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ON A CLASS OF SPACES
FOR WHICH THE FIXED-POINT PROPERTY
IS CHARACTERIZED BY HOMOLOGY GROUPS

BY

CHUNG-WU HO (EDWARDSVILLE, ILLINOIS)

By the Lefschetz fixed-point formula, a polyhedron X, clearly
. has the fixed-point property (f.p.p.) if it satisfies the following condition:

ConpITION A. X is compact, connected, and the reduced integral
homology groups of X are all torsion groups.

This condition is not necessary for a poiyhedron X to have the f.p.p.
as can be exemplified by the complex projective space CP(n) for even
integers n. We now ask for what spaces the f.p.p. can indeed be charac-
terized by this condition. We call a polyhedron X a Lefschetz space pro-
vided that X has the f.p.p. if and only if X satisfies Condition A.

In this note*, we shall determine certain Lefschetz spaces and establish
a few general properties of Lefschetz spaces. In particular, we shall show
that the disk and the real projective plane are the only fixed-point spaces
among all the 2-dimensional topological manifolds.

In the following, all manifolds are topological (possibly with non-
empty boundary) and all the homology groups are reduced homology
groups with integral coefficients. We shall first make two observations.

LeMMA 1. If a (locally finite) polyhedron X is a fized-point space,
X must be connected and compact.

Proof. The connectedness part is clear. The compactness of X
follows from a theorem of Klee ([3], Theorem 2.7).

LeMMmA 2. Let M, be an arbitrary 2-dimensional manifold. If M, is
a connected sum of M, with a torus T, M, cannot have the f.p.p.

Proof. By a connected sum of M, with T we mean a space obtained by
first cutting small open disks D in M, and D’ in T, then pasting together
My,—D and T — D' by identifying the boundaries of the disks. Let C be
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a longitudinal circle on the torus 7 which does not touch the disk .D'.
The circle C is then also a subset of M,. We contend that C is a retract
of M,. .

Let T' be the quotient space obtained from M, by collapsing the set
M, —(T —C1(D')) into a point, and let g: M, — T' be the quotient map.
Clearly, T" is a torus with C as a longitudinal circle. We then let h: 7" — C
be a map which collapses the torus 7"’ onto C. Finally, letting j: C — M,
be the inclusion map, we note that the composition jhq forms a retraction
of M, onto C.

Clearly, M, cannot have the f.p.p., for it has a retract lacking
the f.p.p.

THEOREM 1. All 1-dimensional simplicial complexes are Lefschetz
spaces.

Proof. Since Condition A implies the f.p.p. for polyhedra, we
need only to show that if X is a 1-dimensional complex with the f.p.p.,
then X has to satisfy Condition A. To do this, we note that, by Lemma 1,
we need only to show that H,(X) is a torsion group. In fact, H,(X)= 0.

Suppose the contrary. We can always find a 1-dimensional cycle

Z = (Vgy V1) +{ 01y V) + oo +{Vp, V) in X,

where each {v;, v;) is a 1-simplex of X. Let |2| be the underlying topolo-
gical space of z. Clearly, |2| is a topological circle.

We define a map f from X onto the standard unit circle S' on the
Euclidean plane by collapsing every point of X outside the open segment
(v9, v;) onto a point pe §* and carrying the open segment (v,, v;) homeo-
morphically onto 8'— {p}. Note that, for any h: 8§ — |z|, the composi-
tion hf is a self-map of X, carrying X into the subspace |z|. It is not dif-
ficult to choose an & such that the map if is fixed-point free. This is a con-
tradiction. Hence H,(X) = 0.

THEOREM 2. All 2-dimensional manifolds are Lefschetz spaces.

Proof. As in the case of Theorem 1, we need only to show that if
X is a 2-manifold with the f.p.p., then the homology groups of X are
all torsion groups. Let us consider X in its normal form, i. e., X is a 2-sphere
with a number of handles, crosscaps and contours. Since X has the f.p.p.,
by Lemma 2, the number of handles on X has to be zero. Furthermore,
the number of crosscaps on X has to be less than 3, for, otherwise, we can
always replace two crosscaps by a handle. Hence, X must be a 2-sphere,
a projective plane or a Klein bottle, each with a number (possibly zero)
of holes punched on the surface. Now, assuming that some homology group
of X has a free part, we see that X has to be (1) a 2-sphere, (2) a 2-sphere
with two or more holes, (3) a projective plane with  (r > 1) holes, or
(4) a Klein bottle with a number (possibly zero) of holes.
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Note that, in case (2), X is homeomorphic to a disk with at least
one hole. In case (3), X is homeomorphic to a Moébius band with r—1
holes. Therefore, it is not difficult to construct a fixed-point free map
on X in each of these four cases. Hence, the homology groups of X have
to be torsion groups.

COROLLARY. The disk and the projective plane are the only 2-manifolds
with the f.p.p.

Proof. It is well known that the disk and the projective plane
are the only 2-dimensional manifolds which are connected, compact, and
whose homology groups are all torsion groups, i.e., they are the only
2-manifolds satisfying Condition A.

The following problems are believed to be open.

PROBLEM 1. Are all 2-dimensional polyhedra Lefschetz spaces? (P 928)

Bing raised a similar question in [1] (Question 1 of [1]).

PrROBLEM 2. Are all 3-dimensional polyhedra, in particular, all 3-di-
mensional manifolds, Lefschetz spaces? (P 929)

Remark. 4-dimensional manifolds are not necessarily Lefschetz
spaces, since CP(2) has the f.p.p. without satisfying Condition A.

We shall now establish a few general properties of Lefschetz spaces.
We need first the following lemmas.

LemmA 3. If Condition A i3 satisfied by spaces X and Y, it is also
satisfied by X x Y and S(X) (the suspension of X). Moreover, this condition
18 also satisfied by X UY when X and Y are subspaces of some topological
space and XNY # O i8 coniractible.

Proof. Since the homology groups of X XY and XUY can be evalu-
ated from those of X and Y by the Kiinneth formula and the Mayer-Vieto-
ris Theorem, respectively, and the homology groups of S(X) are isomor-
phic to those of X of one lower dimension, it is then easily seen that if
X satisfies Condition A, so does §(X), and if both X and Y satisfy Condi-
tion A, 50 do the spaces X XY and XUY.

LrMMA 4. Let K be a non-empty, closed subcomplex of a finite simplicial
complex X. If |K| is contractible, |K| is a retract of |X|.

Proof. Since |K| is contractible, a map from the ¢-th skeleton of
X into |K| can always be extended into a map from the (¢ +1)-st skeleton
of X into |K|. It is not difficult to define a retraction from |X| onto |K|
inductively on the skeletons of X.

THEOREM 3. If X and Y are Lefschetz spaces, so are X XY and 8(X).
Furthermore, if X and Y are compact Lefschetz spaces such that XNY # @
i8 a contractible subcomplex of both X and Y, then XUY 48 also a Lefschetz
space.



216 CHUNG-WU HO

Proof. Since Condition A implies the f.p.p. for polyhedra, one
needs only to show that if any of the spaces X x Y, S(X) and XUY has
the f.p.p., it must also satisfy Condition A. To show this, it suffices, by
Lemma 3, to show that if X X Y or XU Y has the f.p.p., then both X and
Y satisfy Condition A, and if §(X) has the f.p.p., then X satisfies Con-
dition A. But X and 'Y are Lefschetz spaces; hence, to show that X or ¥
satisfies Condition A, one needs only to show that X or Y has the f.p.p.

The case X x Y is clear, for if f is a fixed-point free map on X or Y,
the projection of X x Y, followed by f, forms a fixed-point free map on
X x Y. Therefore, if X x Y has the f.p.p., so do the spaces X and Y.
Similarly, suppose f to be a fixed-point free map on X. Let f,: S(X)
— 8(X) be the map induced by f, and let r: 8(X) - S(X) be the
reflection of S(X) obtained by interchanging the north and the south
poles. Then f,r is a fixed-point free map on S(X). Hence, the f.p.p. for
S(X) also implies the f.p.p. for X. ,

Finally, consider X UY. By the assumption, X and Y are both compact
polyhedra such that XNY is a subcomplex of both X and Y. Now, let
f be a fixed-point free map, say on X. By Lemma 4, there exists a retrac-
tion g: Y - XNnY. Then, F: XUY - XUY defined by F(x) = f(x) if
ze X and by F(x) = fg(x) if 2eY is a fixed-point free map on XUY (the
compactness of X and Y is needed to ensure the continuity of F'). Hence,
the f.p.p. for XUY also implies the f.p.p. for both X and Y.

Remark. It is known that the f.p.p. for two arbitrary spaces X
and Y does not imply the f.p.p. for any of the spaces X xX, X xI,
XxY,S8X),Xu;Y and XU,Y, where I is the unit interval, Xu;Y
is the union of two spaces X and Y such that XNY is an arc, ﬁa,nd XupY
is the union of X and Y such that XNnY is a disk (see Lopez [5], The-
orem 15 of Bing [1], Knill [4], and Theorem 4.9 of Fadell [2]). These impli-
cations, however, are true under minor restrictions when X and Y are
Lefschetz spaces.

~ Finally, we observe that Theorem 3 can be used, in particular, to
construct spaces with the f.p.p. from some known Lefschetz spaces
which have the f.p.p. by forming, successively, the products, suspensions
or by pasting together such spaces in a right way.

The author wishes to thank Professors Bing and Vrabec of the Uni-
versity of Wisconsin for a very useful communication.
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