AeL'(0,T), BeZ*(0,T), P and @ bounded, F and
P(t) positive semidefinite, @ uniformly positive definite, any z°,
u* e L*(0,T) and ¢* ¢ R™.

Let us remark that existence and uniqueness of the optimal control
do not imply Tihonov well-posedness even with respect to weak conver-
gence, a8 is shown in the following

COUNTER-EXAMPLE., Everything is scalar, as follows:
state equation: 2z =wuz—1l/u; «(0) = z(1) = 0;
constraint: 1-1 /V2 <u(t) <1+l /1/2;

1

cost, functional: f (x—2)*dt,
0

where z is the solution of the following problem:
z=2-2, 2(0)=2z(1) =0.

Let us consider the following non linear optimal control problem:
Minimize the quadratic cost (10) subject to the state equations:

z=g(tz,u), 0<t<T,

(1) z(0) = v.
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The control is now the pair (v, ), » € R™ and % € L*(0, T). Let us assume:
(a) existence and uniqueness in the large for every Cauchy problem

z = gty x, u),

(12)
z(t,) = v,
given any t, € [0, T], u € L*(0, T'), v € R™;
(b) continuous dependence of the solution z of (11) on » and u (strong
convergence in L?) with respect to uniform convergence on [0, T'];

(c) P, @, F are uniformly positive definite.

THEOREM 12. Under the above assumptions (2), (b), (o), the following
are equivalent:

(i) the optimal control problem (10), (11) 48 Tihonov well-posed with
respect to the strong convergence in R™DL*(0, T) for every u*, 2*, y*;

(ii) there exsst malrices A, B, C such that

g, z,u) = A(t)z+B(t)u+C(t)
Jor every t, x, u;
(iii) The optimal control prodlem (10), (11) is Hadamard well-posed

tn the sense thai the opumal comrol 18 a sirongly continuous funclions of
the desired trajectory (u®, z*, y*).

In sharp contrast with the situation described in Theorem 12, it is
easy to show that “most” optimal control problems (10), (11) (with added
constraints) are Tihonov well-posed. Roughly speaking, given problem
(10), {11) we can always restore existence, uniqueness and strong conver-
gence of any minimization algorithm by a slight change of the desired
trajectory.

We end the paper by stating a precise equivalence theorem between
Tihonov and Hadamard well-posedness in an abstract setting. We are
given:

a reflexive Banach space X;

a convex continuous funetion f: X—>(— o0, + o).

The minimum problem of the function f on the subset K of X will
be briefly denoted by (K, f). The optimization problem (XK, f) will be now
called Hadamard well-posed with respect to Mosco’'s (Hausdorff’s) conver-
gence iff for K, closed convex subsets of X, K,‘l‘»K, (respectively
K.,—~K, in the Hausdorff sense) implies

argminf{K,)—>argminf(K,).

In the following theorem, Tihonov well-posedness is considered with
respect to the strong convergence in X,
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THEEOREM 13. Assume f to be umiformly continuous on bounded sels.
Then if (K, f) t8 Tithonov well-posed for every affine half-space K then (X, f)
¢8 Hadamard well-pesed with respect to Mosco’s convergence.

Conversely, assume that f has a unique minimum point on every closed
convex subset of X. Then if (X, f) 18 Hadamard well-posed with respect io
the Hausdorff convergence then (K, f) i8 Tihonov well-posed for every closed
conver subset K of X. '

Bibliographical notes

Section I. Theorems 3 and 4 are particular cases of results obtained
in [2],[16] and [11] (in the last paper the assumption of equiintegrability
of A, was inadvertently omitted). Theorem 5 was obtained in [6], where
further results are given and the d.mcontmuous dependence example is
discussed.

The main tool in obtalmng these results is the convergence in the sernse
of Mosco. The same type of convergence has shown its usefulness and
applicability to the study of perturbations and continuous dependence
in time optimal control problems (see [17]), asymptotic optimal control
problems (see [10], [14]), convergence of exterior penalty techniques
(epsilon method: see [7]). For a general survey about gamma conver-
gences and their applications see [5]. The counter-example about lack
of equiintegrability of A, is due to G. Buttazzo—G, Dal Maso.

Section II. Theorem 10 is a particular case of results obtamed in [1].
Theorem 11 is given in [12] with further results.

Section ITI. The notion of well-posedness was given by Tihonov
in [13). The counter-example is due to M. F. Bidaut. Theorem 12 is given
in [18}, with some generic results about well-posedness of nonlinear
regulator problems.

An attempt to prove equivalences between Tihonov and Hadamard
well-posedness is contained in [3]. Theorem 13 can be found in [9]. Exten-
sions of the notion of Tihonov well-posedness and some characterizations
are given in [15]. For applications to penalty techniques see [4]. Generic
properties of the Tihonov well-posedness are obtained in (8].
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