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§ 1. Introduction

Can one hear the shape of a drum? By this suggestive title M. Kac [17] posed
the question whether in certain problems of partial differential equations
eigenfrequencies determine boundary conditions. A discrete version amounts to
the question whether a graph is determined by its spectrum, ie., by the
cigenvalues of its adjacency matrix and their multiplicities. In certain cases the
answer is positive, and these are all the more interesting if they characterize the
group of the graph as well. This applies to the automorphism group 0~ (6, F,)
of the Schlifli graph, which describes the 27 lines on a cubic surface
and has spectrum (16%, 4%, (—2)*°). This also applies to McLaughlin’s group,
which is characterized as the group of the graph on 275 vertices having
spec = (162%, 2722, (—3)*°?). But in general the answer to the question is
negative. Pairs of nonisomorphic cospectral graphs exist already for order 8.
For higher orders things can really go out of hand: there exist at least
16448 nonisomorphic cospectral graphs on n =36 vertices having
spec = (157, 35, (—3)2%) (cf. [4]). Yet, the spectrum of a graph can tell us
something about the structural properties of a graph. We illustrate this in
a number of examples, and refer to the literature for more complete expositions
(cf. [1], (61, [8], [12], [13)).

We shall in particular deal with the largest, the second largest, and the
smallest eigenvalue of the adjacency matrix of a finite graph. In Section 2 we
show that a,,,, = 2 characterizes the Coxeter—-Dynkin graphs, as a consequence
of certain lemmas on cliques and claws in a graph. The Hoffman-Shearer
theory about a,,,, > 2 is the subject of Section 3. We briefly indicate in Section
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4 the recent developments about expander graphs and the second largest
eigenvalue. Finally, in Section 5 we illustrate the application of root systems in

the characterization of graphs having smallest eigenvalue —2, and make some
further remarks about o, < —2.

Throughout the paper we use the following notions and notations.
A graph is described by its adjacency matrix A (entries 1 for adjacent vertices
and 0 otherwise). The eigenvalues of the graph (of the matrix A) are denoted by

OApax = 0y 2 Uy 2 ... 2 &y = i,

and the automorphisms by permutation matrices P such that 4 = PAP'".
A graph is regular with valency k whenever AJ = kJ (J is the all-one matrix)
and strongly regular whenever

A2 =kI+2A+u(J—1-A).
The factorization

(A—rD(A—sh) = puJ

leads to the spectrum (k', 7/, s¥) of a strongly regular graph, with the
multiplicities 1, f, g of the eigenvalues %, r, s.

ExampLE. The pentagon graph has the spectrum 2, t7%, 17!, —1, —1,
where © = 3(1+./5) denotes the golden ratio, with

2=141, 2cos72°=1"%, 2cosl44° = —1.

ExaMpLE, The cubic graph has

1 0 J-I _ ) 3
A_[J_I 0 ]1 Spec—(3r _3’1’(_1))’

and is a bipartite graph with two complementary cocliques of size 4.

Finally, we recall two important theorems involving spectral properties of
graphs (cf. [1], [8], [13]).

For a connected graph I' the Perron—Frobenius theorem says that
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an.x IS simple, and has a positive eigenvector;

each o, 2 —tn.y, and g, = —an., if and only if I' is bipartite;
2max < Max valency, with equality if and only if I' is regular;
dmex(subgraph) < a..,(17), a strict inequality for any proper subgraph
of I.

-

From the interlacing theorem for eigenvalues we only need the following:

1. Between any two eigenvalues of I' there is one eigenvalue of the graph
\|x}, obtained from I' by deleting any vertex x.

2. Let the adjacency matrix 4 of I' be partitioned into parts having
constant line sums, and let B denote the matrix consisting of these line sums.
Then each cigenvalue of B is an eigenvalue of A.

%/-— F. L} L] .—4——

§ 2. Coxeter graphs

* We shall start with two lemmas on cliques and claws in graphs, in the spirit of
Hoffman. A coclique is a subgraph none of whose vertices are adjacent. A claw
of size ¢+ 1 consists of a coclique of size ¢ and a vertex which is adjacent with
all vertices of the coclique.

LEMMA. For a k-regular graph I’ the size ¢ of a cocligue satisfies

¢ = |coclique| € ——=.
| q l\k—a

Proof. Label the vertices of I' so that

_ o P _ (c—n)j €
L F

Then an easy computation involving the nx 1 vector z yields

ZAz _ —-ntk  —ck

a = = .
Zz c¢n—cjn n—c

n =

Remark. For arbitrary graphs the inequality reads

—na, o
1%n
CE 35—,
Umin —%; &,
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where v, is the minimal valency (cf. [13]). The colouring numbter ¥ of the
graph satisfies
xczn, yxzl-aja,.
LEMMA. For a claw of size c+1 in a graph we have
2

€ < Umay-

Proof. Write a:= &n,,. The size n matrix af — A is positive-semidefinite,
hence so is its size (c+ 1) submatrix:

oy — — — -

[—d = P P | e —j] _[a—c/a O
x - ) : o —j o T 0 all

L P’ g ]

It follows that a® > c. Furthermore, if a? = ¢ then P and Q must vanish. »

We are now in a position to define the notion of a Coxeter graph, to give
the examples 4, D,, E, E, E;, and to prove that these are all Coxeter graphs.

DErFINITION. A Coxeter graph is a connected graph having a,,, = 2.

For a Coxeter graph (V, E) with adjacency matrix A and eigenvector
x = (x, ..., x,) corresponding to o, =2 we have
Ax=2x, 2x,= ) x,.
.p)eE

It is easy to prove that the following graphs are Coxeter graphs, by guessing
the (positive) components x,, ..., X,.
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THEOREM. The graphs A, D,, E,, E,, E; are the only Coxeter graphs.

Proof. By use of the second lemma above we observe that in a Coxeter
graph claws of size ¢+ 1 must have ¢ < 4, and that for ¢ = 4 the only Coxeter
graph is D,. As a consequence of part 4 of the theorem by Perron and
Frobenius, a Coxeter graph cannot have three claws of size 3+1:

If the number of c_:_laws of size 3+ 1 equals two or one or zero, then the Coxeter
graph must be D, or E¢,, or A4,, respectively. m

The present theorem represents Coxeter’s reflections and goes back to
Smith [21]. It implies the characterization of connected graphs having
%max < 2. These are the graphs A4,, D,, E,, obtained from 4,, D, E, by deleting
the starred vertex. For the value of a,,, also called the spectral radius of the
graph, the following is well known:

i : T
|4, = 2cosn—+—l, D]l = 2cos o
T n n
HEgll = 2cos 55, IIE;f = 2c0s 22, |Egll = 2cos .

§ 3. Largest eigenvalue a,,, > 2

As first examples the following two infinite families of graphs are considered:
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We first recognize the graphs E, and E, with a,,,, = 2. Extendingthese graphs
to the right we obtain graphs having

2 < Uy, =:2cosha =e*+e7% a>0.

Our interest is the limit of a,,, as n — o. To that end we consider the
maximum eigenvalue of the matrix of the average row sums of the indicated
blocks (of size 2,2,1,1,1,..) of the second graph I,:

[0 0]1 0[0] [ 0[1]0 0 0 etc. ]

00lo1]o t{o[1 00 .
10/ool|1 |, ol2l0t0 . -1 o0 o
0 1[0 0|1 00101 . x-1 0
| 0 0l1 1o | 00010 o1 x -1
| etc. 0 -1 x|

The characteristic polynomial P,(x) of this matrix satisfies
Ppy3(x) = xPpyy 1 (x)— P,(x).
Putting x:= e*+e~¢ we obtain
Ppia(x)—e Py (%) = e{(Pn+ 1(3‘)“?_”’"(3‘))
=...=e""VP,(x)—e *P,(x))

x —1 0
=e""”‘[ -1 x —-1|—e*¢ )lc -1 ]
0 -2 x - X

= e Mi(eH —e2 1),

This expression has largest root e2° = 1, the golden ratio. Hence by application
of a theorem by Hurwitz we find

1/2 3/2

lim ag,, = e+e *=1"2 41"

n—*®

The number

=7

2 = /245~ 2058

is not the spectral radius of a graph (cf. [11]), since its algebraic conjugate is
not a real number. But it is a limit of spectral radii not only for the graphs I',
above, but also for the “apple” graphs &, on n+1 vertices, consisting of the
n-circuit and one edge sticking out. One can prove [14] that

amll(rn) } r:”z, ama:(an) \ ‘[3/2.
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More generally, for any given number > 2, say 2cosha, a >0, two
questions may be asked. Does there exist a graph whose largest eigenvalue
equals 2cosha? If not, then does there exist a sequence of graphs I,
r,,...,I,,...such that the limit of their largest eigenvalues equals 2cosha?
The first question has a general answer, as a consequence of Doob’s result [9].

THEOREM. If o, (") > 2 then I has a proper subgraph A with a,,(4) = 2.
So the required graphs are the extensions of the Coxeter graphs (cf. [7],

[5).
More specifically, one can ask for all graphs I" having 2 < a,.(I") < %2
These graphs are of two types.

Let T; ;. denote the graph on i+j+k+ 1 vertices consisting of three paths
of i, j, k edges, respectively, and having one common end vertex. For instance:

Ep:=T.25 =
o—-o——I——c —_———0—0—0—20

Let H,;, denote the graph on i+j+k+1 vertices consisting of a path on
u=i+j+k—1 vertices x,, ..., x,, with two extra edges at x; and at x,. ;.

For instance:
Hy32= l I
> -0

Thanks to the efforts of several authors [14], [21], [7], [12], [2], we now know
all graphs having ap,, < \/2+\/§. We copy the final result from [2].

THEOREM. Let I denote a graph with 2 < ag,(I') < t*2. Then I is one of
the graphs T, ;i or H;;x. The T, ;, occurring have

(G, j. k)=(1,2,k=6);(1,3,k>4);2,2, k=3
(2,3, 3):(1,j, k) withd <j <k,
The H;;, occurring have
(,j, k=0, j=i+k,k); (3,j=k+2, k)
2,j=k-1,k); (2,1, 3); (3, 4, 3);
(3,5,4);,4,7,4); 4,8, 95).

Finally, we turn to the second question, posed by Hoffman [14], about
limits of spectral radii, i.e., limits of largest eigenvalues of sequences of graphs.
The answer is contained in the following theorems, due to Hoffman [14] and
Shearer [20], respectively.
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THEOREM. A real number 2cosha, with 2 < 2cosha < t¥/2, is a limit of
spectral radii iff €** is the largest root of a polynomial

xI—x1"2 173 _x—1,
THEOREM. Any real number 2cosha > t*? is a limit of spectral radii.

For both theorems the construction of a sequence of trees suffices. We
describe Shearer’s construction for the second theorem, for a given number
2cosha, with e?* > © (for ¢** = 1 ¢f. the construction above).

First determine the infinite sequences a;, b;, n; recursively by a, = b, = 1
and, fori=1,2,...,

(1) 2b,cosha = a;; n, = [(e"a;—a;-,)/b.];
(2) a;+, = 2a,cosha—a;_; —n,a;/2cosha, or equivalently,
(2,) eaal’-al‘—l = nlbi+ai+l—e_aa'.

By induction it follows from (2') and (1) that g;,; > e *a,. Hence the n, are
nonnegative integers and g; and b, are positive real numbers. It is possible to
interpret 2cosh« and a,. b, as eigenvalue and eigenvector of an infinite graph I

0 1 2 i a k
C_ o' D ——— - . —— — e——— ——— - — —— —— e — — —— J—— . . ———
M ﬂ\ n; M
I\ 97 VAR ]
b;

The infinite path 0-1-2-... has further edges: n, in 1, n, in 2, etc. The eigenvector
v takes value g, at vertex i, and b, at each of the n, vertices adjacent to i (not on
the path). The equations (1) and (2) express that 2cosha times the value in each
vertex equals the sum of the values in the neighbouring vertices:

(3) 2cosha-v(x) = Y v(y),

y~x

for each vertex x. Now consider the finite subgraph I', on the vertices
0,1,...,k (not k+1, k+2,...), and adherents. Denote its maximum eigen-
value by A(I).

LeMMA. A(l") < A(T,) <... < AI'}) < 2cosha.

Proof. For fixed n,, the equations (2) determine g, as a function of «. Then
a;+1/a; is monotone increasing for a« > 0, for each i > 0. This follows by
induction from a,/a, =cosha and from (2) divided by a;. Now let
A(l,) = 2cosha’. Then (2) define the corresponding eigenvector a,(«'), b,(a’). But
Iy has a;,,(2') = 0. Since this is impossible for o’ > %, the lemma is proved.

To complete the proof of Shearer’s theorem it suffices to show that for
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each ¢ > O there is k = k(¢) such that
A(l',) > 2cosha—e.
For the vertex set V, = V(I'}) it follows from (3) that

2cosha ). v3(x)= ) Y v(x)v() = Y v(X)v()+aaisq

xeVi xeVx y~x x,yeV
x~y

< l(r,‘)ZVZ(x)+akak+1,

by a well-known property of the largest eigzenvalue. So it remains to show that’
for large k we have

GOy SE Z VZ(X).

xeVy

Now (1) and (2) in addition imply

ma;, 2 (e*a;—a;- Me"+e )—a,,

o
4.1 <afe’+e N—a;_ —ea,+a;y, +——,
i+1 S afe+e ) —a_, i+ +1+e"+e e

1
—a 1/2
ai+l Qa‘(e +e¢+e_a ga,‘f ’

the last inequality by the assumption. It remains to show that
2

i+ 1 12 % 1/2
5 i ST <t
Z vi(x) 2
xeVy Z a;

i=0

This is true if g, is bounded for k — oo, both for convergent and for divergent
Y.Zoaf. To prove that g, is bounded, Shearer distinguishes between the easy
part 2cosha > 2.325, and the difficult part 2.058 < 2cosha < 2.325. Since we
did not find a shorter reasoning, we now refer back to the original paper [20].

§ 4. The second largest eigenvalue o, (/)

The second largest eigenvalue a, of a graph measures certain properties which
are interesting for computing science. Thus, small a, implies large connectivity,
but also large girth and good expansion.

In 1973 Fiedler (cf. also this volume [10]) defined the connectivity of
a graph to be the second smallest eigenvalue of its Laplacian matrix 4— A.
Here 4 denotes the diagonal matrix of the local valencies of the graph with
adjacency matrix 4, and

A,(4—A):= min zZ'(4—A)z,

(z.)=0,|zll =1
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which equals k —a, if the graph is regular of valency k. The girth of a graph is
the length of its smallest circuit. A graph (V, ~) has good expansion if each part
S of V has a large neighbourhood

0S:= {xeV: I 5(x~s)}.

The relation between expansion and the second eigenvalue is expressed by

IS]- [V\S]

IS| < 3IV| = 185| >
VI

Ay(4—A),
for all SV (cf. {11], Lemma 5.7).

The following construction provides an infinite family of graphs having
the required properties. Such graphs are called Ramanujan graphs. They
are regular of valency k, have n vertices, and their &, = 2,/k—1, as small as
can be.

Let g and p be primes, both = 1 (mod 4), let p < g, and p not a square
modqg. Let Q consist of all 2 x2 matrices [24] whose entries are integers
mod q. modulo a common factor # 0 (mod q). and having determinant # 0
(mod g). Thus Q constitutes the group PGL(2, F ) and has the order ¢(¢*>—1).

We represent p as a sum of four squares:

p=udai+at+ui+ai, odday,eN; a,,a,, a,e2Z.

Interpreting a,, ..., a; modq, we turn this representation into the matrix

[ G +1d, “2“:“3], 2= —1 (modg).

—a,+la; ag—ia,

Let P denote the subset of Q consisting of all such representations for p. Then
the Cayley graph (Q, P) is defined as follows. The vertices are the elements of Q,
and two vertices are adjacent whenever their quotient is in P. This graph has
number of vertices and valency

n=gq(g*—1), k=|Pl=p+1.

Indeed, the number of the }epresentations of p as above equals p+1 = ) 4,4d,
according to a formula of Jacobi. Much more difficult is the number of the
representations

p* = x3+4¢>(x2+x3+x}), xeZ.

Following a conjecture by Ramanujan (1916), proved by Eichler (1954), this
number behaves like

¢y d+0,(p"'**)  as k- .
dip*
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Bj use of this formula it is possible to show that our graphs have

girth > 2log g, a, < Zﬁ,

thus satisfying the required properties; we refer to [19] for the proof, and for
the construction in other cases.

For further developments in the spectral properties of the Laplacian we
refer to [10] in this volume. This paper also contains references to recent
results concerning the multiplicity of the second eigenvalue.

§ 5. Smallest eigenvalue o, = —2

It may be convenient to represent the vertex of a graph by a set of vectors
in a vector space. The road from graphs to geometry goes via spectra.
It uses the main theorem of linear algebra. Recall that every symmetric n xn
matrix M can be diagonalized into M = SAS’, where § is orthogonal, and
A = diag(4,, A;, O,) collects the p positive, the g negative, and the r zero
eigenvalues of M, p+q+r=n. We replace S of size nxn by T of size
nx(p+q), by deleting the last r columns of S, and by multiplying the other
columns j by |4|~'2 Then

1 0
M=T| " "
_[0 _Iq]T

This proves the following theorem, which is phrased in terms of the indefinite
vector space R™? of dimension p+gq, provided with the inner product

(6, Y) =X y1+. XY= Xpt1Vpr1— -~ XptgVptg-

THEOREM. Every symmetric matrix of size n is the Gram matrix of n vectors
in RP4,

Now let M denote the (a, b, c)-adjacency matrix of an ordinary graph I,
defined by its entries

my=a, my=>b fori~j, m;=c otherwise.

An (a, b, c)-representation of I is the set of n vectors in R?? which corresponds
to M according to the theorem. In particular, for the ordinary (0, 1, 0)-adjacen-
cy matrix A4, and for the (0, —1, 1)-adjacency matrix C of a graph I', we shall
frequently use the following representations:

the (—ama, 1, O)representation: M = —oay, I+ A4,
the (Ymes» 1, —1)-representation: M =y, [—C.

In both cases the graph is represented by a set of vectors of equal length in
a positive-definite space. In both cases the number of mutual angles between
these vectors equals two. In the case of M =yI/—C these angles are
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supplementary, and the I-subspaces = lines which carry the vectors are
equiangular.

Line graphs provide examples for svch representations. Let a graph with
n vertices i and m edges ¢ be denoted by its nxm incidence matrix N:

N ={n;,:=1 for ieeg, = 0 elsewhere].
Then the adjacency matrix A of the graph I', and L of its line graph, satisfy
NN =Diag+A, N'N=2I+L.

Since except for the eigenvalue 0, the matrices NN’ and N'N have the same
eigenvalues and the same multiplicities, we find an easy relation between the
spectra of 4 and L.

EXAMPLE.

Ks Ts

The complete graph K, has
NN =@m-DI+J~1,
spec NN = (2n—2)!, (n—-2)""1),
spec N'N = (2n—2)!, (n=2)" "1, (v~ 1)/2-9),

spec T, = ((2n—4)1, (n—4y =1, (=2 3)/2)_
EXAMPLE.

spec L,(n) = (n—2)*""2%, (2n—=2), (—2)* ~2*1),

We next consider the problem of determining all graphs having o,
= —2. We mention the following examples.
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ExAMPLE. Line graphs: L= N'N-2L
EXAMPLE.
J-I J-1|_ : ne1
spec[,_, J_,]—((Zn—z),o",,(—z) )

ExamMpLE. The graphs of Petersen (n = 10), Clebsch (n = 16), Shrikhande
(n = 16), Schldfli (n = 27), Chang (n = 28). The first two graphs are drawn
below; for the rest we refer to [6].

In order to determine all graphs with a,,;, = —2 we look at sets of / lines
in R? at 60°, 90°. Given such a set, we select 2/ vectors, of norm 2, two along
each line. Their Gram matrix is positive-semidefinite (psd), has entries +2, + 1,
0, and looks as shown below; the upper left corner is psd (21 — B), has B, < 2,
and corresponds to the Coxeter graphs, while the lower right corner is psd
(2I— A), has a,,, = —2, and corresponds to the desired graphs.

0/1/—1/—2 2
2

i 0/1 2 |

The next theorem determines special classes of sets of lines at 60°, 90°
which are irreducible and star-closed, i.e., they contain the third line at 60° in
the plane containing any two lines at 60° of the set.

THEOREM [6]. The irreducible star-closed sets of lines at 60°, 90° are the
root systems A,, D,, Eg, E,, Eq.
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Now the construction runs as follows. Given a connected graph having
adjacency matrix A with ay,, = —2. Then 2I + A4 is the Gram matrix of a set of
vectors at 60°, 90°. The set of lines at 60°, 90° spanned by these vectors is closed
off into a star-closed set of lines at 60°, 90°. Hence by the theorem we are left
with the known sets A4,, D,, Eg 5 ¢. Using well-known inclusions we arrive at
the main theorem.

THEOREM. Any graph with oy, = —2 is represented by 21 + A as a subset of
the root systems D, or E,.

The root systems are defined in terms of an orthonormal basis e, ..., e
in R".

D,:= {Ke;xep: i#je{l,...,n}}, ID|=n(m-1)
A= {Ke—ep:itje{l, ..., n+1}}, |4,]=4n@n+1).

ExaMPLE. Any G = ({ey, ..., ¢,}, E) has line graph L= {e,+e¢;: {e, e}
eE}.

L(Kg)={e+epi#j=1,...,6}. L(K33)={e+e:i=1,2,3;j=4,5,6}.
Eg:=Dgu{ice,e +...+eqe5): 6= +1, [[e, =1},

having 56+ 64 = 120 lines in R®. For
any line I: E,:={{x): xeE,, xL1I}, 63 in R’;
any star s: Eg:= {{x): xeEg, xLs}, 36 in R®

ExampLE. The Schlifli graph on n = 154646 vertices is represented in
Ey by

letesiztj=1,...,6u{lY e, —e—e,]Ui{l) e, —e,—ey).

In E; graphs 21+ 4 have < 36 vertices and valency < 28. Regular graphs in
E, have < 28 vertices and valency < 16.

Root systems are very much related to root lattices, which are defined as
integral lattices spanned by vectors of norm 2. The vectors of norm 2 form
a root system, and the .analogous definitions for the root lattices are

D,:={xeR" x;eZ, ) x;€2Z},
8

Eg:=(Dg; + Y e, ;= £1),.
i=1

The companion theorem reads as follows (cf. [1]):

THEOREM. Any root lattice is a direct sum of lattices of types A,, D,,
Eq, E,, E,.

The considerations of the present section essentially determine the graphs
having smallest eigenvalue a,;,, = —2. The actual classification still is rather
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complicated. The same holds for the case oy, > —2. For these cases we refer
to the literature [1], [3], (7], [15].

For a,,, < —2, similar questions may be asked as for a,,, > 2. Interest-
ingly, similar answers are obtained if the constructions involved use bipartite

graphs. Indeed, such graphs have a.,+am., = 0. This applies to the trees
constructed in Section 3, hence we have:

THEOREM. Any real number < —1*? is a limit of smallest eigenvalues of
graphs.

Essentially unknown is the distribution of the minimum eigenvalues of
graphs in the interval

-2 <y, < —2.

We refer to the literature for scattered results in this region; two such
results (cf. [15], [16]) read as follows:

1. E,, =T, .6 is the only graph with —2.007 < ap;, < —2.

2. Graphs with large o, satisfying —1—./2 < .. < —2 have a,;,
= —2 and are representable in D,.
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