MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21

PWN —~ POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

ON THE USE OF HOMOMORPHISMS
FOR PROVING
THE EQUIVALENCE OF SOME PROGRAMS

DIMITER SKORDEY

Sofia University, Sofia, Bulgaria

In [5], we tried to show by an example the usefulness of a certain notion of
homomorphism for proving the equivalence of some structured programs (in
.that example the equivalence of two concrete Pascal programs was proved).
The homomorphisms which appear in the example in question were in fact
partial-multivalued homomorphisms between many-sorted partial-multi-
valued algebras with only unary operations, although the notion of partial-
multivalued homomorphism was introduced in the same paper for the
general case of many-sorted partial-multivalued algebras with arbitrary sig-
natures (and even for a more general class of systems). Unfortunately, the
description of the signatures of the many-sorted algebras used overburdens
heavily the exposition even in the case of only unary operations. Therefore
we now consider it desirable to avoid the use of many sorts of objects in the
treatment of such examples. This turns out to be possible due to the fact that
for each given program of the kind in question we have a corresponding set
of memory states (namely the set of all admissible valuations of its variables)
and each part of the program can be considered as describing some partial
mapping of this set into itself (although a small part of the program usually
concerns only a small number of its variables and therefore the above set of
memory states could seem not to be the most suitable for the study of such a
part).

First of all, let us give the necessary definitions without superfluous
generality and in a form convenient for our considerations.

DeFiniTioN 1. Let A and B be sets, F a partial mapping of A into A,
and G a partial mapping of B into B. A homomorphism from F to G is any
pair (Hq, H,), where Hy and H, are subsets of the Cartesian product A xB
and the following condition is satisfied: whenever (a, b)e H, and aedomF,

378 D. SKORDEV

then bedom G and (F(a), G(b))e H,. A bihomomorphism from F to G is any
homomorphism (H,, H,) from F to G such that (Hg ', H; ') is a homomorph-
ism from G to F.

DeriniTioN 2. Let A and B be sets, P a partial predicate on A, and Q a
partial predicate on B. A homomorphism from P to Q is any subset H of the
Cartesian product A xB satisfying the following condition: whenever
(a, b)e H and aedom P, then bedomQ and P(a) = Q(b). A bihomomorphism
from P to Q is any homomorphism H from P to Q such that H ' is a
homomorphism from Q to P.

Remark 1. It is clear that, in Definition 1, the pair (H,, H,) is a
bithomomorphism from F to G iff H, and H, are subsets of 4 xB and
whenever (a, b) e Hy, then the conditions aedom F and b edom G are equival-
ent and imply that (F(a), G(b))eH,. In Definition 2, H is a bihomomorph-
ism from P to Q iff H is a subset of A x B and whenever (a, b) e H, then the
conditions aedom P and bedomQ are equivalent and imply that P(a)
= Q(b). In the case where F and G, respectively P and Q, are total, the
corresponding notions of homomorphism and of bithomomorphism obviously
coincide.

Remark 2. The parts of Definitions 1 and 2 concerning homomorphisms
can be considered as special cases of the definition given in [5]. In the case
of Definition 1, let us consider the signature (|0, 1}, o], 1), where 7(w) = (0
— 1), and the two-sorted algebras

(Qf = ((Ao, A[), (Fw)), A= ((Bo, Bl)a (Gm))

with this signature, where A, = A, = A, F,=F, B,=B, =B, G, = G. Then
the homomorphisms from F to G in the sense of Definition | are exactly the
homomorphisms from .o/ to # in the sense of [S]. In the case of Definition
2, we have to take A, = A, B, = B, A, = B, = itrue, false}, F, =P, G, = Q.
Let

I = |(true, true), (false, false)}.

Then H is a homomorphism from P to Q in the sense of Definition 2 iff
(H,) is a homomerphism from .« to # in the sense of [5].

Remark 3. Usually, one considers total single-valued homomorphisms. In
the case ol Definition 1, this can be achieved by means of the additional
assumption that H, and H, are (the graphs of) some single-valued mappings
of A into B. Then the condition of (H,, H,) being a homomorphism (a
bihomomorphism) from F to G is equivalent to the following one: whenever
acdomF, then Hy(a)edomG and G(Hq(a)) = H, (F(a)) (for all a in A, the
conditions aedom F and H,(a) edom G are equivalent and imply the equal-
ity G(Ho(a)) = H, (F(a))). In the case of Definition 2, we have to assume that
H is (the graph of) a single-valued mapping of 4 into B. Then the condition

HOMOMORPHISMS FOR PROVING THE EQUIVALENCE OF PROGRAMS 379

of H being a homomorphism (a bihomomorphism) from P to Q is equivalent to the
following one: whenever acdom P, then H(a)edomQ and Q(H(a)) = P(a)
(for all a in A, the conditions acdom P and H(a)edom Q are equivalent and
imply the equality Q(H (a)) = P(a)). The notions obtained in this way are
special cases of the notions of homomorphism and closed homomorphism
which have been studied in the theory of many-sorted partial algebras (cf.
[1], [3]; for the case of Definition 1 with coinciding H, and H, which are
single-valued and total, cf. also [2]).

Remark 4. If we combine the assumptions made in Remark 3 with the
assumptions that F and G, respectively P and Q, are total then we have the
following: (H,, H,) is a homomorphism from F to G iff G(H, (@) = H, (F (a))
for all a in A, and H is a homomorphism from P to Q iff Q(H (a)) = P(a) for
all a in A. Let us note that the usual definition of homomorphism for the
case of predicates requires only that Q(H(a)) = true whenever P(a) = true.
We do not adopt this definition here since it is not convenient for our
purposes.

We should like to use homomorphisms for the study of Pascal state-
ments built from simple ones by means of forming compound statements,
branching and the while — do — construction. This can be done on the basis
of the following propositions, where the meaning of begin — end, if — then
— else and while — do with mappings instead of statements is obvious (for
example, begin F,;...; F, end denotes the composition of the méppings
Fy,..., F):

ProrosiTioN 1. Let Fy, ..., F, be partial mappings of a set A into itself
and let G,, ..., G, be partial mappings of a set B into itself. Let (H;_,, H;) be
a homomorphism (a bihomomorphism) from F; to G;, i=1,...,n. Then
(Hg, H,) is a homomorphism (a bihomomorphism) from begin F;...; F, end to
begin G,;...; G, end.

ProPoSITION 2. Let F, and F, be partial mappings of a set A into itself,
let G, and G, be partial mappings of a set B into itself, let P be a partial
predicate on A and Q a partial predicate on B. Let (H,, H,) be a homomorph-
ism (a bihomomorphism) from F; to G;, i = 1, 2, such that H, is a homomorph-
ism (a bihomomorphism) from P to Q. Then (H,, H,) is a homomorphism
{a bihomomorphism) from if P then F, else F, to if Q then G, else G,.

ProprosiTION 3. Let F be a partial mapping of a set A into itself, G a
partial mapping of a set B into itself, P a partial predicate on A and Q a
partial predicate on B. Let H be a homomorphism (a bihomomorphism) from P
to Q such that (H, H) is a homomorphism (a bihomomorphism) from F to G.
Then (H, H) is a homomorphism (a bihomomorphism) from while P do F to
while Q0 do G.

The proofs of these propositions are straightforward and will not be
given here. Let us note that Propositions 1 and 2 follow immediately from

380 D. SKORDEV

Propositions 2 and 5 of [4], on taking into account that the notions of
homomorphism and bihomomorphism of the present paper correspond to
the notions of semi-homomorphism and homomorphism of [4], respectively;
as to. Proposition 3 above, its part concerning bihomomorphisms can be
‘obtained by an application of Proposition 6 of [4].

In order to show the use of Definitions 1, 2 and Propositions 1, 2, 3, we
shall consider again the example from [5], where the equivalence of the
following two Pascal programs was proved (for the time being, let us pay no
attention to the symbols in brackets on the left whose meaning will be
explained later):

program f (input, output);
var n, x, y, z: integer;

(F) begin

(Fy) x:=1;

(F2) yi=1;

(F5) read (n);

(Fq) while

(Po) n>1

do
(Fo) begin
Z:=x+y; x:=y;,y:=z;n:=n—1
end;

(Fs) write (y)

end.

program ¢ (input, output);
var n, x, y: integer;

(G) begin
(Gy) x:=1;
(G,) y:=1;
(G3) read (n);
(Ga) while
(Qo) n>1
do
(Go) begin _
if x>y then y:=x+y else x:=x+y;
n:=n—1
end;
(Go) if x > y then write(x) else write(y)
end.

Let A be the set of all admissible valuations of the variables of program
f, namely the variables n, x, y, z, and the file variables input and output,
where, for simplicity, we assume the finite sequences of integers to be the

HOMOMORPHISMS FOR PROVING THE EQUIVALENCE OF PROGRAMS 381

admissible values of input and output (intuitively, such a sequence, taken as
a value of input, represents the integers waiting to be read and, taken as a
value of output, represents the integers which have already been written). In
a similar way, let B be the set of all admissible valuations of the variables of
program g (the admissible values of input and output are taken to be the
same as above).

An arbitrary element of 4 will be represented by a table of the form

) (n X y <z input output
n, x, y, z; input, output,/

where n,, x,, y,, z, are integers and input,, output, are finite sequences of
integers (in order to avoid some inessential complications, just as in [5] we

will not bother about maxint). The analogous representation of an arbitrary
element of B is

n x y input output
2 (p p)

n, x, y, input, output,

Let each of the letters F, Fo—F5 which occur on the left of program f
denote the partial mapping of A into itself which is described by the
statement beginning on the same line (hence F can be considered as the
action of program f). Let P, be the predicate on A described by the Boolean
expression on the corresponding line (hence P, has value true for the
elements (1) of A satisfying the condition n, > 1, and has value false for all
other elements of A). Let the meaning of G, Go—Gs and Q, be defined in a
similar way. We have the following equalities:

(3) F = begin F; F,; F5; F,; Fs end,
4 G = begin G,; G,; G;; G4; Gs end,
(5) F, = while P, do F,,
(6) G, = while @, do G,.

We shall introduce now some subsets H,,,, Hq.., Hi, H,, Hy of the
Cartesian product 4 x B. Each of them will be defined as the set of all pairs
of elements (1), (2) which satisfy a corresponding condition. These conditions
are chosen as follows:

for H,,,: input, = input,, output, = output, = A, where A is the empty
sequence;

for Hg,,: output, = output,;

for H;: x;, = x, =1, input, = input,, output, = output, = A;

for Hy: x; = x, =y, =y, = 1, input, = input,, output, = output, = A;

for Hy: ny =n,, x; =min{x,, y,}, y; = max{x,, y;}, x220, y, 20,
input, = input,, output, = output, = A.

382 D. SKORDEV

The equivalence of program f and program g will be established by
proving that (H,,,, H,,.) is a bihomomorphism from F to G. In view of
equalities (3), (4) and Proposition 1, it is sufficient to prove the following
assertions:

1. (H,,,. H;) is a bihomomorphism from F; to G,.

2. (H,, H,;) is a bihomomorphism from F, to G,.

3. (H,, H,) is a bihomomorphism from F, to G;.

4. (H,, Hy) is a bihomomorphism from F, to G,.

5. (Hs, H,,,) is a bthomomorphism from Fs to Gs.

Assertions 1, 2, 3 are obviously true (note only that the mappings F,
and G, are not total). We shall give the proofs of the remaining two
assertions.

Proof of assertion 4. In view of equalities (5), (6) and Proposition 3, it is
sufficient to prove that H, is a bihomomorphism from P, to Q, (this is
obvious) and that (H;, H,) is a bihomomorphism from F, to G,. Suppose an
element (1) of 4 and an element (2) of B are given. The application of F, and
G, to (1) and (2), respectively, gives the elements

(1) (n x y z input output
n,—1 y, x;+y, x,+y, input, output, /°
, n x y input output
@) o o ,
n,—1 x5% y5 mmput, output,
where

‘ .
y)X X3 +y2) if x3 > y,,
: \x,+Y,, ¥2) otherwise.

Suppose now the pair (1), (2) belongs to H;. Then
min (X3, V| =Max Xy, yo| =y;, Max xy, Yo} =Xp+y; =X+,

no matter whether x, > y, or not. Since the equality n, = n, implies n; — 1
=n,—1, it is now clear that the pair (1), (2') also belongs to H,.

Proof of assertion 5. Let the pair (1), (2) belong to H,. Then the
application of F a\nd G, to (1) and (2), respectively, gives the elements

(1) (n x y z .input output)’
noXy Yy Zp mnputy, y,

) (n x y input output)
ny X; y; input; max {x,, y|

Obviously, the pair (1”), (2”) belongs to Hi,,,-
Thus the equivalence of program f and program g is proved (without

HOMOMORPHISMS FOR PROVING THE EQUIVALENCE OF PROGRAMS 383

making use of Proposition 2 and using only that part of Propositions 1 and
3 which concerns bihomomorphisms).

It is easy to give examples where all Propositions 1, 2, 3 have to be
used. Clearly, only their part concerning bihomomorphisms will be essential
when one proves the equivalence of programs. However, the case of homo-
morphisms can be useful for some other kinds of transference of properties of
a given program to another one, for example for proving interrelations of the
following form: whenever the first program gives a result, the second one
gives the same result.

In the example which we have considered, there is a sophisticated step,
namely the choice of H,. This is connected with the [act that program ¢
cannot be obtained from program f by an absolutely simple transformation.
Other examples can be given concerning pairs of programs where the second
one can be obtained from the first in some much simpler way. In such cases
it would be much easier to choose the necessary homomorphisms or
bihomomorphisms. For example, consider the above program f and another
program which is obtained by replacing the line

Si=Xx4yl o xi=y: o yi=zi ni=n-—|

in program Jf by the following one:

Si=yr yi=x+4y: x:=:z: n:=n-1.

Then the equivalence of the two programs can be proved using quite simple
bihomomorphisms. In particular, it is convenient to use instead of H; the set
of all pairs of valuations (1) which coincide on all their variables with the
possible exception of :.

We should like to note that it is also possible to study in a similar way
some pairs of programs written in different programming languages which
admit the constructions considered in Propositions 1, 2, 3. Of course, analogs
of these propositions are true for many other programming constructions.

So far, we have considered only deterministic programs. In order to be
able to consider nondeterministic ones, we have to generalize Definitions 1
and 2 by allowing F, G, P and Q to be multivalued. Then the condition in
Definition 1 of (H,. H,) being a homomorphism from F to G must be
replaced by the following on: whenever (a, b)e H, and a’ is a value of F(a),
then there is a value b" of G(b) such that (a', b')e H,. The condition in
Definition 2 of H being a homomorphism from P to Q must be replaced by
the following one: whenever (a, b)e H, then each value of P(a) is also a value
of Q@ (b). Of course, Hy,, H, and H are still subsets of the Cartesian product 4
x B. After defining the notion of homomorphism in this way, we can reduce
the notion of bihomomorphism to it in the same way as in Definitions ! and
2.

384 D. SKORDEYV

References

[1] P. Burmeister, A model theoretic approach to partial algebras, Akademie-Verlag, Berlin
1985.

[2] G. Gritzer, Universal algebra, Springer-Verlag, New York-Heidelberg--Berlin 1979.

[3] H. Reichel, Structural induction on partial algebras, Akademie-Verlag, Berlin 1984,

[4] D. Skordev, On multivalued homomorphisms in the theory of computability, In: Tth
International Congress of Logic, Methodology and Philosophy of Science (Salzburg,
Auglria, July 11-16, 1983), vol. 1, Abstracts of Sections 1, 2, 3, 4 and 7, 152-155.

[51 -, On multi-valued homomorphisms, In: Computation Theory, Lecture Notes in Computer
Science, Springer-Verlag, vol. 208, 1985, 326-331.

Presented to the semester
Mathematical Problems in Computation Theory
September 16—December 14, 1985

